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ISOLATING ERRORS IN STATE-SPACE MODELS OF 
COMPLEX SYSTEMS 

One of the steps in creating a mathematical model of a system is to test the model, after it has been fully 
specified, to detennine if it is performing adequately. Often the model does not perform acceptably (e.g. , it may 
not give accurate predictions of the actual system's performance). This lack of fidelity can also be observed 

in e tablished models that had been performing well, indicating a change in the actual system. At this point, 

it is necessary to diagnose where in the model the problem lies, a process called error isolation. We describe 
an error isolation technique for detecting the misspecified parameter (or set of parameters); this technique was 
designed especially for use on state-space models of large-scale systems. We report on an example of an 
application of the methodology to localizing errors in the model of an inertial navigation system. 

INTRODUCTION 

This article describes a promising en"or isolation (EI) 

procedure for models of complex systems. To set the 
context, consider the major steps in establishing a math­
ematical model of a ystem (for systems of any type, e.g. , 
engineering, environmental , or economic). First, a model 
structure is chosen, which specifies the variables, general 
form, and order of the model-for example, an 
ARMA(2,3) process or a state-space model with a specific 
set of states. Next the model parameter, that is , the 
coefficients relating the system valiables , are obtained. 
The parameters can be found by considering the physics 
of the system or by an estimation process, such as least 
squares, that fit the model to data derived from the 
system. The next critical step in system modeling is to 
check the performance of the model. This validation step 
is a standard procedure for a newly created model and 
is also important for established system models that are 
used repeatedly (as in system control). If the check shows 
that the model is not performing well (e.g., giving poor 
predictions of sy tem behavior) , the problem in the model 
should be located. The telm error isolation is used here 
to refer to the process of determining which part of the 
model is incorrect. 

Our Ef procedure is an adaptation of the Bayesian error 
isolation methodology described by Spall. I Specifically, 
we applied Spall 's general methodology to a state-space 
model, exploited everal special features of the state­
space model to enhance the efficiency of Ef , and produced 
software to implement the procedure. The state-space 
model, a particularly flexible and useful model , is de­
scribed in more detail in the section entitled Error Iso­
lation for State-Space Models. 

We assume a situation where a complex system is 
modeled using a state-space model and it has been de­
termined (by whatever means) that the existing model is 

Johns Hopkins APL Technical Digesf . Volume 13. Number 2 (1992) 

not a satisfactory representation of the system. This sit­
uation is similar to that described by Gertler2 in his dis­
cussion of failure detection and isolation, especially using 
state-space models. Gertler describes methods based on 
residual analysis that can be used to determine that there 
is a failure in the system and stresses the importance of 
failure isolation in the system modeling process. Given 
that the existing model is incorrect, and under the addi­
tional assumption that the state-space form of the model 
is correct, we can conclude that the problem lies in the 
parameters of the model. Our EI methodology is specif­
ically designed to locate the parameter (or group of 
parameters) most likely to be misspecified in a state­
space model, given a set of observed data. As discussed 
in Spall, I EI divides the parameter set into subsets, each 
of which is a candidate for being identified as the mis­
specified subset of parameters. The goal is to isolate one 
of these subsets as the most likely to be misspecified; that 
is , given a data sample, we locate the subset with the 
lowest probability of being correctly specified. For a 
large system, a straightforward Bayesian computation of 
the probabilities for all the subsets would entail an im­
possible computational burden,3,4 but EI avoids this bur­
den by a novel transformation of the problem from one 
that requires precise numerical integration in a large­
dimensional space to one involving a comparison of 
curves in two-space. In this way, EI combines the advan­
tages of a Bayesian methodology with the ability to 
analyze large-scale systems. 

This type of EI is useful not only as a step in improving 
the predictive performance of the model, but it also can 
lead to increased understanding of the system being 
modeled and the procedures (such as statistical estima­
tion or physical analysis techniques) used in determining 
the parameters of the system model. As discussed in Spall 
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and Garner,s isolating a set of terms of the model as the 
most likely to be incorrectly modeled allows the engineer 
to concentrate on improving the estimates of these ques­
tionable terms while using the existing or nominal values 
for the remaining parameters. Also, for a model found to 
be performing poorly after a period of successful oper­
ation, EI can lead to detecting failures within the system 
or changes in the system parameters. 

