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SPACE DATA COMPRESSION STANDARDS 

Space data compression has been used on deep space missions since the late 1960s. Significant flight 
history on both lossless and lossy methods exists. NASA proposed a standard in May 1994 that addresses 
most payload requirements for lossless compression. The Laboratory has also been involved in payloads 
that employ data compression and in leading the American Institute of Aeronautics and Astronautics 
standards activities for space data compression. This article details the methods and flight history of both 
NASA and international space missions that use data compression. 

INTRODUCTION 
Data compression algorithms encode all redundant 

information with the minimal number of bits required for 
reconstruction. Lossless compression will produce math­
ematically exact copies of the original data. Lossy com­
pression approximates the original data and retains essen­
tial information. Compression techniques applied in 
space payloads change many of the basic design trade­
offs that affect mission performance. 

The Applied Physics Laboratory has a long and suc­
cessful history in designing spaceborne compression into 
payloads and satellites. In the late 1960s, APL payloads 
used a simple form of data compression to format particle 
data on the Interplanetary Monitoring Platform (IMP). As 
the Laboratory prepares to build and launch the Near 
Earth Asteroid Rendezvous (NEAR) spacecraft, the list 
of data compression options has expanded to include a 
draft NASA standard that has had a successful flight 
history. We have been a contributor to this development 
through our support of the American Institute of Aero­
nautics and Astronautics (AIAA) Space Based Observa­
tion Systems Committee on Standards. The members of 
the Space Based Data Compression Standards Panel are 
the designers of many data compression systems, and two 
of its NASA participants are the authors of the draft 
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NASA Standard for Lossless Compression. 1 This article 
will review how data compression has been applied to 
space missions and show how the methods are now being 
incorporated into international standards. 

Space-based data collection and transmission are basic 
functional goals in the design and development of a re­
mote sensing satellite. The design of such payloads in­
volves trade-offs among sensor fidelity, onboard storage 
capacity, data handling systems throughput and flexibil­
ity, and the bandwidth and error characteristics of the 
communications channel. The nature of space probes also 
requires highly reliable systems that can operate contin­
uously in the presence of multiple component failures. To 
fulfill these trade-offs and reliability requirements, data 
compression is applied as an enabling technology. 

Performance design trade-offs for a space mission are 
heavily influenced by size, power, weight, and complex­
ity constraints. As the performance capability changes in 
a part of the payload chain2 (Fig. 1), these four basic 
requirements change. A fifth requirement, mission risk 
reduction, is always used as the decisive factor. Any de­
cision that increases the risk of incorrectly receiving data 
is weighed against the benefits of improved performance. 
In such a trade-off, space data compression has been 
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Figure 1. Sensor payload data chain illustrates the trade-ofts to be considered when applying data compression in a space mission. 
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viewed with a sense of duaJity. Although it makes the 
mission possible, provides a realistic match between the 
large range of resolution possible in the instrument and 
the desired resolution of the mission, and is an established 
technique that has been used in space since the mid-
1960s, it is also sometimes an unnecessary risk factor, 
and amplifies the effect of communications enors. 

As new sensor technology becomes qualified for space 
use, more capable, higher data volume missions are being 
proposed. The new sensors will collect large volumes of 
data while competing for fin ite communications band­
widths. In addition, the satellites are often forced to share 
ground station time with other sensor missions. This new 
technology brings with it the requirement to compress 
space data while minimizing the risk to the mission. 

SPACE DATA STANDARDS 

Space-based sensor data tend to be unique for each 
mission. Data configuration , sensor sensitivity, and sam­
pling rates are dictated by the goals of the satellite. The 
use of the collected data also differs for each mission. 
Despite these differences, there is significant interest in 
using a common approach to data compression. Often, 
although the data may be different, the techniques are the 
same. Cost controls on the design process, risk, and re­
liability suggest that past efforts should be exploited 
wherever possible. Significant cost savings are also re­
alized when multiple programs design hardware and sys­
tems that are interchangeable. All of these factors should 
be considered when satelli te development is limited by 
both funding and schedule. This awareness is the corner­
stone of NASA's "cheaper, better, faster" philosophy. 

NASA and the other agencies of the space-faring 
nations have recognized the need for space data standards 
by forming the Consultative Committee for Space Data 
Systems (CCSDS), a voluntary organization that meets 
periodically to address data systems problems common 
to all participants and to formulate sound technical so­
lutions to those problems. I All committee actions result 
in recommendations. NASA is in the process of devel­
oping a draft standard for data compression that will be 
submitted to the CCSDS. The draft standard will first 
become a NASA Goddard standard before being adopted 
by all of NASA, and then it will be proposed to the 
CCSDS. One driver behind the draft NASA standard is 
that many of the techniques used in data compression are 
common. NASA performed an informal survey of space 
data compression applications and concluded that 85% of 
its needs could be met by lossless compression. Standards 
for compression will also support multimission capabil­
ity, thus reducing the development cost of subsequent 
missions. The risk in the use of data compression is also 
decreased since methods that are well understood and 
optimized are employed for each mission. 

What is Data Compression? 
Data items onboard a satellite are routinely collected 

and transmitted to the ground for later processing. The 
purpose of data compression is to represent a data item 
with a smaller number of bits. The reduction results in 
more efficient use of the finite resources available 
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onboard a satellite . Data compression algorithms reduce 
the size of the data stream by recognizing redundancy in 
their mathematical representation and then recod ing the 
data for efficient storage and transmission . The compres­
sion algorithms may also remove redundancy by first 
transforming the data or predicting the value of a data 
item. The transformed data will recode into a smaller 
number of bits (see the boxed insert, Coding Methods). 
Lossless algorithm efficiency is limited by the basic 
information rate of the data. Algorithms that reduce the 
information below the Shannon entropy rate of the data 
incur some loss in data fi delity. Lossy method will 
exhibit artifacts depending on the algorithm and how 
much quantization is used. Quantization is the conver­
sion between high-fidel ity and lower-resolution data. The 
quantization process will produce data with more redun­
dancy and will resu lt in greater compression. Trade-offs 
among onboard processing, error recovery, and amount 
of loss result in unique solutions to the data compression 
problem. 

What Data Types are Being Compressed? 

Onboard sensor platforms collect a wide variety of 
data. Table I is a partial li st of the data types reported 
in this article; only those programs that have published 
their methods are included. As seen in Fig. 2, data com­
pression has been used in space since 1967 and is planned 
for most missions to be launched during this decade. 

Data Compression as a Systems Engineering 
Activity 

Systems engineering applied to space missions in­
volves trade-offs that balance the quality of the science 
data collected against the resources provided by the data 
handling systems and communications systems. The 
addition of data compression changes the conditions of 
the trade-offs so that limited resources that might normal­
ly be rejected as not sufficient can be used to perform the 
mission (Table 2) . Data compression can affect all seg­
ments of the payload data chain including the sensors, 
signal processor, data handling system, telemetry system, 
communications system, and ground station (Fig. 1). 

