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IMAGE PROCESSING ABOARD THE MIDCOURSE SPACE 
EXPERIMENT USING THE ULTRAVIOLET AND VISIBLE 
IMAGERS AND SPECTROGRAPHIC IMAGERS 
INSTRUMENT 

The Ultraviolet and Visible Imagers and Spectrographic Imagers instrument includes an onboard image 
processor that augments the closed-loop tracking ability of the Midcourse Space Experiment satellite. The 
image processor, in conjunction with the satellite's tracking processor, supports closed-loop tracking of 
various objects of interest, including dedicated launches and atmospheric phenomena such as Earth's 
aurora. Designed and developed by APL's Space Department, the image- and track-processor systems are 
being integrated into the Midcourse Space Experiment spacecraft. Experimental analyses using real 
imagery have been conducted to validate the instrument's tracking performance. 

INTRODUCTION 
The Midcourse Space Experiment (MSX) is a DoD­

sponsored satellite scheduled for launch in 1994. Its 
expected operating lifetime is 5 years. To accomplish 
MSX's primary mission of observing target and atmo­
spheric phenomena, a variety of instruments covering 
mUltiple wavebands are PaIt of the payload. The Labo­
ratory 's Ultraviolet and Visible Imagers and Spectro­
graphic Imagers (UVISI) instrument is one of the scien­
tific devices aboard the MSX satellite. Also included are 
the Spirit III infrared imager and interferometer, the 
Space-Based Visible sensor, and APL's S-band Beacon 
Receiver. The UVISI comprises four imagers and five 
imaging spectrographs. The imagers include both narrow 
and wide field-of-view (FOV) visible sensors and narrow 
and wide FOV ultraviolet sensors . In addition to UVISI's 
primary function of data collection in the visible and 
ultraviolet wavebands, this instrument has an embedded 
image processor (IP) that supports autonomous closed­
loop tracking. 

The UVISI IP subsystem, in conjunction with the 
MSX tracking processor (TP) subsystem, can perform 
closed-loop tracking of various objects of interest. This 
UVISI tracking function supplements the ability to track 
dedicated targets with known flight profiles. For such 
dedicated targets, the beacon receiver will be the princi­
pal tracking sensor; UVISI will be used as a backup. The 
UVISI, however, will be the primary sensor for tracking 
targets of opportunity and atmospheric phenomena, such 
as Earth 's aurora, that have either unknown or stochastic 
profiles. 

In this article, we describe the distribution of process­
ing roles and the resulting hardware architectures of the 
IP and TP subsystems along with the image processing 
algorithms that have been implemented. These algo­
rithms detect and prioritize multiple candidate objects 
sensed in the UVISI imager's FOY. We discuss features 
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of the TP algorithms specific to UVISI tracking, includ­
ing track initialization and track file update and manage­
ment. Finally, we summarize and assess performance on 
the basis of several real-image data sequences. 

SYSTEM CONFIGURATION 
The general philosophy of the MSX UVISI tracking 

and pointing system is that separate subsystems perform 
the single-frame or spatial processing (UVISI IP) and the 
frame-to-frame or temporal processing (MSX TP). These 
subsystems are relatively self-contained with only low 
bandwidth interface communications between them. Al­
though this independence reduces tracking capability be­
cause not all data are available to anyone subsystem, it 
greatly simplifies the development of the flight code 
software and results in a simpler and cheaper hardware 
design that uses current radiation-hardened Military Stan­
dard 1750A microprocessors. 

Figure 1 is a block diagram of this tracking system. 
The wide-angle instruments have a 13.1 X 10.5° FOV, 
and the narrow-angle instruments have a l.6 X l.3° FOY. 
Anyone of the four available imagers may be selected 
and used for tracking. The raw 12-bit 256 X 244 pixel 
image is forwarded to the UVISI IP at a 2-Hz rate, where 
spatial processing determines the centroids Xi' Yi of each 
candidate object in the scene. A figure of merit, or prob­
ability Pi' is associated with each candidate, which is 
related to the probability that the candidate is the desired 
object of interest. Candidates are ranked by their figures 
of merit. Up to 23 candidates with the highest probability 
of being the object of interest are reported to the 
MSXTP. 