The topic of fault detection and isolation has received 
considerable attention in the control and statistics liter­
ature. In addition to the aforementioned article by Gertler, 
the survey articles6-8 and the text by Patton et a1.9 contain 
many references. Recent work in this area using state­
space models is described in Olin and Rizzoni 10 ,and 
Ribbens and Riggins. II Other reports present instances of 
Bayesian fault detection and isolation schemes.7,12- 14 Our 
EI approach, which is similar to that described by Rez­
ayat,14 differs from other existing fault detection schemes 
in several ways: 

1. It can isolate modeling errors of a very general 
nature. For example, several methods 15,16 exist to detect 
a sudden jump in the the system state, and tests such as 
the sequential likelihood ratio test are designed to detect 
a nonzero bias in the differences (residuals) between 
predicted and observed system measurements.2 In con­
trast, EI can isolate errors in any of the model parameters, 
such as the system transition matrix or the measurement 
matrix. (Litkouhi and BoustanylS describe some of the 
problems involved in trying to apply a generalized like­
lihood ratio test to detect an increase in measurement 
noise.) 

2. In contast to identification-based methods, which 
have been described in Gertler,2 where the system param­
eters are repeatedly estimated, our EI does not attempt to 
estimate the parameters and is concerned only with de­
tecting the parameter subset that is least likely to be 
correct given the available data and a fully specified (but 
invalid) model. 

3. Our EI provides the benefit of a Bayesian method­
ology that properly incorporates prior information into 
the analysis while greatly reducing the computational 
demands usually associated with a Bayesian technique. 

4. Our EI is designed to treat large-scale systems and 
has performed successfully on a thirty-three-state system 
in contrast to several current approaches for failure de­
tection that treat only low-order systems (see the discus­
sion in Kerr6). 

The thirty-three-state example, which will be dis­
cussed in a subsequent section, also contrasts with stan­
dard Bayesian methods based on multiple integration. 
According to Genz,17 current multiple integration 
schemes can treat a maximum of about ten dimensions. 
Of course, considerable research (e.g., Flournoy and 
Tsutakawal8) has been done on efficient approximate 
Bayesian methods for higher-dimensional problems. Our 
EI method differs from these methods in that accurate 
parameter estimates (requiring accurate approximations 
to Bayesian integrals) are not the end product we seek. 
Instead, crude, approximate integrals of posterior prob­
abilities are sufficient for the EI process (see the next 
section). 
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In the next sections, we describe the general EI meth­
odology, our EI methodology for state-space models, its 
implementation, and a numerical example illustrating its 
application. The boxed insert presents three theorems 
useful in initializing the algorithm and making it more 
efficient. 

THE GENERAL ERROR ISOLATION 
METHODOLOGY 

The EI methodology presented here is a specialization 
of a general Bayesian EI methodology developed by 
Spall. 1 To establish the context for our implementation 
of EI, and to introduce some notation, we will describe 
this methodology in some detail. The general methodol­
ogy assumes the following: 

1. A system model has been created, tested, and found 
to be performing poorly. 

2. The modeling error lies in the parameters of the 
model. In particular, this assumption means that the form 
of the model (e.g., the discrete linear Gaussian form of 
the model in Equation 3) is not in question. 

3. The model under consideration is parameterized by 
a set of m parameter vectors {O l' ... , Om}, with { O~< , ... , 
0* } denoting the actual values of the parameters used m 
in the model. This notation reflects the idea that the full 
set of parameters is split into m subsets, each a candi­
date for being identified as the misspecified subset of 
parameters. 

4. Only one of the candidate parameter subsets (0;) 
contains misspecified parameters. 

The goal of the methodology is to isolate one of these 
subsets as most likely to be misspecified, that is, to find 
the subset with the lowest probability of being correctly 
specified given a set of observed data. The basic quantity 
used in our EI is the posterior probability that the ith 
parameter subset is correctly specified: 

¢i(Z) == ProblO~ is correctldata Z}, i = l, ... ,m ,(1) 

where z represents a data vector (this definition is ex­
plained more fully in the next paragraph). If z* is the data 
vector actually observed in an experiment, then the 0; 
most likely to be misspecified (given z*) corresponds to 
the index i for which ¢;(z*) is a minimum. 