Sensors 

Data compression options historically have been part 
of the sensor design. Decisions on the fidelity of the 
sensor data, the number of bits, and the scaling of the data 
are used to decide how much data will be collected to 
meet the science objectives of the mission. Normally, 
since mission trade-offs involve decisions on how much 
data will be sent to onboard signal processors, as well as 
the statistical characteristics of the data, those decisions 
are not typically thought of as data compression trade­
off issues. They do, however, have implications for the 
eventual performance of onboard data compressors. 
When a strict deflllition of resolution and sampling times 
is used, the trade-offs fall into the categories of spatial 
and temporal compression. Averaging adjacent data is an 
example of spatial compression. Averaging waveforms 
over time performs temporal compression. 
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Table 1. Data types that have been compressed onboard satellites. 

Data type 

Images 

Spectrograph measurements 

Particle counter output 

Digitized camera output 

Figure 2. Timeline of missions (past 
and projected) using onboard data 
compression . 

1965 

Mission 

Voyager, Mars Observer, 
Russian Mars 96, Russian 
Mars 98, Cassini, Mars 
Global Surveyor, 
Clementine, Midcourse 
Space Experiment (MSX), 
Galileo 

Mars Observer, MSX, 
Cassini, Subrnillimeter Wave 
Astronomy Satellite 
(SW AS), Galileo, Russian 
Mars 96 

Voyager, Interplanetary 
Monitoring Platform (IMP), 
Galileo, Ulysses 

Radio Astronomy Explorer-2 
(RAE-2) 

IMP-4 

70 

IMP-6 

IMP-7 

IMP-8 

RAE-2 

75 

Voyager 

79 87 

Characteristics 

Pixels range from 8-12 bits; 
data rates range from record 
playback to real time. 

Spectrograph counts range 
from 8 bits to over 16 bits; 
dynamic range depends on 
integration time and 
sensitivity of the detector. 

Original counts may range 
up to 32 bits, but may be 
averaged and then scaled to 
fit into a small number 
(8 bits) . 

Image is required to indicate 
antenna position. 

90 

Galileo 

Ulysses 

95 2000 

Clementine Cassini 

MSX Mars 98 

Gali leo 
upgrade 

SWAS 

Mars 96 

Pathfinder 

Mars Surveyor 

NEAR 

Signal Processor Data Handling System 

Onboard signal processing is used to perform both 
signal conditioning and postprocessing of the sensor data. 
Since signal processing involves access to the data and 
special-purpose hardware, and is typically programma­
ble, the onboard signal processor is an ideal location for 
performing space-based data compression. After the data 
leave the signal processor they are routed to the space­
craft data handling system and the telemetry/communi­
cations system. Converting the processed sensor data 
to a compressed data stream in the signal processor is an 
efficient use of onboard storage and reduces bandwidth 
requirements for the eventual transmission to the ground 
station. The onboard signal processor can be augmented 
with special-purpose compression hardware or fIrmware 
containing transformers, quantizers, and encoders. Ap­
plying data compression techniques at the signal process­
ing stage is the most efficient approach to the problem 
of onboard data storage and bandwidth limitations. 
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Spacecraft data handling systems are used to tempo­
rarily store multiple-sensor data before transmission to the 
ground through the telemetry/communications system. 
In general, unless a satellite is engaged in high-priority 
missions, the data will be stored for relatively short 
contact periods. Spacecraft designers, when considering 
the vehicle size, power, and weight, often locate the data 
compression hardware or software at the centralized data 
handling system. An additional advantage of this data 
system is that the sensor output data rates are often much 
faster than the telemetry and communications processor 
data rates. This allows more time for the data handling 
system to perform compression. 

Telemetry System 

Telemetry systems are nominally sized to support 
specifIc data rates driven by both sensor platform needs 
and the transmitting power of the satellite. In a spacecraft 
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Table 2. Data compression trade-ofts. 

Location of 
compressor Lossless compression 

Space Data Compression Standards 

Lossy compression 

Sensors Requirement for high fidelity with 
no distortion; real-time processing 
requirement for compression. 

Data editing; data collected with 
no decrease of scientifically 
meaningful results ; real-time 
processing requirement for 
compression. 

Signal processor Signal processor's proximity to 
raw data typically the first location 
of data compression; design of the 
onboard signal processor 

High ratio of lossy compression 
will change the trade-off requirement 
of where processing is performed. 

affected by memory and 
processing requirements for 
compression. 

Data handling 
system 

Improved storage and input/output 
rates limited by information rate as 
calculated by Shannon entropy 
measure. 

Improved storage and input/output 
limited by science value of the 
decompressed data and could 
range from 3: 1 to 20: 1. 

Telemetry system Increased requirement for error­
free communications; error 
containment approach required; 
rate control approach could 
change the fixed packet-size 
feature of telemetry format. 

Decreased data rate could allow 
other instruments larger access to 
available bandwidth. 

Communications 
system 

Error-free communications; 
moderate savings in bandwidth 
will permit smaller antenna and 
lower-power transmitter. 

Significant decrease in required 
bandwidth could affect the size of 
the antenna and power of the 
transmitter; change in antenna size 
can affect decision between fixed 
and deployable antenna. 

Ground station Moderate reduction in bandwidth. Major reduction in bandwidth; 
reduced contact time; smaller 
archival storage of raw data. 

system that employs data compression, telemetry data 
rates will either be smaller or able to perform the same 
function with decreased ground station contact time. 
Unfortunately, an effect of having onboard data compres­
sion is a much higher reliance on error-free communica­
tions because of the higher risk of data loss. A single bit 
error on a compressed data stream results in the loss of 
all undecoded data after the error event. Performance and 
capability of the telemetry system improve with data 
compression, even though the requirement of error-free 
communications implies additional system complexity. 
The CCSDS has developed a standard that describes the 
telemetry format and error detection and correction 
approach. Spacecraft being built since adoption of the 
standard will normally include concatenated error codes 
based on convolutional coding and Reed-Solomon codes. 
The proper use of the CCSDS format will provide a 
theoretically perfect channel that can support most data 
compression applications. The CCSDS format also sup­
ports the concept of variable packet length messages. 

Communications System 

Space communications systems are normally a com­
promise between the amount of data that must be 
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transmitted to the ground and the available bandwidth, 
power, and contact time allocated to the mission. The 
performance of the communications channel is measured 
in terms of the signal-to-noise ratio at a desired frequency 
and the effective bit error rate in terms of number of bits 
in error per second. The size of the antenna and the 
transmitter power affect the performance of a communi­
cations channel. In addition, the size of the ground station 
antenna can improve the effective bit error rate of the 
system owing to improved signal-to-noise ratio. 

Missions designed before the adoption of the CCSDS 
telemetry format standard used a variety of methods 
to provide reliable communications, such as higher­
power transmission to improve the signal-to-noise ratio, 
multiple transmission of data, and error detection and 
correction codes. The CCSDS telemetry format has 
incorporated error detection bits in the data stream using 
parameters that can be adjusted for different mission 
requirements. The communications hardware may also 
be used to complete the CCSDS format by adding a 
concatenated code (e.g., convolutional encoding) to re­
duce the error rates of the channel. 