The MSX TP takes this list of reported candidates and 
performs both fine and coarse frame-to-frame data asso­
ciation and velocity filtering to determine which candi­
date is the true object of interest. Kalman filtering I or 
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Figure 1. Tracking and pointing system configuration of the MSX's onboard UVISI instrument. (Reprinted, with permission, from Murphy, 
P. K. , Heyler, G. A. , and Waddell , R. L., "Image and Track Processing in Space (Part II)," in Proc. AIAA Computing in Aerospace 9 Cont., 
Part I, AIAA 93-4560-CP, San Diego, CA, p. 587 (1993); © 1993 by the American Institute of Aeronautics and Astronautics.) 

simpler a-/3 filtering is then used to ensure continued 
tracking of this single object and generate the attitude 
quaternions required by the MSX attitude processor sub­
system. The attitude processor also supplies current at­
titude, attitude rate, spacecraft position, and spacecraft 
velocity data to the TP. The centroid and type, that is, 
satellite, auroral feature, plume, and so forth , of the object 
being tracked are fed back to the UVISI IP to be used 
in determining the figures of merit of future detected 
candidates. 

The UVISI IP is composed of a specially designed 
preprocessor board used for subimage selection, the 
Analog Devices digital signal processor ADSP-2100 
radiation-hardened board for fast vector processing, and 
a 1750A microprocessor to perform nonvectorized pro­
cessing. The MSX TP consists of one primary and one 
redundant 1750A microprocessor. Most of the flight soft­
ware is coded in the Ada programming language; low­
level routines are coded in assembly language. In addi­
tion, both subsystems can be reprogrammed during orbit. 

IMAGE PROCESSING ALGORITHMS 
The UVISI IP contains a uniquely flexible real-time 

onboard image processing algorithm suite. One of the 
four imagers is selected for input to the IP; onboard 
control logic and ground commands determine which 
imager is used as well as the criteria for switching from 
one imager to another. The image processing suite may 
be likened to a "toolbox" containing linear filters, 
nonlinear order statistic filters (e.g., median filter), de­
trenders, and an adaptive thresholder for performing 
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available routines. These can be selected and sequenced 
to provide the overall processing algorithm via uplink 
command before a tracking event. This approach was 
adopted partly because the true nature of the image pro­
cessing requirements cannot be entirely anticipated be­
fore launch; this flexibility allows us to modify the al­
gorithm fairly easily as our knowledge of the data grows. 

The baseline IP processing sequence is diagrammed 
in Fig. 2. Because the UVISI IP software is flexible in 
the types of objects it can track, the same algorithm, for 
example, can be run for both auroral and satellite tracking 
events simply by changing the information used to pri­
oritize the candidates. 

Although the image sent to the IP consists of 
256 X 244 12-bit pixels only a 64 X 64 pixel subimage 
can be processed at the required 2-Hz throughput rate. 
The entire 256 X 244 pixel image is compacted to gen­
erate a coarser-resolution image. Spatial averaging (with 
rounding) and decimation by a selectable factor of 1, 2, 
or 4 (1 = no compaction, 2 = averaging each 2 X 2 pixel 
neighborhood, 4 = averaging over each 4 X 4 pixel neigh­
borhood) are performed in hardware on the custom­
designed preprocessor board. The subimage i chosen by 
isolating a 64 X 64 pixel window within the compacted 
image centered about the predicted object location fed 
back from the TP. If no tracking processor information 
is available, the center of the window defaults to the 
center of the compacted image. 

Processing each subimage entails several steps, in­
cluding removing background and noise, segmenting 
candidate objects from the remaining background, and 
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Figure 2. Image processing flow for detecting and prioritizing 
candidate objects. (Reprinted, with permission, from Murphy, 
P. K. , Heyler, G. A., and Waddell , R. L. , "Image and Track 
Processing in Space (Part II) ," in Proc. AIAA Computing in 
Aerospace 9 Cont. , Part I, AIAA 93-4560-CP, San Diego, CA, 
p. 588 (1993) ; © 1993 by the American Institute of Aeronautics 
and Astronautics.) 
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Image Processing Aboard the MSX Using the UVISllnstrument 

ranking candidates according to their computed object 
priorities. The following is a typical algorithm sequence: 