To give a precise definition of the quantity ¢;(z), we 
denote O;-space by 0; (a Euclidean subspace), and let E; 
c 0; be such that 0; E E;J and it is believed that 0; E E; 
with some large probability, say 0.9. For example, E; may 
be a tolerance region, and 10; - E;} would be an unac­
ceptable region for the parameter 0;, for example, a region 
that might cause the system to become unstable. The 
choice of E; is somewhat arbitrary, but if the same prob­
ability is used for each i, then the E; regions will all be 
on an equal footing (a priori). It is usually rea onably 
easy for the system engineer to provide the E; regions. 
We assume that Bayesian prior densities p;(O;) expressing 
the engineer's beliefs about the parameters (before col­
lecting test data) are available (note that f Oi p;(O;) dO; = 
1). Denote a stacked vector of system measurements by 
z = (zr,zI, ... ,z~)T (in which T = transpose), and 
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'IT -CURVE THEOREMS 

In papers by Spall, 1.25 theorems and proofs of facts about 
¢-curves are presented. Implementing the results of these 
theorems facilitates the initialization of the error isolation 
(EI) algorithm and can make the stochastic approximation 
(SA) search more efficient. Our refOlmulation of the curves 
as ,pi(e) makes use of standard modem (innovations-based) 
technology for state-space models. In addition, we have 
proved three theorems (corresponding to Spall 's Theorems 
1, 2, and 3) describing the ,pi(e)-curves. Because of our 
formulation, the proofs are simpler than those for the ¢­
curves. The theorems are presented here; the proofs are 
given in A her and Maryak.26 

The first theorem specifies conditions under which a ,p­
curve approaches zero as the search variable e goes to 
infinity. 

Theorem I 

For any i (i = 1,2,3, ... , m), suppose a region Ai C 

0i - Ei exists such that 

where Vi(Oi) == var( 'Yil IOJ Also assume Vi(O) is continuous 
and J-Lo(O) i zero for all 0 E O. Then ,pi(e) ---7 0 as lei ---7 

00. (Note: J-Lo is defined following Equation 3b.) 
The second theorem specifies conditions under which the 

sign of the gradient of the ,pi(e) curve can be determined. 
This theorem can provide a monotonicity property that will 

suppose that an actual observation z* has been made. For 
any z, define the ith likelihood density (i = 1, 2, ... , m) 
by Pi(zIOi) == P(ZIOi , OJ = O~ \l j =1= i) anq denote the posterior 
probability of 0; E E; (given OJ = OJ \I j =1= i) by 

(2) 

where 

and 

A straightforward Bayesian analysis would attempt to 
calculate each ¢ ;(z*), i = 1, ... , m, to find the minimum. 
However, because these calculations typically require 
many-dimensional numerical integrations, this attempt 
will fail for all but the simplest systems. The general 
methodology takes an indirect (although still fully 
Bayesian) approach to this problem, which is extremely 
effective. A complete description of the methodology is 
presented in Spall. l 

As mentioned, the goal of EI is to find the subscript i 
for which ¢ ;(z*) is a minimum. The strategy consists of 
four major steps. 
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eliminate some of the curves as candidates for being the 
minimum curve at e = 0 and thus simplify the SA search. 

Theorem 2 

Suppose a region Ai C 0i - Ei exists such that 

Also assume that Vi(Oi) is continuous and that J-LO(Oi) is 
zero for all 0 E O. Then sgn[,p'(e)] = -sgn(zJ + e). (Note: 
This theorem assumes that zJ is a scalar; see the discussion 
in Maryak and Asher.2J) 

The third theorem specifies conditions under which a 
ratio of ,p-curves approaches zero as the search variable e 
goes to ± 00 . By sequential application of the theorem, the 
minimum ,pi(einit)-curve can, in principle, be identified (see 
the subsection on Initialization of the EJ Search). 

Theorem 3 

Suppose a region A, C 0 , exists such that for some i ::/= I: 

1 1 
~ sup --+ sup ---. 

eiEEi vi( ei) a, EAJ v,( a ,) 

Also assume that v,(O,) and Vi(OJ are continuou . Then 
,ple)N i(e) ---7 0 as lei ---7 00 . 