The addition of data compression in a sensor payload 
changes the performance trade-offs used to select the 
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CODING METHODS: BACKGROUND FOR LOSSLESS 
AND LOSSY COMPRESSION 

Coding of sensor data in space is an application of 
Shannon information rate theory (entropy), which, for a 
source of L independent symbols with a probability Pi, is 
given by3 

L-I 

Entropy = - L Pi log2 Pi bits per symbol. 
;=0 

For example, the information rate for a uniform distribu­
tion of 256 ymbols will require exactly 8 bits. Since the data 
statistics are rarely uniform, the information rate will be 
smaller than the amount used to store the unencoded data. 
Coding algorithm use the nonuniform probability distribu­
tion to design a new bit encoding that will represent the data 
at or near the information rate. Original information as 
shown in Fig. A is measured by entropy. The compression 
ratio of lossless codes is limited by the basic information 
rate. Figure B illustrates the development of a simple Huff­
man code ba ed on a probability distribution. 

Coding methods such as run length encoding and Huff­
man coding repre ent the data using a variable-length num­
ber of bits. Effect of bit errors are amplified since code 
value and length are defined by a unique pattern of bits. 
Variable-length codes require an error containment strategy 
so that the data stream can be recovered if an error occurs. 

Codes are designed to optimally describe a unique set of 
probabilities. Since these probabilities will change as new 

Lossless 
Reduced 

I 
compression 

I redundancy 

I 
Lossy 

compression 
~ I Reduced 
~ndanCY 

Reduced 
information 

Figure A. Relationship between lossless and lossy compres­
sion and the compression ratio. 

[mal design of the communications system. The more 
efficient use of the available bandwidth implies that the 
satellite may be able to use a lower-power transmitter or 
a smaller antenna (with decrease in weight and fewer 
attitude control problems owing to the smaller mass of 
the antenna). Smaller, lower data rates could change the 
trade-off between a deployable or fixed antenna. 

Ground Station 

Ground stations provide spacecraft command and 
control, data capture, data processing, and dissemination. 

210 

15 
A 

Root 

5 
B 

5 
C 

3 
D 

2 
E 

1 
F 

Symbol Code 

A 0 

B 100 

C 101 

D 110 

E 1110 

F 1111 

Figure B. Example of Huffman code generation. Probability 
distribution is used to arrange the symbols in terms of decreas­
ing order as leaf nodes on a tree. The two nodes with the 
smallest probability are merged to form a new node. Codes 1 
and 0 are arbitrarily assigned to each pair of branches. Output 
codes are read sequentially from the root to the leaf node for 
each symbol. 

images and data are processed, the codes must adapt to the 
new statistics. Code that are not correctly designed will 
result in larger than optimal encodings of the data. This 
implies that a space-based data collection system must use 
an adaptive code or provide a method of selecting among 
many predetermined codes. The predetermined codes will 
not be able to losslessly compress a data stream as efficiently 
as adaptive coding methods. 

When the original information is reduced below the 
entropy level, the compression is no longer reversible. Lossy 
compression as shown in Fig. A can also be called "approx­
imate compression" since the reconstructed data are an 
approximation of the original. Data artifacts are produced 
by lossy compression and can be observed in images or 
measured mathematically using the following formulas: 

Root-mean-squared error (RMSE): 

N-IM-I 

RMSE= 1/(NM) L, L, [Dinput(i,j)-DoutputCi,j)f, 
;=0 )=0 

where Nand M are the dimensions of the image array and 
DU, j) is the value of the original and decompressed data 
item. Distortion can also be measured as percentage error 
(PE): 

N -I M -llDinput (i, j) - Doutput (i, j)1 
PE=lI(NM) L L . . . 

;=0 )=0 Dinput(l,j) 

Typically, command and control messages are not a 
subject for data compression since the command formats 
are designed for high-reliability transmission and not for 
smallest possible bandwidth. The other functions of the 
ground station, however, are directly affected by the use 
of data compression. Ground stations designed for a 
satellite system incorporating data compression can re­
ceive data at effective rates comparable to higher-power 
satellite data transmitters with larger antennas. In addi­
tion, the routine use of compressed data will allow more 
satellites to share the use of a ground station, or multiplex 
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the use of a high data rate downlink, since a shorter 
contact time can be used to receive more data. This 
becomes an important consideration when the require­
ment of "better, faster, cheaper" implies that ground sta­
tions will not be 100% allocated to a mission, and 
multiple programs will be sharing the very expensive 
resources of the ground station, its supporting computer, 
and its relay satellite network. 

The reception of compressed data also affects the 
ground station storage methodology since much more 
data can now be handled by the system, providing the 
data remain in compressed form. Data compression in the 
data dissemination process can stretch the effective 
capacity of the media by at least 1.5 times. Data com­
pression is also used to improve the user interaction and 
postprocessing of the data. By keeping the data in com­
pressed form, the time for retransmitting the data to the 
user's computer system is reduced. In addition, if the 
ground station is storing a large amount of data, highly 
compressed products can be used to provide a "user­
defined quality browse." The user can progressively 
decompress the data so that mission science quality 
requirements govern the data selection decision while 
browsing through compressed data sets. 

The State of Space-Based Data Compression 
Systems 

Space compression options are limited to the technol­
ogy that has been flown in space; however, flight­
qualified technology is typically several years behind 
ground technology because of the very conservative na­
ture of space electronics (unusual radiation tolerances) 
and reliability requirements. Early missions were limited 
in space-based computing and had low communications 
bandwidths. The data sent to the ground also normally 
had a fixed-size value (byte- or word-oriented), and the 
telemetry systems accommodated them by using fixed­
size data packets. Recent missions have used the CCSDS 
variable-bit-Iength telemetry format, which also provides 
a superior error detection and correction scheme. It is 
possible to design a CCSDS telemetry format so that only 
one bit error would be expected during the entire mission. 
Flight-qualified technology has advanced to the level 
where onboard data compression can be performed either 
by special electronics or by software using high-speed 
onboard data processors. 

The following section details different data compres­
sion techniques selected because of their flight heritage 
or their significant enhancement to the planned mission. 
Details of the missions in which they were used are 
provided to illustrate how data compression has been 
integrated into the sensor/payload design. Table 3 lists the 
compression algorithms and the satellite missions. 

In many of the case studies, compression was not the 
only option of data transmission. The performance of the 
data compression algorithm was verified and optimized 
by sending raw data. Other systems that used lossy com­
pression as an option also provided a data path for loss­
less or no compression as a method of fine-tuning the 
quality of the received data. In addition, those systems 
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Table 3. Data compression algorithms flown or planned. 

Algorithm 

Predictive 

Companding 

Data subsampling 

Vector quantization 

Transform compression 

Mission 

Voyager, Galileo, Mars 
Observer, Mars Global 
Surveyor, SW AS, Mars 
Environmental Survey 
(MESUR), Mars 96, 
Mars 98, Cassini 

IMP, Voyager, Galileo, 
Ulysses, Pathfinder (Mars), 
MSX, NEAR, Cassini 

RAE-2 

MSX 

Clementine, Mars Observer, 
Mars Global Surveyor, 
Mars 96, Mars 98, 
MESUR, Cassini 

that supported only lossy compression used two system 
requirements to justify the selection: the bandwidth was 
too low to support lossless compression, and the science 
value was not compromised by distortion contributed by 
lossy compression. 