1. Compacting a 256 X 244 12-bit pixelimage by a factor 
of 1, 2, or 4 into a 64 X 64 12-bit pixel image 

2. Linear filtering to attenuate noise (omitted when using 
a compaction factor of 2 or 4) 

3. Image detrending to remove or reduce background 
trends 

4. Linear filtering for performing matched filtering 
5. Adaptive thresholding to separate candidate objects 

from the remaining background 
6. Blob coloring to label individual candidates in the 

thresholded subimage 
7. Extracting 12 features describing shape and intensity 

statistics for each labeled candidate 
8. Candidate ranking using a minimum distance classifier 

with a supplied a priori 12-element feature vector 

Figure 3 illustrates the application of these processing 
steps to a test image taken from the shuttle. The matched 
filter used was a simple 3 X 3 zero-mean circularly sym­
metric Gaussian kernel. Both the matched filter and 
object classification criteria were designed to locate a 
small, circular object in the image. 

Linear Filtering 
Linear convolution filters having sizes of 3 X 3, 

5 X 5, or 7 X 7 pixels can be applied to the 64 X 64 pixel 
processing subimage. Filter sizes are limited to these 
smaller values, since the convolution is performed in the 
spatial domain. Convolution is frequently done before 
detrending for noise smoothing to ensure a better trend 
fit. It can also be used after detrending to help compensate 
for any artifacts introduced by the detrender. Filters can 
be uplinked to the satellite to replace the default filters 
available. Larger convolution kernels are applied via 
software frequency domain filtering, although throughput 
concerns limit the use of this option. 

Detrending 
The processed subimage may be passed through a 

detrending filter before threshold segmentation. Two 
types of detrenders are available: a high-pass filter de­
trender and a second-order polynomial surface-fit de­
trender. The purpose of either detrender is to remove the 
background trend of the subimage and thus accentuate the 
desired object. The adaptive threshold alone (discussed 
next) , however, is enough to remove a constant back­
ground level from the data and is often all that is required. 
Detrending may also be omitted from the processing loop 
if its effects will not be helpful in locating the object of 
interest. 

The high-pass filter detrender generates an estimate of 
the background by convolving the 64 X 64 pixel region 
with a low-pass 7 X 7 pixel normalized Gaussian filter 
kernel. This background is subtracted from the original 
subimage to yield the detrended sUbimage. The alterna­
tive detrending algorithm yields an estimate of the back­
ground by fitting a two-dimensional second-order poly­
nomial surface to the data, which is then subtracted from 
the original. The type of tracking event will determine 
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Figure 3. Identification processing of satellite or small extended object. This example shows the processed images at various stages in 
the UVISI image processing algorithm. 

which detrending technique will be most beneficial to 
object tracking. 

Thresholding 
Candidate objects in the subimage are separated from 

the residual background using an adaptive threshold al­
gorithm during segmentation. This algorithm computes a 
threshold value from the subimage data statistics. Pixels 
that pass the threshold are either set to a constant value 
(binarized) or left pristine (clipped), whereas those that 
do not are set to zero. The threshold is defined as 

Threshold = Mean + a Standard Deviation, 

where the multiplier a is a selectable input. The appro­
priate setting for a depends on the type of detrending 
implemented. The high-pass filter detrender can amplify 
noise as well as signal and therefore requires a larger 
value for a than is normally used for subimages detrend­
ed using the polynomial detrender. Onboard logic exists 
that increases a if the number of candidates detected 
becomes too large (approaches lOO) or decreases a if the 
tracking processor does not lock on track with any of the 
available candidates (useful for dim objects). 

Feature Extraction 
Feature extraction entails identifying isolated regions 

or blobs in the thresholded or clipped input subimage, 
assigning all pixels in a blob a unique number or color 
associated with the blob, and finally collecting statistical 
data for each colored blob. The purpose of coloring the 
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blobs is to ensure that they are easily distinguishable so 
that the statistical features associated with individual 
blobs can readily be calculated. 

A localized region-growing technique called blob 
coloring2 is used to identify and color each blob. The 
color assignments are additional identifiers; the algorithm 
does not change the actual pixel intensities. The subimage 
is processed a row at a time starting at its upper left 
corner. The blob-coloring algorithm works for either 
binary or clipped thresholded images; it treats nonzero 
pixel values as 1 = on and zero values as 0 = off. 

To determine if the pixel under consideration is part 
of an already established blob, the 4 neighboring pixels, 
as shown in Fig. 4a, are examined. A 4-bit number n is 
created from the ordered binary values of these neighbors 
as follows: 

n = (abed) base 2, 

where 

a = 1 (0) if left neighbor is one off), 

b = 1(0) if upper left neighbor is on(off), 

e = 1(0) if upper neighbor is on(off), and 

d = 1(0) if upper right neighbor is on(off). 