Step 1 
Convert the problem from one involving precise nu­

merical integration in a high-dimensional space to one 
involving a comparison of curves in two-space. This is 
done by introducing l/t/c)-curves (discussed in the sub­
section entitled Innovations-Based Likelihood and l/t­
Curves), where c is a scalar, that have the property that 
l/t;(0) = ¢ ;(z*). The approach is not exactly the same as 
in Spall , 1 which works directly with the c/>/z*), but the 
idea is the same: that introducing these curves leads to 
an effective means of identifying the subscript i for which 
¢i(Z*) is a minimum by finding which l/t ;(0) is smallest. 

Step 2 
Choose a starting point, say Cinit < 0, at which the index 

i corresponding to the minimum l/t/Cinit) can be identified 
easily (in contrast to the actually observed data where 
C = 0). 

Step 3 
Let C increase from Cinit to 0, while locating intersec­

tions of the l/t;(c) curves (i = 1, . .. , m) with each other, 
so as to keep track of which of the l/t/c)-curves is a 
minimum at every value of c between Cmit and O. A sto­
chastic approximation (SA) technique, coupled with crude 
numerical integrations, is used in the search to find the 
intersections. The search process is depicted in Figure 1. 
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1.0,.-----.----- ------------,-----, 

1/;1 (c) 

Minimum path 

OL---~------------~-~ 
o 

Value of c 

Figure 1. Example of an error isolation search (minimum path for 
a typical set of 1ft-curves). 

Given the minimum curve at Cinit identified in step 2 (in 
this case, curve 1/;1), the figure illustrates how the min­
imum curve at C = ° (curve 1/;3 in the figure) can be 
identified by finding intersections of the curves and 
switching attention from one curve to the next as the 
search proceeds from Cinit toward C = ° (e.g., note that 
curve 1/;2 becomes the new minimum curve when curves 
1/;1 and 1/;2 intersect). 

Step 4 
Stop the search at C = 0. The subscript i of the minimum 

1/;i(O) curve identifies the minimum ¢/z*) and hence the 
most likely misspecified parameter vector, O~. 

These steps are described more fully in subsequent 
sections. The efficacy of this strategy comes from the fact 
that crude numerical integration is sufficient for the 
search to work successfully (as the SA tends to average 
out inaccuracies in the crude integration); precise numer­
ical integration (which turns out to be much more com­
putationally demanding) would be required for a straight­
forward Bayesian analysis. 

In preliminary studies, for example by Everett,19 this 
methodology has proved both effective and efficient rel­
ative to the standard Bayesian approach. Although these 
studies involved state-space models, none has fully ex­
ploited the special form of the state-space model. 

ERROR ISOLATION FOR STATE-SPACE 
MODELS 

Any implementation of the general EI methodology 
requires subroutines especially tailored to the model 
being used, which in our case is the standard linear­
Gaussian state-space model: 

Measurement: zk = Mkx k + V k ' (3b) 

where the initial state and the noise terms are mutually 
independent and Gaussian: Xo ~ N(p-o, Eo), Wk ~ 
N(O, O k), v k ~ N(O, Rk), and k = 1, 2, ... , n. The system 
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state vector xI-: may have large dimension (e.g. , thirty­
three states in the application of particular interest to us), 
and the observation Zk may also be multivariate. 

In this context, the parameters of the model are the 
vector P-o, the system transition matrices T k> the measure­
ment matrices Mk> and the covariance matrices Eo, O k> 
and Rk• A natural choice of the subsets 0i would corre­
spond to the state-space parameters directly; that is, 01 

would contain all of the elements of the Tk's, O2 would 
contain all of the elements of the M/s, and so on. The 
choice of the O/s is flexible , however; for example, an­
other natural choice would combine in each 0i all of the 
elements corresponding to a subsystem of the system 
being modeled (e.g., all of the accelerometer terms in the 
inertial navigation model considered in a subsequent 
section). 

In implementing our EI methodology for state-space 
models, we have exploited the particular form of the 
state-space model (and the associated Kalman filter) to 
provide efficient calculations of the likelihood and to 
automate initialization of the algorithm. We will discuss 
these ideas more fully in the next subsections and present 
further details on our implementation of the algorithm. 