CODING METHODS FOR SPACE-BASED 
LOSSLESS AND LOSSY COMPRESSION 

Codes are designed to optimally describe a unique set 
of probabilities. Since these probabilities will change as 
new images or data are encountered, the codes must adapt 
to the new statistics. Codes that are not correctly designed 
will result in larger than optimal encodings of the data. 
This implies that a space-based data collection system 
must use an adaptive code or provide a means of selecting 
among many predetermined codes. The predetermined 
codes will not be able to losslessly compress a data 
stream as efficiently as adaptive coding methods. 

Predictive Coding 
Predictive coding is a method that improves the sta­

tistics of the data being coded by removing redundancy 
between surrounding pixels or data items. The statistics 
of the resulting sequence will produce a smaller number 
of bits when represented by a variable-bit-Iength code. 
Prediction will depend on statistical characteristics of the 
data. Waveforms that do not exhibit redundancy for 
adjacent data points may be redundant if correlated across 
scans. Design decisions on the predictor will influence 
the amount of onboard memory and the speed of the 
signal processor implementing the prediction. As seen in 
Fig. 3, the predictor design will directly affect the statis­
tics of the predicted error data.4

,5 An ideal predictor will 
result in near zero error. As can be seen by the formula 
for entropy (see the boxed insert, Coding Methods), the 
lossless code for the predicted error will result in a much 
smaller representation than coding for the raw data. 
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Figure 3. (a) Differential pulse code modulation (DPCM) uses a 
predictor to improve the probability distribution of the compressed 
output. (Iin(i, J) = image pixel located at row i, column j. (b) Image 
statistics from the raw data show that a large number of pixel values 
are used in the range. By using predictors based on nearest­
neighbor differencing, the values clustered around zero are most 
frequent and code to a small number of bits. 
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Adaptive Coding 
Changing data statistics will result in a less than 

optimal coding performance since each code set is de­
signed against a unique probability distribution. Adaptive 
coding changes the code to reflect the new distribution 
of symbols. Collecting and reporting the changed statis­
tics can become a significant overhead factor for space 
missions since data processor, memory, and communica­
tions bandwidth are limiting factors. Robert Rice of the 
Jet PropUlsion Laboratory devised an adaptive code for 
the Voyager mission,6-IO which was extremely efficient in 
terms of detecting changes in data entropy and switching 
codes without requiring the compressor to maintain and 
update statistical information. The Rice algorithm is de­
scribed in the boxed insert, The Rice Encoder Lossless 
Compression Algorithm. The Rice algorithm is based on 
a very simple code generator with a programmable data 
splitter that together comprise a family of code options 
that are optimal for different entropy ranges. The Rice 
coders are selected on the basis of a simple estimator of 
data entropy. 

Applications of Lossless Compression in Space 
Missions-The Rice Algorithm 

The Rice algorithm has been used in several space 
missions (Table 3). Reasons for the success of the Rice 
algorithm include the following: 

1. Lossless compression with very high efficiency. 
Throughput bench testing ofthe hardware implementa­
tion of the Rice algorithm in the Universal Source 
Encoder for Space chip has exceeded 25 megasamples 
(lO-bit samples). 

2. Low memory requirement. Statistical tables are not 
required with the Rice algorithm. 

3. Can be performed in software using a limited computer. 
This has been demonstrated on both the Voyager and 
Galileo missions using the 8-bit 1802 microprocessor. 

4. Expandable to higher word size without requiring addi­
tional tables or codes. 

The Rice algorithm has been proposed as a NASA 
Standard for Lossless Compression. NASA is also 
proposing the algorithm as a CCSDS standard 1 and, after 
acceptance, will be proposed as an International Organi­
zation for Standardization (ISO) tandard. 

The Voyager Mission 

The Rice algorithm was first implemented during the 
Voyager mission, which originally was not planned to go 
to Uranus and Neptune. After the decision was made to 
extend the mission, the communication system had to be 
upgraded because of the decrease in bandwidth cau ed 
by the increased distance from Earth. In order to receive 
data at the extreme distance from Earth, a Reed-Solomon 
coder was used to improve the bit error rate of the com­
munications system. A lossless compressor was pro­
grammed into the flight computer using an early form of 
the Rice algorithm called the fast compressor, which used 
a different set of decision tables to select codes where the 
most significant bits were all O's. This produced a coder 
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that was about 0.5 bit per sample above the actual entro­
py. However, the fast compressor could be coded and 
implemented in the already existing flight architecture 
of Voyager. 

Implementing a variable bit rate coder in a fixed­
packet style of telemetry system also presented unique 
challenges for rate control. A lossless compression algo­
rithm cannot predict how much bandwidth it will use, 
whereas the Voyager communications system allocated a 
fixed number of bytes for each transmission. The data 
compression algorithm compensated for the fixed band­
width by reading and compressing the data in an alter­
nating reverse scan line order. Figure 4 shows the effect 
of the reverse scan line on Uranus imagery. As the band­
width is exhausted, the remainder of the data in the line 
are not sent. The next transmission will send the reverse 
scan line data, including all required information to start 
the decode process, such as the seed value of the differ­
ential pulse code modulation. When gaps appear in the 
images, the adjacent lines can be averaged to recover the 
information. 

The Galileo Mission 

Voyager was not the only spacecraft to be retrofitted 
for data compression. In October 1989, the Galileo 

Figure 4. Voyager bit rate control method. When the bandwidth is 
exhausted by the data from a line, the transmission ends. The next 
line is read out in a reverse direction so that lost data between lines 
can be interpolated. 
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satellite was launched using a combination of the shuttle 
Atlantis and a solid-fuel inertial upper stage. The 4.8-m­
high gain antenna did not deploy when it was commanded 
to open in April 1991. The lack of a means to transmit the 
sensor results did not mark the end of the mission. Galileo' s 
S-band communications channel was still operational. The 
communications data rate was reduced from 155 kbits to 
10 bits. The spacecraft data handling system included six 
relatively primitive 8-bit microprocessors (radiation-hard 
1802) as well as a tape recorder that could store the data 
at sensor data rates and play back at the much-reduced 
rate of the crippled communications system. 

Of the 19 scientific payloads listed in Table 4 11
-

17
, the 

bulk of the data rate was allocated to the solid-state 
imager. If the Galileo mission was to continue, all of the 
instruments would have to transmit the data with a small­
er communications bandwidth. In addition, NASA was 
forced to consider extreme measures to boost the effec­
tive data rate of the science telemetry. The error encoding 
method was modified to improve its recovery character­
istics. The ground station antennas were also modified by 
increasing their size from 64 to 70 m and by developing 
an array approach to receiving the data. The effective data 
rate was improved from 10 bits (worst-case estimate) to 
100 bits (best-case estimate). NASA also mandated that 
for the mission to continue, all of the instruments had to 
compress their data on the average of 10: 1. Many of the 
science payloads had already incorporated data compres­
sion into their design. It was necessary for some of the 
science payloads to reprogram their data collection ap­
proach so that the mission science could continue on a 
much smaller bandwidth. A decision was reached that 
after the Probe mission, new compression algorithms 
would be uploaded to Galileo. 