Special cases requiring additional logic include pixels 
in the first row, the first column, and the last column. A 
case statement3 procedure is performed based on the 
value of the number. The pixel under consideration 
is assigned a color depending on the case number 
(n = 0, ... , 15). For example, when n = 0, not one of the 

Johns Hopkins APL Technical Digest, Volume 15, Number 3 (1994) 



four neighbors of the current pixel is on, and we assign 
the pixel a new color. However, when n = 4, the upper 
left neighbor is on, and thus the current pixel is assigned 
the same color as this previously colored neighbor. 

The feature extraction method just described includes 
diagonal connectivity between pixel regions when deter­
mining blob extent. Diagonal connectivity can be turned 
off by setting the appropriate uplink flag, whereby only 
pixels directly above or directly to the left are considered 
neighbors. 

An additional aspect of this method is that circum­
stances can arise when already processed pixels must be 
recolored. Figure 4b illustrates one such situation. Since 
the subimage is processed line by line, the first row 
initially is assigned two colors, one for each apparent 
region. During the processing of the second row, the 
connection between the two regions is detected, and a 
single color is determined for the entire connected region. 
Instead of recoloring the pixels, an intermediate color 
array allows an elegant solution to this problem. The 
numeric values assigned are now indices into this color 
array, thus permitting multiple numeric values to be as­
signed to the same color value. 

(a) 
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b c 

a X 
"" 
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Pixe 
colo 

I to be 
red 

Before recoloring, color array (1, 2) 

Number n = (1101) = 13 
Assign color of left neighbor 
Equate color of upper right with left neighbor 

After recoloring, color array (1, 1) 

Figure 4. Blob-coloring approaches. (a) Blob-coloring 4-pixel 
neighborhood. (b) Blob recoloring. (Reprinted, with permission, 
from Murphy, P. K., Heyler, G. A. , and Waddell , R. L. , "I mage and 
Track Processing in Space (Part II) ," in Proc. AIAA Computing in 
Aerospace 9 Cont., Part I, AIAA 93-4560-CP, San Diego, CA, 
p. 590 (1993); © 1993 by the American I nstitute of Aeronautics and 
Astronautics. ) 
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While the subimage is scanned for blob coloring, basic 
statistical information is collected for each detected blob, 
such as the number of pixels in the blob, the sum of pixel 
intensities, the sum of the weighted column indices, and 
the sum of weighted row indices. This preliminary infor­
mation is further processed to produce 12 statistical fea­
tures for each detected blob. 

Blob shape and location statistics include size, inten­
sity or geometric centroid, estimated semimajor and 
semiminor blob axes lengths, orientation, and eccentric­
ity. An alternative estimate of eccentricity is calculated 
as the minor to major axis ratio (sigma ratio). Blob in­
tensity statistics calculated are average brightness, max­
imum brightness, total brightness, and a brightness ratio 
(the ratio of average to maximum brightness). These 12 
statistics constitute the feature vector computed for each 
detected candidate object (blob). The generated feature 
vectors are subsequently used to determine the likelihood 
that the candidate blob is the desired object. Most of the 
intensity statistics are self-explanatory with the possible 
exception of the brightness ratio, which gives a measure 
of how diffuse the intensities are within a blob. The shape 
statistics calculated for each blob are described in more 
detail in the next section. The boxed insert lists the equa­
tions used to generate each of the 12 statistics. 

Shape Statistics 

Shape statistics calculated include the size or number 
of pixels in the blob and the row and column centroids 
or center of mass in UVISI imager pixel coordinates. The 
centroids can be calculated as either intensity or geomet­
ric centroids via uplink control of an IP intensity flag. If 
the intensity flag is set true, the actual pixel intensity 
values within the blob region are used in the calculation 
of the centroids. Using the actual pixel values increases 
the accuracy of the centroid calculation. We estimate that 
blob centroids can be determined to within subpixel 
accuracies of approximately 1110 of a processed pixel. 
Translating this accuracy to an angular measurement, 
however, depends not only on the imager FOV but on the 
compaction factor used to generate the processed subim­
age. These centroids are reported to the MSX TP, which 
has access to the appropriate boresight offsets and point­
ing data to transform them into angular measurements. 