Innovations-Based Likelihood and l/;-Curves 
As seen in Equation 2, the EI methodology requires 

numerical integrations involving the likelihood Pi(zl0J. 
To do these computations, we invoke a well-known tech­
nique of using the fact that the likelihood of the Kalman 
filter residuals (innovations) is equal to the likelihood 
Pi(zIOi) of the observed data (see, e.g., Kailath2o). It turns 
out that the likelihood of the residuals can be expressed 
as a product of scalar normal densities,21 which tends to 
be easier to compute than the likelihood p/zl0J. Using 
this product form of the likelihood, we have defined the 
1/;i(c)-curves (analogous to ¢i-curves) depicted in Figure 
1 (see Maryak and Asher21

) . 

Initialization of the EI Search 
We describe here an initialization procedure for find­

ing the minimum 1/;-curve at Cinit. This method is based 
on the fact that the covariance of the first residual is, for 
many types of parameters, a monotonically increasing 
function of the state-space parameters (this can be seen 
by inspecting the Kalman filter equations for the resid­
uals). Examples of parameters of this type are the power 
spectra of the process noise and variances of the initial 
state and the measurement noise. This procedure is very 
quick, as only the first residual variances are required and 
then only at the extreme points of the Cartesian boxes 
defining the Ei and 0i regions. 

The starting point for the state-space EI search is a 
value cinit at which the minimum 1/;i(c)-curve (i = 
1, ... , m) can easily be identified. An efficient method, 
based on Theorem 3 (see the boxed insert), can be used 
when the following conditions are satisfied: (1) 0i and Ei 
are Cartesian boxes for i = 1, ... , m; and (2) Vi(Oi) == the 
varian~e of the first residual (conditioned on 0i and on 
OJ = OJ for all j =1= i) i = 1, ... , m, are monotonically 
increasing functions. The initialization proceeds as fol-
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lows: For all i, compute v;(I;) , v;(r;) , v;(L;) , and vieR;) 
where I; is the minimum point in Ei, r ; is the maximum 
point in E;, L; is the minimum point in U;, and L; is the 
maximum point in U;. By minimum (or maximum) point, 
we mean the member of the Cartesian box with the 
smallest (or largest) value of every component (e.g., the 
lower left or upper right point of a box in two-space). For 
any combination of i and j such that 

1 1 1 1 
---+--- 2': --+---. 
v j ('i) , i (Ri ) vi (Ii) v j (L j ) 

(4) 

Theorem 3 (boxed insert) indicates that l/;/l/;; - 0 as lei 
- 00, so that l/;; can be rejected as the minimum l/;-curve 
at einit for sufficiently large lein/ The minimum l/;-curve 
should be selected arbitrarily from the set of candidates 
not rejected by the above criterion (a set that might 
contain only one candidate). Because the state-space EI 

search has a self-correcting mechanism that can transfer 
the search to a lower curve if the initial choice is not the 
lowest, it is not absolutely necessary to start the algorithm 
with the correct minimum l/;-curve, although it is more 
efficient to do so, if possible. 

Note that Theorem 3 applies as einit - -00. In practice, 
the following value of einil seems to work well: 

that is , einil is five nominal standard deviations to the left 
of zero. 

Of course, the natural method of simply computing the 
lowest l/;-curve at an arbitrary einit is prohibited by the fact 
that, for a large-scale system, such a computation would 
be infeasible (and no better than standard Bayesian in the 
computational sense; indeed, we might as well take 
einit = 0 if standard Bayesian computations were to be 
used). 

Two other theorems relating to the EI algorithm have 
been proved (both for the general and state-space EI 

contexts; see the discussion in the boxed insert). One 
specifies conditions under which a l/;-curve approaches 
zero as the search variable e goes to -00. The other 
theorem specifies conditions under which the sign of the 
gradient of the l/;;(e)-curve can be determined. These 
theorems have the potential for making the EI algorithm 
more efficient by eliminating some of the candidate 
curves from the search process. 