Lossless compression has been incorporated into 
many current and planned missions l8

-
24 (Table 5). The 

most common method is the Rice algorithm. Funding 
problems may cancel some of the planned missions. 

Types and Applications of Lossy Compression 
in Space Missions 

Companding 

Companding is a mapping function (Fig. Sa), where 
input data are converted by a lookup table defined by a 
mathematical function. Since this function maps the 
original data into a smaller number of bits, it results 
in a degradation of the original value. The error can 
be measured against a limiting function. Selection of 
the mathematical function will depend on the require­
ments of the instrument and the eventual coding of the 
output data for telemetry to the ground. This function can 
be accomplished either as a hardware function (i.e. , ROM 
lookup table) or as a software-implemented lookup table 
as planned for NEAR and the MESUR Image Processor. 

An early example of companding used for onboard 
data compression occurred with an APL instrument flown 
on the IMP in 1967. The particle counter used a lossy 
compression device incorporated with the sensor. Similar 
approaches were used in other APL sensor missions 
including Voyager, Ulysses,24 Galileo,15 and MSX 
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Table 4. Galileo antenna recovery data compression. 

Experiment 

Probe 
Atmospheric structure 
instrument 

Neutral mass spectrometer 
Helium abundance detector 

Nephelometer 
Net-flux radiometer 

Lighting and energetic 
particles 

Spacecraft 

Solid-state imaging 

Near-infrared mapping 
spectrometer 
Ultraviolet spectrometer 

Extreme ultraviolet 
spectrometer 
Photopolarimeter 
radiometer 
Magnetometer 
Energetic particles 
detector 
Plasma detector 
Plasma wave 

Dust detector 
Radio science (RS)­
celestial mechanics 
RS-propagation 

Heavy ion counter 

Data type 

Environment parameters 

Spectrograph 
Data readout 

Particle counts 
Data readout 
Counts 

800 X 800 X 8 pixels 

Spectrograph 

Spectrograph 

Spectrograph 

Spectrograph 

Counts 
Counts 

Counts 
Array counts 

Data points 
Signal strength 

Signal strength 

Counts 

Ultraviolet and Visible Imaging and Spectrographic 
Imaging (UVISI) Sensor.25 The particle counter scans 
and sums the counts for a period of time related to the 
spin rate of the sensor platform and then sends its count 
to the ground (Fig. Sb). The large number of 24 to 32 bits 
would be log-compressed to a smaller value of 8. The 
resulting 8-bit number would represent the magnitude of 
the counts. Since the counts were very large and exhib­
ited much variation, the magnitude of the counts was the 
most meaningful for the analysis of charged particles. 
The mission science was still able to be accomplished 
with the loss of resolution. As seen in Table 6, several 
guidelines were selected to decide the mathematical 
function of the compander. The form of the companding 
function is derived by selecting the amount of allowable 
error. Error in images or counts can be measured using 
the same criteria as described earlier to measure the 
amount of lossy compression: the mean squared error and 
the percentage error. 

The companding function can also be selected to elim­
inate noise from the sensor. The MESUR Image Proces­
sor sensor converts each pixel using a 12-bit analog-to­
digital converter. The effect of sensor noise is eliminated 
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Compression before Compression after 
antenna problem antenna problem 

None None 

None None 
None None 
None None 

None None 
None None 

Block adaptive rate Integer cosine 
compressor transform 
None Rice 

None Rice 

Small bits Small bits 

None Rice 

None Rice 
Log compression Sampling change/ 

log compression 

None Rice 
None Integer cosine 

transform 
Encoded data Encoded data 
None None 

None None 

None None 

by using a pseudo-square-root function. This results in an 
8-bit output pixel, which is further compressed by using 
lossless predictive coding or lossy transform coding as 
selected by ground command. 

Data Subsampling 

Data subsampling illustrates a basic technique of lossy 
compression. Data are first quantized by deleting part of 
the data item and then encoding the resulting data for later 
transmission. The approach of quantization/coding is 
used in all of the lossy methods that have flown. The 
Radio Astronomy Explorer-2 (RAE-2) spacecraft26 used 
the digital image to visually monitor the four 229-m 
antenna booms as well as the Moon terminator. Figure 
6 details the antenna aspect processor. The RAE-2 com­
pressor was required to perform a 32: 1 compression so 
that the 20,OOO-bitls camera could transmit across a 
62S-bitls telemetry interface. The compressor would 
sample every fourth scan line and then use a zero-order 
predictor and run-length encoding to encode the remain­
ing data. If the information rate was too high for the 
allocated bit rate, the overflow data would not be sent. 
This would result in blank data inserted near the end of 
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busy scan lines. The zero-order predictor and run-length 
encoder produced on the average 8: 1 compression. When 
incorporated with the data sampling by four lines, the 
effective compression ratio was 32: 1. 

The APL Galileo experiment l5 is also a good example 
of data sampling compression. The energetic particle 
detectors (EPD) are collecting particle flux measures as 
the detector platform spins in space. The instrument will 
sample for a number of energy ranges and sort the 
particles by mass, energy, and direction. These measures 

Table 5. Space lossless compression examples. 

Mission In trument 

Mars Observer Mars Observer camera 

Gamma-ray spectrometer 

Space Data Compression Standards 

were normally log-compressed to yield a magnitude 
number and pseudo-mantissa. 

To compress the data from the original 912 bits/s to 
the average 10:1 compression, several decisions on sci­
ence value were developed. Of the types of measures the 
instrument was collecting, direction was determined to be 
more important than temporal variations. If resources 
were not a concern, then the EPD instrument could be 
recoded to do onboard data averaging, editing, and 
compression. Since storage was at a premium, it was 

Compression 

Hardware differential pulse-code 
modulation CDPCM) with Huffman coding 
using fixed Huffman codes 

Rice algorithm using software­
implemented 1/;9 coder option 

Mars Global Surveyor 
(Mars Observer Recovery 
Mission) 

Thermal emission spectrometer 

Mars Observer camera 

Rice algorithm implemented in software 

Hardware DPCM with Huffman 

SWAS 

Mars Pathfinder 

Cas ini 

Russian Mars 94 
(now Mars 96) 

(a) 

Transmitter 

Output Output 

Gamma-ray spectrometer 

Thermal emission spectrometer 

Acoustic-optical spectrometer 

MES UR Image Processor 

Huygens probe, 
gas chromatograph, 
mass spectrometer 

Huygens Titan descent 
imager spectral radiometer 

High-resolution imaging 
spectrometer 
Magnetometer 

Automatic solar system 
particle experiment with 
rotating analyzer 

(b) 

coding using fixed Huffman 
codes 

Rice algorithm using software­
implemented 1/;9 coder option 

Rice algorithm implemented in software 

Rice algorithm implemented in software 
Lossless mode using software 
implementation of 1/; 14 Rice algorithm 

Rice algorithm implemented in software 

Rice algorithm implemented in software, 
1/; fast for imager and 1/; 14 for all other data 
(spectrograph, photometric profiles, etc.) 