Additional shape statistics calculated are orientation 
and eccentricity. The orientation is a statistical moment 
that is invariant to changes in position or scale? It is used 
to determine the angular orientation of the blob with 
respect to a reference coordinate system. The eccentricity 
is a position, scale, and orientation invariant moment that 
provides a measure of blob elongation.2 These statistics 
are useful for differentiating the desired object from star 
streaks in the sensed image, which share a common ori­
entation and have a higher eccentricity than the desired 
object. 

The approximate lengths along the semimajor and 
semiminor axes of each blob are calculated by perform­
ing a rotational transformation by the orientation angle 
On on the central moments of the blob. The semimajor 
and semiminor axis lengths for each blob are then ap­
proximated from a multiple of the square root of the 
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i=l j=1 

where p and q are any two integers 

transformed variances. An alternative measure of blob 
elongation, the sigma ratio, is also calculated as the ratio 
of the minor to the major axes. 

Normalizing Statistics 

After all of the statistics are calculated for a blob, one 
important action remains. To remove the scale-dependent 
variations of some of the statistics for different compac­
tion factors, processing windows, and imaging FOV s, 
these statistics are normalized to the reference scale of 
the visible wide FOV imager with a compaction factor 
of I (no compaction). This process requires a final nor­
malization of the size, the semimajor and semiminor axis 
lengths, and the total brightness. The compaction factor 
and processing window parameters are also used to 
project the blob centroids into the original coordinate 
system of the imager that generated the data. 

Candidate Ranking 

After blob coloring is implemented to isolate candi­
date objects and the statistical features are extracted for 
each candidate, a minimum distance classifier is used to 
rank the candidates. Prioritization involves comparing the 
shape and intensity statistics of each candidate with the 
a priori object record. The various objects of interest 
(e.g., star, satellite, or auroral feature) each have an a 
priori feature record in the UVISI IP. Depending on the 
mission event (e.g., auroral tracking), the appropriate a 
priori record is chosen and used to prioritize candidates. 
New a priori records can be uploaded after launch as our 
knowledge of the shape and intensity characteristics of 
objects increases. 

The a priori feature record required as input to the IP 
specifies the expected mean value, standard deviation, 
and a weighting factor for each of the shape and intensity 
feature statistics calculated. Two additional parameters, 
a lower and upper quantization threshold value, are also 
required for each statistic and are used during the coarse 
quantization operation. 

Table I presents the auroral feature record that was 
used in the testing sequences discussed later in the Sum­
mary section. This table was determined from a training 
subset of the available auroral imagery. The feature 
means m i and standard deviations (Ji were calculated from 
the training data set. 

Although the IP decision and control logic can dy­
namically change which a priori feature record is used 
from information supplied by the TP, the values in each 
a priori record are static except for the mean column 
and row centroids. These values are initially set to the 
center of the processing FOV but are updated each 
frame to the predicted object location supplied in the 
TP message. This process helps ensure that the same 
object is given highest priority from frame to frame and 
avoids alternating between competing candidate ob­
jects. A more robust algorithm would update all of the 
statistical features from frame to frame; however, the 
data association and filtering required to update all 
features dynamically are beyond available UVISI IP 
computing resources. 
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Table 1. A priori target record for auroral features . 

Standard Lower-upper 
Parameter Mean deviation Weight quantization thresholds 

Size 600.0 100.0 

Centroid column 127.0 5.0 

Centroid row 127.0 5.0 

Orientation 0.0 10.0 

Eccentricity 5.0 1.0 

Semimajor axis 50.0 10.0 

Sernirninor axis 10.0 5.0 

Sigma ratio 0.2 0.1 

Total brightnessa 1000.0 1000.0 

Average brightnessa 230.0 

Maximum brightnessa 255.0 

Brightness ratio 0.85 

aEight-bit data assumed for this example. 

The weighting factor Wi associated with each feature 
reflects the importance of that feature in distinguishing 
the desired object from competing objects. This allows 
us to tailor the a priori feature record to emphasize 
certain statistics and ignore others. For example, during 
satellite tracking, orientation may be a useful feature, 
whereas, during auroral tracking, orientation is not useful 
owing to the stochastic nature of the aurora. Because it 
is important to choose a consistent object to follow, cen­
troids are highly weighted as compared with other sta­
tistical features. 