Implementation of the SA Search 
As mentioned previously in Step 3, the SA search is 

used to pass from e = einil to e = 0, identifying the min­
imum l/;;(e)-curve at all values of e by finding intersec­
tions of the current minimum l/;;(e)-curve with all the 
others. The SA search uses the usual SA iteration of 
Robbins-Monro form (see Young22

), 

(6) 

to find a solution of d ij(e) ,,= l/;;(e) - l/;;(e) = 0, where ek 
is the current value of e, di/e) is an estimate of d ij(e), 
i is the index of the current minimum l/;-curve, j is the 
index of another l/;-curve being compared with l/;;, and ak 
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is the SA gain sequence. The objective of the SA search 
is to find the next intersection of the ith l/;-curve with 
some other l/;-curve, say l/;j . (By "next" we mean the first 
intersection between the current value of e and zero.) 
Then, a new SA search begins at the intersection point, 
with l/;j as the new minimum l/;-curve. The search con­
tinues in this way until e = 0 is reached; the index of the 
current minimum l/;-curve (i.e. , at e = 0) then identifies 
the misspecified parameter subset. This search is depicted 
in Figure 1. 

In practice, various methods can be used to implement 
the search. Our approach is as follows , supposing that the 
ith curve has just been found to be the minimum: 

1. Search for an intersection of the ith curve with 
curve i + 1 (or with curve 1, if i = m). After an intersection 
is found, its "e" value (say e') is noted; of course, if the 
search passes e = 0, it is stopped. Note that the mono­
tonicity result of Theorem 2 in the boxed insert can 
sometimes be used to make this search more efficient by 
eliminating some of the curves as candidates for inter­
secting the ith curve. 

2. Search for an intersection of the ith curve with the 
next (say curve i + 2). Abandon the search if the previous 
value of e = e' is passed or if e = 0 is passed. Otherwise, 
note the e-value of the intersection point. 

3. Continue to compare the ith curve with all of the 
remaining curves, doing the bookkeeping necessary to 
identify the nearest intersection to the starting point, that 
is, the intersection that determines the next minimum 
curve. " 

The estimate dij (e) is obtained by numerically inte­
grating to approximate l/;;(e) and l/;/e) . In the numerical 
integrations to calculate l/;;(e) , a fairly widely spaced 
integration grid is used (as described in Spall ') . In fact, 
for (); vectors having dimension greater than about fifteen, 
only one or two evaluation points per axis of (); are 
practical. At each ()i point of the grid, the procedure uses 
a Kalman filter to form the residuals and then uses the 
product of univariate normal densities for the likelihood 
calculations. 

The SA gain has the standard form: 

a -~ 
k - k P , (7) 

where 1/2 < P ::; 1 and ao> 0 (see Young22
). The values 

ao = 5 and p = 0.51 worked reasonably well in our 
numerical studies. The SA iterations were stopped 
(an intersection was declared to be found) when Ick+, -
ek l < lcini/2001 for two con ecutive iterations. As with 
almost any search algorithm, these parameters of the 
algorithm need to be chosen (perhaps by simulation) to 
be compatible with the specific application. 

NUMERICAL EXAMPLE: INERTIAL 
NA VIGA TION SYSTEM MODEL 

The state-space EI methodology has been implemented 
in software and tested in several ways. In this section, we 
report on an application of EI to a large-scale system 
similar to one that is being analyzed at The Johns Hop­
kins University Applied Physics Laboratory. 
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Model and Parameters 
This application involves a thirty-three- state model of 

a strapdown inertial navigation system. The state vector 
for this model consists of velocity, position, and orien­
tation errors of the navigation system (three states each, 
for a total of nine) and twelve accelerometer and twelve 
gyroscope error states. The model relates the observed 
position error of the ystem to the thirty-three error states 
in a bench-test cenario. 

The state-space model is 

State: xk = Tkxk_1 + W k , (8a) 

Measurement: zk = MXk + V k ' (8b) 

where 

W k ~ N(O, 0 ) , 

Vk ~ N(O, R) , 

Q =[~ 1 ~l 
M = [ I 0]. 