Rice compression using hardware 
implementation of 1/; 14 

Rice algorithm implemented in software 

Rice algorithm implemented in software 

1-bit event r---_ _ 8-_b_it_c-,ompressed 

Input 
12-bit 
data 

256t=. 256~ Transmitted 
8-bit 
compressed 
data 

Telemetry 

Receiver 

Received 
8-bit 
data 

4096 
Input 

Output 

4096.Ll. 
256 

Input 

256 
Input 

Reconstructed 
12-bit 
data 
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Figure 5. Companding quantization will reduce the resolution of 
the data without affecting the science value. (a) High-resolution 
data are quantized by a 12- to 8-bit compander designed to mini­
mize error. The 8-bit data are decompressed into 12 bits by using 
an inverse function. (b) Companding is used in a sensor payload 
to adjust for noise or to extract required information such as 
magnitude of the data. 

215 



N. D. Beser 

Table 6. Examples of data compression using companding on space missions. 

Mission Instrument Companding guidelines 

Explorer series, 
IMP-4, -6, -7, and-8 

Science payload- solar particle 
measurements experiment, charged 
particle measurements experiment 

Mantissa and magnitude (exponent) 

Voyager 

Ulysses 

Galileo 

MSX 

Pathfinder 

NEAR 

NEAR 

Low-energy charged particle detector 

Hi -scale sensor 

Mantissa and magnitude (exponent) 

Mantissa and magnitude (exponent) 

Mantissa and magnitude (exponent) 

Constrained error (l %) 

Pseudo-square-root 

Energetic particle detector 

UVISI imager 

MESUR Image Processor (imager) 

Imager Pseudo-square-root 

Cassini 

X-ray/gamma-ray spectrometer 

Particle detector 

Constrained error (1 %) 

Mantissa and magnitude (exponent) 

Camera 
data 

Figure 6. Antenna aspect processor 120 
samples every fourth scan line and then kbits/s 
combines zero-order predictor with run-
length encoding. Reprinted from Ref. 26 
by permission , © 1976 IEEE. 

Dynamic 
sector memory, 

65,536 bits 

Uncoded data, 625 bits/s 

Command Command Convolutional Coded data 
decoder Fr---------+j 

and storage Threshold compressor Compressed encoder 1250 
level L."",., ......... __ ".II data ~~=_....,.",a symbols/s 

necessary to change the way data were collected in the 
instrument. Before the antenna problem, data were col­
lected on a time basis. To average adjacent spins, it was 
necessary to collect data on a spin basis. In addition, 
the spin data were divided into quadrants. Once the data 
were available on a spin, they could be averaged with 
adjacent spins to result in a much smaller bandwidth. 
Averaging can occur up to 12 min. The 32-bit counts are 
then companded to yield a 9-bit value. The final output 
telemetry was command-selectable at 5, 10, 15, 20, 30, 
40, and 912 bits/so The 912 bits/s was the original data 
rate provided so that high-resolution event monitoring 
could be performed. 

Lossy High Ratio of Compression Systems 
in Space 

Lossy compression of sensor-collected data will re­
sult in measurable error. Reasons for selecting lossy 
compression are normally driven by science, storage, or 
communications requirements. If the mission science can 

216 

(1) Switch in search mode position 

still be performed in the presence of the errors, then the 
risk in using lossy compression is acceptable. When the 
bandwidth or onboard storage is not sufficient to hold or 
transmit the entire data set, then no mission science will 
be collected without lossy compression. Space missions 
during the 1960s and 1970s did not have sufficient on­
board processing capability to perform a high ratio of 
compression with minimal loss. The advent of space­
flyable very large scale integrated (VLSI) components 
has made it possible to use several types of lossy com­
pression techniques for high data rate, high compression 
ratio applications. Two lossy data compression algo­
rithms that are space-qualified are vector quantization 
(VQ) and discrete cosine transform (DCT) compression. 

Vector Quantization 

For VQ, small vectors of data are created by dividing 
the data set into square regions. The vectors are compared 
against a database of sample vectors that represent the 
most common vectors expected to be transmitted (Fig. 7). 
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Space Data Compression Standards 

Figure 7. (a) Vector quantizer finds the 
smallest distortion code vector from the 
collection of code books. The index is sent 
to a receiver that holds the same codebook. 
(X = square image fragment of the same 
dimension of the codebook; X;= represen­
tative image fragment defined by the 
codebook; Nc = no. of codes in the code­
book; k = index of codebook; Xk= recon­
structed image fragmentfrom the kth index 
in the codebook.) (b) Codebooks are de­
veloped from test images using a best-fit 
algorithm such as the pairwise nearest­
neighbor (PNN) or the Linde-Buzo-Gray 
(LBG). 

National Imagery Transmission 
Format 13 test image (scaled 0.5) 

Codebook based on 4 x 4 vector 

A database of most common image vectors is developed 
by training the algorithm using typical data that the sen­
sor will acquire and wish to compress. Several algorithms 
exist5,27 that will determine the optimal (most represen­
tative) database. Algorithms such as the Linde-Buzo­
Gray and the pairwise nearest-neighbor measure the dis­
tortion between the selected database and the data 
training set. Compression is achieved by transmitting the 
smaller index of the database vector and then reconstruct­
ing the image from the received indices. 

The quality of the reconstructed data depends on the 
number of the vectors in the database and the amount of 
searching that the compressor will perform to find the 
best-fit vector. Both requirements increase the amount of 
onboard memory and processing power needed to per­
form compression. Utah State University developed a 
unique solution in its design of the MSX space infrared 
imaging telescope (Spirit III) infrared sensor data com­
pression hardware.27 The original data are produced at 
either 16.59 or 3.32 Mbits/s depending on the experiment. 
As a quick-look and health check function , the infrared 
data can be sent at real time by a I-Mbitls telemetry line. 
Since the telemetry is shared among different functions, 
only 667 kbits/s are available for the Spirit ill instrument. 
The Spirit III data compression hardware is designed to 
compress at ratios of 4: 1 and 10: 1 by using a combination 
of proprietary VQ encoder logic and a residual error 
transmission. 

The VQ encoder is based on an algorithm known as 
mean residual vector quantization (Fig. 8). The mean of 
each vector is subtracted off and transmitted with the VQ 
indices. The VQ process is performed using a VLSI chip 
designed at Utah State University that compares the 
vector to a database of 256 vectors. The resulting index 
is then used to generate a residual vector that is sent to 
the lossless compression hardware for later transmission. 
Lossless compression is achieved with a constrained, 
fixed Huffman code. Fixed Huffman tables normally 

fohns Hopkins APL Technical Digest, Volume 15, Number 3 (1994) 

result in larger encoding than the existing original data. 
A constraint is used to prevent expansion. If the number 
to be encoded is a low-probability pixel, then a short 
header code word is sent, followed by the pixel value. 