In generating the probability that a candidate is the 
desired object, the IP sums the weighted squared and 
normalized differences between the candidate and a 
priori features (n = 12) to produce a distance metric as 
follows: 

In essence, the weighting factors modify the variances. 
If we make the assumption that each candidate feature Xi 

is an independent Gaussian random variable, this distance 
becomes a chi-squared random variable with n degrees 
of freedom (DOF). Although these features are not really 
independent, the common assumption of independence 
greatly simplifies the resulting analysis and implementa­
tion. A goodness-of-fit (GOF) probability is then calcu­
lated as the probability that the distance (random vari­
able) is greater than or equal to the observed distance 
value d, 

GOF(d) = fid(')')d')' = 1- Fd(d) , 

d 

whereiid) and Fid) are the probability density function 
and cumulative distribution function , respectively, of a 
chi-squared n DOF random variable.4 
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This GOF probability is a smoothly decreasing func­
tion that starts at a value of 1.0 when d = 0 (d is always 
nonnegative) and decays to zero as d approaches infinity. 
Unfortunately, no closed-form expression for Fid) ex­
ists. Our primary interest in the GOF probability is for 
use in ranking the candidate objects. However, the GOF 
values are also used to reject candidates with probabilities 
less than an uploadable probability threshold. An appro x -
imate GOF function that is easier to evaluate is 

GOF(d) = exp[ -d21n(2) / n2
]. 

Figure 5 is a graph of the exact chi-squared GOF and the 
exponential approximation for n = 10 DOF. Using the 
approximation does not affect the performance of the IP 
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Figure 5. Actual n = 10 degree-of-freedom (DOF) chi-squared 
goodness-of-fit (GO F) probability versus distance d and the 
computationally simpler exponential GOF approximation used in 
the flight software. 
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algorithm and saves on computation for the flight soft­
ware implementation. The exponential approximating 
function has the property that when d takes on its mean 
value (d = n), the GOF probability becomes 112. The 
number of DOF, n, is not always equal to 12 but is instead 
determined by the number of nonzero weights Wi. 

An additional feature that has been included to provide 
extra robustness to the probability computation is the 
coarse quantization option. When the quantization flag is 
set to true, both the a priori and the candidate statistical 
features are compressed from their original values to 
values between 0 and 1 by means of the upper and lower 
quantization thresholds provided in the a priori target 
record. The compressed values are then used in calculat­
ing the distance metric. The compression function was 
originally simply a multilevel stairca e function (with 
small = 0, medium = 112, and large = I categories) but 
has been modified to be a sigmoidal function that tran­
sitions smoothly from 0 to 1.0. This sigmoidal nonlinear­
ity is useful for categorizing all observations greater than 
some upper threshold as equivalently large or, likewise, 
all observations less than some lower threshold as equiv­
alently small. The sigmoidal function used to transform 
the a priori mean and observed candidate feature is 

mi = 1.0 - exp(-ex 2m/) and Xi = 1.0 - exp(-ex 2 x/), 

where 

[-In(1I2)]1I 2 
ex == - --=----'---------'-=-----

[(upper + 10wer)12] 

The value of ex is chosen so that mi = 112 when mi = 
(upper + 10wer)12. This function is roughly linear near 
this midpoint but is compressed for values outside the 
upper and lower thresholds . The variance is set to that of 
a random variable that is uniformly distributed on the unit 
interval, that is, a/ = 1112. Note that this transformation 
is fashioned after the classical x = F(x) transformation 
that makes x a uniform [0, 1] random variable.4 

TRACK PROCESSING ALGORITHMS 
For dedicated launches, the TP contains the complete 

dynamic model of the tracking event, including space­
craft attitude and attitude rate, spacecraft position and 
velocity, and object a priori position and velocity; thus, 
it is the TP rather than the UVISI IP that can distinguish 
the object from the candidate list on the basis of velocity. 