Here, 0 11' R, and 1;0 are diagonal matrices; Th 0 , and 
~o are 33 X 33 matrices; T il and 0 " are 9 X 9; M is 
3 X 33; and R is 3 X 3. For further discussion of this 
type of model, see Eulrich et al.23 or Upadhyay and 
Damoulakis.24 

The parameter vectors are 0" a five-vector consisting 
of elements of the plant coefficient matrix (the transition 
matrices Tk are functions of this); O2 , a nine-vector con­
sisting of the power pectral density (diagonal) matrix of 
the proce s noi e for the first nine states; 03, a scalar 
consisting of the variance of the measurement noise 
components; and 04 , a thirty-three-vector consisting of 
the diagonal (variance) elements of 1;0' For convenience 
in setting up the input, the units of the thirty-three terms 
were scaled so that the ~o matrix is the identity matrix. 
The parameter space !li and subspace Ei were chosen 
somewhat arbitrarily, although engineering judgment 
was used to make the model reasonably realistic given 
the aforementioned scaling of the components of the 
state. 

The Software 
The software was written in Fortran, using standard 

LMSL routines for generating random numbers and for 
matrix operations. We used an available in-house set of 
straightforward Kalman filter routines (we did not need 
the numerical sophistication of a square-root version of 
the filter, for example). The integration routine (an ad-
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aptation of the IMSL routine, TWODQ) can integrate in any 
number of dimensions, subject to the usual limitations 
imposed by hardware and time. The integration algorithm 
is a standard Monte Carlo method that divides the inte­
gration hyper-rectangle into a collection of subhyper­
rectangles as specified by the input number, say M, of 
grid points per axis. For example, if the dimension of the 
integration space is five (as for the five-dimensional pa­
rameter (),), and if M is specified as equal to 2, then each 
of the five axes in the integration space (a subset of JR.5) 
is divided into two equal parts, defining a subdivision of 
the integration space into thirty-two (25

) sub-hyper­
rectangles. The integration then proceeds in standard Mon­
te Carlo fashion, using points determined by selecting a 
uniform random variate on each of the axis partitions. 

The Bayesian Priors 
The priors used were truncated normal priors devel­

oped using the O~ values as means with the assumption 
that the Ei regions represented roughly plus or minus one 
standard deviation (± 1 SD) around the mean for each 
component of 0i' Further details are given in Maryak and 
Asher.2

' 

The Tests 
For the series of tests using this model , we assumed 

that 0; was misspecified and randomly generated 100 
points of data using the true model, with O2 * 0; . We set 
all of the components of 0 2,true to 0.1 and all of the com­
ponents of 0; to 0.5. Because the E2 region was defined 
to have all of its left end points at 0.1 and all of its right 
end points at 0.9, the misspecified components were all 
I SD from their true values (rebtive to the prior one-sigma 
values). But for the correlations built into the (prior) 
variance for this parameter, thi level of misspecification 
might be considered extreme. In fact, we believe that the 
level of misspecification could be called moderate, as it 
is roughly comparable to obtaining three one-sigma 
observations in independent random tests and also be­
cause the rnisspecified value were actually on the bound­
ary of the E2 region. 

Ten tests were run, all using the same input data (the 
goal being to test the numerical performance of the al­
gorithm), varying the integration grid points in O-space 
from one test to the next. (The grid points were generated 
randomly for the Monte Carlo integration procedure.) 
The initialization procedure discussed in the subsection 
entitled Initialization of the EI Search was used and 
seemed to find the correct minimum curve at Cinit ' as 
evidenced by the fact that no automatic switching from 
the initial curve occurred. Of course, we are not com­
pletely sure that the minimum curve at Cinit was found; 
an accurate computation of the 1f;i(Cinit) values is impos­
sible because of the large dimension of O-space. 

The integration grid used in EI to evaluate 1f;i( C) was 
only one point per axis (i.e., only one integrand evalu­
ation per numerical integral) resulting in an average 
central processing unit (CPU) time on an IBM 3090 of 4.5 
min per test. The obvious alternative of trying to compute 
the 1f;lO) by standard Bayesian integration would be in­
feasible using even two function evaluation points per 
axis in the integration (reduced order models with twelve 

Johns Hopkins APL Technical Digest. Volume 13, Number 2 (1992) 



and fifteen states took 14 min and 139 min of compu­
tation, respectively, for the standard Bayesian method 
with two points per axis; recall that computation time 
increases exponentially with the dimension of the state). 
Of course, such a standard Bayesian integration using 
only two grid points per axis would be too crude for most 
appl ications. 