The lossless compression hardware is modified to 
send as much residual error as desired, so that the quality 
of the reconstructed data can be constrained not to exceed 
a maximum residual error. Ratio of compression is con­
trolled by setting the allowable residual error higher or 
lower. Since the lossless encoder generates a variable bit 
output code, buffer control to the threshold hardware is 
used to set the exact compression ratio. 

Discrete Cosine Transform Compression 

Transform-based methods have been used to perform 
data compression in software and hardware systems 
for many years.4,5 The development of an international 
standard for still image compression,4,28 ISO Joint 
Pictures Experts Group (JPEG) , has resulted in a com­
mon description of the transform compression algorithm. 
As a consequence, a number of semiconductor manufac­
turers have developed hardware that could handle high­
speed compression and also be mass-produced at low 
cost. Some chips were built using components that 
can operate in space. For the first time, sufficient onboard 
signal processing capability exists to permit high-quality 
lossy compression as a sensor postprocessing feature. 
Advances in the design of high-speed data processing 
hardware also provide sufficient throughput and memory 
to support non-real-time, transform-based compression. 

Transform-based compression removes spatial redun­
dancy by first performing a spectral decomposition of 
the data (Fig. 9). The transform coefficients can be com­
bined with a set of basis functions to reconstruct the 
original data. The coefficients are decorrelated in that 
most of the information is contained in a few of the 
coefficients. Many of the coefficients can be deleted 
without a visually noticeable effect on the reconstructed 
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Figure 8. Spirit ill vector quantizer is based on the mean residual error approach. The mean of the vector is computed and then subtracted. 
The 12-bit data are log-compressed to 8 bits priorto VQ. The vector index is decompressed for use by the residual error stage. The residual 
error is truncated and then encoded using a pixel-based Huffman encoder (PBHE). The rate control algorithm uses the status of the output 
buffer to set the threshold level used by the truncation hardware. The residual error is then multiplexed with the VQ index and the mean 
value. 

DCT-based encoder DCT-based decoder 

Figure 9. Transform compression relies on the creation of a decorrelated set of coefficients that represent the frequency components 
of the data. Images are processed with a fast discrete cosine transform (FDCT), and their coefficients are quantized and encoded prior 
to output on a communications channel. Compressed data are decoded, converted back into transform coefficients, and then processed 
by an inverse discrete cosine transform (IDCT) . 

image. The remaining coefficients are losslessly encoded 
and then transmitted to a receiver where they can be 
reconstructed into an approximation of the original data. 

At least seven missions 19,22,23,29-36 have planned to use 
or have already flown transform-based compressors 
(Table 7). Information about the Ballistic Missile Defense 
Organization Clementine mission and NASA Pathfinder 
Mars mission has been obtained from view graphs of the 
Clementine critical design review and Pathfinder design 
implementation and cost review. The Mars Observer 
camera used a software-implemented compressor that 
can use either a Walsh-Hadamard or DCT. The onboard 
processor takes about 30 min to compress a single 2048 
X 2048 pixel image. Compression ratios were expected 
to be up to 10: 1, with little visible artifacts . The DCT used 
a 16 X 16 block size. 

The Mars Observer was lost just before reaching orbit 
around Mars. NASA has proposed to fly selected instru­
ments from the Mars Observer mission on the new Mars 
Global Surveyor satellite. The Mars Observer camera will 
be flown again and will use the same DCT method, unless 
replaced by a newer lossy image compression algorithm. 

The remaining five payloads that use lossy compres­
sion are unique in that the compression hardware or 
software handles many channels of image and spectral 
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data (Table 6). Four of the five payloads use the Matra 
Marconi Space JPEG chip set. Matra Marconi has de­
veloped an implementation of the JPEG chip set that is 
radiation-hard, low in power, and can compress from 3 
to 20: 1. The hardware module provides an ideal real­
time compressor for multichannel imaging sensors. 
Since the JPEG hardware operates at speeds higher than 
the individual sensors, it can be used to compress 
multiple sensor streams for later transmission to the 
ground. 

Lossy compression is a more controversial decision 
for spaceborne payloads, since the reconstructed data will 
be approximations of the original. Lossy compression has 
been judged acceptable29 for missions that are using the 
data for photogrammetry, cartography photoc1inometry 
(shape from shading), spectrophotometry, and photoge­
ology. Lossy compression for low ratios can often pro­
vide results with no visual artifacts. Since most of the 
data collected by space missions will be processed by 
computer, the artifacts could result in significant loss of 
information. Figure 10 shows data from the recent Clem­
entine mission. The lunar image does not appear to have 
any visible artifacts. After performing histogram equal­
ization to enhance fine detail, the 8 X 8 block artifacts 
become apparent. 
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Table 7. Transform-based sensor compression missions. 

Transform 
Mission Payload type 

Mars Mars Observer Walsh orDCT 
Observer camera (16 X 16 pixel 

block) 

Mars Global Mars Observer Walsh orDCT 
Surveyor camera (16 X 16 pixel 

block) 

Clementine Sensor group I and JPEG 8 X 8 
sensor group II pixel block 

Pathfinder MESURImage JPEG 8 X 8 
Processor pixel block 

Cassini Descent imager JPEG-1ike 
spectral radiometer (16 X 16) pixel 

block 

Mars 96 High-resolution JPEG 8 X 8 
(Russia) stereo camera pixel block 
(was Mars 94) (HRSC) and 
and Mars 98 wide-angle 
(Russia) optoelectronic 
(was Mars 96) stereo scanner 

(WAOSS) 

THE NEAR MISSION AND DATA 
COMPRESSION STANDARDS 

Satellite designers can no longer rely on the availabil­
ity of high-bandwidth communications channels to trans­
mit sensor data. The philosophy of "better, cheaper, 
faster" will translate into lower power, lower weight, 
flight heritage, and lower risk. The APL NEAR mission 
demonstrates these trade-offs. NEAR will rendezvous 
and orbit an asteroid and send images back to Earth 
during its 12-month stay. APL is designing, integrating, 
and launching the satellite in 27 months from project 
start. Because of the short schedule, the selection of the 
data compression algorithm has been delayed until other 
parts of the instrument and data handling system design 
are complete. Hooks have been made into the design of 
the flight computer to support compression. The com­
bination of short schedule, desire to minimize risk, and 
the need to keep the options for compression open until 
the rest of the payload design has been completed has led 
to the design decision to perform data compression in 
software in the instrument processor. The NEAR data 
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Number and type Compression Hardware/ 
of sensors ratio software 

1 imager-2048 X 2048 Up to 10:1 Software 
pixels 

1 irnager-2048 X 2048 Up to 10:1 Software 
pixels 

5 imagers-6 detectors Nominally Hardware 
• Star Tracker (2)- 4:1; data (Matra 

384 X 576 pixels content-driven Marconi) 
• UV /visible-

385 X 288 pixels 
• HiRes-384 X 288 pixels 
• Near IR-256 X 256 pixels 
• Long-wave IR-128 X 128 

pixels 

512 X 256 pixels split for Compression Software 
stereo and multiple filters range from (IBMRISC) 

4:1 to 8:1 

Several imagers with detectors Compression Hardware 
• 512 X 256 pixels range from (Matra 
• 176 X 256 pixels 4:1t08:1 Marconi) 
• 160 X 256 pixels 
• 128 X 256 pixels 

High-volume data with Compression Hardware 
resolution at 10m/pixel of more than (Matra 
• HRSC-5184-pixel 5:1 required Marconi) 

swath, 3 focal planes, 
9 channels 

• WAOSS-5184-pixel 
swath, 1 focal plane, 
2 channels 

communications system already supports the bit error 
tolerance requirement since it uses the CCSDS standard 
for telemetry. 