Up to 23 observations are received in each data frame 
from the UVISI. Although the UVISI ranks the observa­
tions according to the figures of merit, the rankings are 
determined only from individual frame spatial process­
ing. That is, there is no frame-to-frame correlation over 
time. Thus, especially during ob ervations of objects 
appearing as point sources against space backgrounds, 
stars can easily be identified by the UVISI IP as high­
probability candidates and passed on to the TP. The 
velocity filtering algorithm in the TP uses the known 
event dynamics to observe trends in the UVISI data, 
thereby distinguishing objects that move in inertial space 
from stars that do not. 
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Each observation is converted from UVISI imager 
pixel centroids to two angles from bore sight in the space­
craft body coordinates. A binary hypothesis approach 
based on apparent motion of the observations in this 
coordinate system identifies the candidates as stars or 
moving objects. Both star and object hypotheses are 
propagated forward for each initial observation. Hypoth­
esis testing continues until the error accumulations result 
in firm decisions in favor of either the star or moving 
object. Verified object observations are then passed on to 
a 6-state extended Kalman filter. 

For targets of opportunity and special tracking events 
such as auroral tracking, no a priori object trajectory 
information is available. Under these circumstances, the 
MSX TP performs no velocity filtering. The highest­
ranked candidate ob ervation that falls within the angular 
tracking gate window is input to a simpler ex-{3 tracking 
filter. 

Track Initialization 

During initialization, two tracking gates are centered 
on each observation: one object gate and one star gate. 
These gates are then propagated to the next frame in 
accordance with velocity assumptions for the respective 
object and star hypotheses. Star gates are propagated on 
the basis of spacecraft attitude rate only, whereas object 
gates must be propagated considering both the a priori 
object motion and attitude rate. Each hypothesis gate is 
then smoothed with the new observation(s) inside the gate 
using an ex-{3 tracker, and the squared differences or 
residuals between the observation and the gate center are 
accumulated. The position gain ex for the ex-{3 tracker is 
selected empirically to generate a desired respon e time; 
ex = 0.25 provides a 90% response in eight frames (4 s). 
The velocity gain {3 is almost always set to 0, since it is 
assumed velocities of stars and objects are known a priori 
from the supplied nominal trajectory. In fact, it must be 
o or both types of gates will follow the data and differ­
entiation based on velocity cannot occur. The only excep­
tions are events for which no nominal trajectory is sup­
plied; then nonzero value for {3 are necessary. 

Hypothesis Rejection 

Gate hypotheses can be rejected in two ways, either 
by the gate being empty of observations for several suc­
cessive frames or by losing an error residual test to the 
alternate hypothesis. When a gate (either object or star) 
is smoothed with its associated observation the squared 
difference of the observation and the gate center is ac­
cumulated into an error residual variable assigned to that 
gate. The difference of the two accumulated residuals 
(object versus star) can be thresholded to determine the 
identity of the observation. 

Since there are two types of gates and two hypothese 
for each gate, four rules control the velocity filtering 
algorithm as follows: 

1. If a star gate is empty for n successive frame but the 
object gate remains populated, conclude that the ob er­
vation is a moving object and delete the associated tar 
gate. 
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2. If an object gate is empty for n successive frames but the 
star gate remains populated, conclude that the observa­
tion is a star and delete both the star and object gates. 

3. If the accumulated residuals of a star gate exceed those 
of the object gate by a specified amount, conclude that 
the observation is a moving object and delete the 
associated star gate. 

4. If the accumulated residuals of an object gate exceed 
those of the star gate by a specified amount, conclude 
that the observation is a star and delete both the star and 
the object gates. 

If, and only if, all gates have been deleted and no valid 
object is found, reinitialization occurs, with a set of new 
gates placed on the current UVISI IP imager frame's 
observations. Because onboard processing capacity is 
limited, and since the set of tracking event types is con-

Image Processing Aboard the MSX Using the UVISI Instrument 

strained in such a way that it is highly probable the 
moving object is within the FOV, we have not considered 
it necessary to add additional gates for new observations 
entering the FOV that cannot be associated with any 
established star or object gates. For these reasons, and 
since the number of tracks is expected to be low, no track 
pruning or track splitting is implemented. 