Test Results 
State-space EI correctly identified O2 as the misspeci­

fied parameter in all ten tests. The run times and number 
of iterations of the EI search for each test are shown in 
Table 1. 

Using a variety of search iteration patterns, EI reached 
the correct conclusion in all ten cases. The wide variation 
in iteration patterns and running times is to be expected 
because the integration grids varied randomly from one 
run to the next and also because the numerical integrals 
produced only rough approximations of the 1/;/c) values. 
Despite these rough approximations, the repeated com­
parisons of one curve with another across c-space, in 
conjunction with the smoothing effects of the SA proce­
dure, succeeded in locating intersections and arriving at 
the correct final answer. 

The search pattern was similar from one run to the 
next. The initialization routine described in the subsec­
tion entitled Initialization of the EI Search found that the 
minimum curve at cinit was curve 1. Then, in several runs, 
the next curve intersected by curve 1 as the search pro­
ceeded to the right (toward zero) in c-space was curve 
4. Curve 4 was the new minimum curve until its inter­
section with curve 2, which remained the minimum curve 
until c = 0 was reached. So, the pattern of the search was 
generally as shown in Figure 1; that is, three curves and 
two transition points were traversed as the search pro­
ceeded from Cinit to c = O. In three of the runs, the algo­
rithm went directly from curve 1 to curve 2 and stayed 
there until the end. These were runs 3, 6, and 10, which 
had the fastest run times. This fact relates to the discus­
sion in the next paragraph. Also related to this discussion 
is the search pattern seen in run 8, which had the longest 
running time. In that run, the search switched among all 
four of the 1/;i-curves, making six transitions in all. 

It seems clear that the EI algorithm will slow down 
when iterating in the vicinity Aof an intersection of two 1/;­
curves, since the quantity tl i · (Ck) of Equation 6 gets 
smaller. If so, it would be useful to set up the search so 
that switching from one curve to another is minimized 
(see the preceding discussion in this section). In fact, the 
ideal search seems to be one that never encounters inter­
sections and therefore never needs to switch attention 

Table 1. Run times and stochastic approximation iterations. 

Test no. 
2 3 4 5 6 7 8 9 10 

Run time 
(min) 5.3 5.4 2.3 3.2 4.0 1.8 3.6 13.2 4.0 2.6 

No. of 
iterations 78 79 34 47 58 26 52 193 59 38 
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from the starting curve to another curve. Some thoughts 
on accomplishing this are discussed in Maryak and 
Asher.21 

We ran some tests on an obvious alternative to our 
error isolation procedure. This alternative, which we call 
average Bayes, uses the same definition of 1/;i(C) as EI does 
and then tries to compute 1/;i(O) by averaging several 
rough approximations. That is, average Bayes computes 
1/;i(O) for i = 1,2, 3,4 several times with the standard 
Bayesian calculation using an integration grid with one 
point per axis (the same as state-space EO and averages 
the 1/;/0) values for each i. Trials of average Bayes runs 
of this type were unsatisfactory, resulting in seven of ten 
wrong answers with run times comparable to the state­
space EI times. As with standard Bayes, running average 
Bayes with only two points per axis is infeasible for this 
thirty-three-state model. 

CONCLUSIONS 
We have presented an efficient Bayesian algorithm for 

locating errors in state-space models. This algorithm is 
an adaptation of a general EI methodology developed by 
Spall. I The general EI methodology is designed for use 
with models of complex systems. Our version of EI makes 
use of the special form of the state-space model to pro­
duce an algorithm that is specially tailored and highly 
efficient for use with large-scale state-space models. We 
have proved three theorems useful in initializing and 
running the algorithm and have implemented the state­
space EI methodology in software. We illustrated the ap­
plication of the methodology using a state-space model 
describing a strapdown inel1ial navigation system, with 
promising results. This application of EI to a thirty-three­
state model exceeds the current state of the art in standard 
Bayesian integration. Further, because these computer 
runs averaged less than 5 min and further enhancements 
of the algorithm are still possible, it seems clear that the 
methodology should have reasonable running times with 
even larger models. 
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