The NEAR is a small, low-weight, low-power satellite. 
The sensor payload will be bandwidth-limited to an 
average rate of 2900 bits/s when first arriving at Eros to 
as much as 8000 bits/s later in the mission. Approximate­
ly 75% of the available bandwidth is allocated for science 
data. In addition, the ground station will only receive data 
8 h/day. The sensor is based on the Thompson charge­
coupled device array and is configured at 244 X 537 pixels 
with 12-bit resolution. Data are read out once every 
second, and the derived data rate is 131 ,028 pixels/s or 
1,572,336 bits/so The combined data rates yield a maxi­
mum number of images per day as 39 to 159 images per 
day transmitted without compression. The overhead band­
width will be smaller for the higher transmission rate. 

Lossless compression can extend the number of images 
collected to a range of 58 to 238 per day if a 1.5:1 com­
pression ratio is assumed. The actual compression ratio 
could be much higher depending on the data being 
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Figure 10. Clementine lunar images il­
lustrate the effect of JPEG lossy compres­
sion on image quality. The original image 
does not have any apparent compression 
artifacts; however, when the image has 
been processed with a histogram equal­
ization algorithm, the block artifacts be­
come visible. 

compressed. Data compression reduces the risk to the 
science data ince more data can be collected earlier in 
the mission. Since the data rate is very slow, the in­
strument data processor can perform onboard data com­
pression with no effect on the hardware design. A soft­
ware design implies that the code can be designed much 
later in the schedule, after the long lead time components 
have been ordered. 

CONCLUSION 

As seen by the extensive flight history and list of 
planned missions, data compression can play a major 
role in the design and successful operation of remote 
sensing satellites. The trade-offs considered when includ­
ing data compression provide benefits to all the systems 
comprising the payload/data chain (Table 2) . Compres­
sion can be designed into the system without loosing any 
science value, and it can improve the utilization of pre­
cious flight resources. Programs like NEAR are benefit­
ing from data compression's long history of successful 
use in space. Many of the design issues were captured in 
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Chant crater, 
0.5 scale 

the draft NASA standard. Lossless and, to a lesser degree, 
lossy compression hould be considered an enabling 
technology, helping to make the smaller, lower-cost 
satellites as productive in data volume a older, larger 
satellites. 
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THE RICE ENCODER LOSSLESS COMPRESSION 
ALGORITHM 

The Rice encoder architecture (Fig. A) consists of a 
preprocessor stage that performs a predictive operation on 
the original data. The predictor will result in symbols that 
are centered about zero. The output of the predictor is sent 
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Figure A. Rice adaptive encoder architecture. (a) The sample 
is preprocessed to remove redundancy in the data and to 
create a positive set of data. The entropy of the data is 
estimated and the optimal coder is selected. (~ = output from 
DPCM (+ or -); (j = positive-mapped output from DPCM; (j = 
> 0, 2 x ~; (j = < 0, 2 x 1~1-1). (b) Each encoder has a specific 
performance range where its resulting code is close to the 
entropy of the data. By selecting codes that are close to the 
optimum performance region of each coder, the Rice algorithm 
can adapt to changes in data statistics. 
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to a mapping function that will convert the signed predicted 
error symbol into a new positive symbol coded into a stan­
dard source 0 where 

where each Oi' for 1 ~ i ~j, is an N-bit symbol. The property 
of 0 will have the following characteristics: 

1. Each 0i is a non-negative integer. 
2. Each 0i is independent. 
3. The probability of occurrence Pi of each 0i is ordered so 

that the smaller-value integers occur more frequently. For 
example, if Pi = Pr[oj = i] , where Pr[] is a function that 
yields the probability that symbol 0i has value of i , then 

Po "2:. p[ C.P2 "2:. ... 

The basic Rice coder is called the fundamental sequence 
(FS). The FS coder simply outputs i O's for symbol Oi' 
followed by a 1. A Huffman code that is generated on the 
basis of a Laplacian probability distribution will derive to 
the fundamental sequence.1O The FS coder has also been 
called the 1/;[ coder. If the only code available was the FS, 
the compressed data output would be the concatenated bits 

where * means concatenation. The 1/;[ coder is optimum 
between 1.5 to 2.5 bits per sample. Other entropy ranges are 
accommodated by devising a sample-split mode, where the 
least significant bits of the sample are considered random 
and are sent without coding. The most significant bits are 
encoded with the FS coder. The split-sample data item 
consists of a random component (the least significant bits) 
and a component that follows a Laplacian distribution (the 
most significant bits). (See Fig. B). 

Each data item is represented by 0i = m/ lsbj, where mj 
is the most significant bits and lsbj is the least significant 
bits. The most significant bits can be concatenated together 
as i1n,k = m[ *m2* ... *mj.Jhe least significant bits can be 
concatenated together a~ Lk = l.!b[ *lsb2* .. . *lsbj. The 1/;[ 
coder applied as 1/;) [Mn,K ]* Lk defines the 1/;[ ,k coder. 
There are two special cases for the split-sample coder: 

and 

The 1/;l ,k coder operates on small blocks of data so that 
as the statistics of the data change a new coder will be 
selected. The performance of the Rice algorithm depends on 
the entropy estimate of the data. The performance of the 
coder can be estimated by summing the data values and then 
comparing against limits that are functions of the size of the 
data blocks. The table describes the decision regions for 
8-bit data, with J data items per block. There are eight Rice 
coder options in the table, which would be selected with a 
3-bit identification (ID) code. Expanded versions of the 1/;) ,k 

coder will support data rates that range from 1.5 up to 15 
bits per pixel (for the k = 14 case). Figure C shows an 
example of a Rice encoder using a data fragment from the 
same data set used in Fig. B in the boxed insert, Coding 
Methods. The Rice algorithm will adapt to changing statis­
tics of the data, whereas the Huffman codes are redefined 
to accommodate new distributions of the data. 
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n k 

~ } J words of data 

'----v---' 
n-k 

Figure B. Block organization for split-sample mode. Least 
significant bits are concatenated without compression. 

641 641 641 61 1 61 1 591 581 581 59 1 

01 01 -31 01 -21 -1 1 01 11 

Figure C. Data are processed by a differential pulse code 
modulation algorithm (top). Signed values are mapped to all 
positive, and then summed to select the Rice coder (center). 
Sum of mapped values = 11 , with a block size of 8, selects the 
1/;1 ° coder as shown by the table in this boxed insert.Total 
length of the output code is 19 bits plus ID code (bottom) . 
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