Trajectory Estimation 
The location of the single valid target object identified 

by velocity filtering is forwarded to the recursive filter 
for refining the object state estimate. For satellite track­
ing, the filter equations incorporate a plant model with 
a 6-parameter state vector (inertial position and velocity) 
integrated with a fourth-order Runge-Kutta method.s 

The filter plant model can also use an uplinked set of 

Figure 6. Auroral tracking by the UVISI IP. Three separate sequences of auroral imagery taken from NASA's shuttle-based 
51-8 Auroral Image Experiment were used as input for testing. Even though the sequences contain distinctly different auroral features, 
the same a priori auroral feature record was used for each. The centroid of the highest-ranked auroral feature in each image is identified 
by a plus sign. (Reprinted, with permission , from Murphy, P. K., Heyler, G. A., and Waddell , R. L. , "Image and Track Processing in Space 
(Part II} ," in Proc. AIAA Computing in Aerospace 9 Cant., Part I, AIAA 93-4560-CP, San Diego, CA, p. 596 (1993); © 1993 by the American 
Institute of Aeronautics and Astronautics.) 
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curve-fit coefficients that describe position, velocity, and 
acceleration of the object. The 6-parameter filtered state 
vector again represents position and velocity, whereas 
acceleration is derived from the curve fit for the filter 
propagation equations. 

Blob centroid data from the UVISI IP are transformed 
into a unit vector in the imager coordinate system. Be­
cause the angles measure deviation from the sensor 
boresight, the measurement unit vectors will have the 
form (:::::1, El> (2), where the first element is redundant 
information. By assuming the second and third compo­
nents of the unit vector to be independent, a technique 
called sequential measurement updating is employed to 
incorporate the data. The second and third components 
are incorporated individually in the filter as scalar mea­
surements rather than jointly with the first component as 
a measurement vector. The filter is operated twice, once 
for each component. This technique avoids computing a 
matrix inverse in the gain matrix equation as well as 
needless state updating based on the redundant (first) 
component of the measurement vector. 

SUMMARY 
The UVISI IP and MSX TP perform the critical func­

tions of identifying and tracking candidate objects. The 
algorithms have been tested on both real and synthetic 
image data. In-house simulations have been developed to 
provide synthetic UVISI imagery of dedicated launch 
targets and targets of opportunity. The UVISI IP algo­
rithms have been tested extensively on these synthetic 
data. For this article, however, we present some results 
for auroral feature tracking using real image data. 

We obtained several sequences of image data contain­
ing real auroral features by digitizing VHS videotapes of 
auroral imagery taken from NASA's 51-B Auroral Image 
Experiment aboard the space shuttle. Although the imag­
ing resolution, FOV, bandwidths, and viewing geometry 
were not necessarily the same as those of the MSX UVISI 
instrument suite, these real-world examples of auroral 
imagery provided a good opportunity to demonstrate the 
robustness of the UVISI IP algorithms. The waveband 
and FOV in this imagery approximate those of the wide 
FOV visible UVISI imager. The imagery is also taken 
from a space platform (rather than a ground-based site) 
and has an appropriately fast temporal sampling rate. The 
images exhibit considerable blooming and severe frame­
to-frame motions due to the original handheld camera 
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control. We show that the algorithm can consistently 
identify auroral features in the imagery by a judicious 
choice of a priori feature record. 

The VHS tapes sampled exhibited considerable noise 
and were at least second-generation duplicates. The 
images were digitized by a commercial image processing 
board that limited the dynamic range to 8 bits. Spatial 
averaging was performed to tum the digitized video into 
the appropriate 256 X 244 pixel wide FOV images. Three 
sequences containing distinctly different auroral features 
were used in testing the software. Active aurorae exhibit 
localized features that appear bright in both the ultraviolet 
and visible wavebands. These bright features, or so-called 
auroral "surges" or "hot spots," are of primary interest for 
tracking. 

The implemented UVISI IP algorithm did not detrend 
the auroral data and used the a priori feature record listed 
in Table 1 for all image sequences. Simple 0'.-(3 tracking 
was simulated with the UVISI IP top-ranked candidate 
as input. Figure 6 shows sequences taken from the three 
auroral data sets. The plus sign identifies the centroid of 
the UVISI IP top-ranked candidate surge that was fed to 
the tracking filter. 

The UVISI IP was able to identify the auroral surges 
as the top-ranked candidate in 98% of the test images. 
Proper setting of the a priori target record, however, is 
important in obtaining consistent results. Note that the 
UVISI IP does much more than simply find the brightest 
object in the sensed FOV; size, centroid, eccentricity, 
semimajor and semiminor axes, sigma ratio, total bright­
ness, average brightness, maximum brightness, and the 
brightness ratio are all features used to rank the candidate 
objects. Ranking via the a priori target record assures 
successful object identification for other tracking event 
scenarios in which the object of interest is not necessarily 
the brightest object in the FOY. 
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