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LARGE-SCALE SYSTEM PERFORMANCE PREDICTION 
WITH CONFIDENCE FROM LIMITED FIELD TESTING 
USING PARAMETER IDENTIFICATION 

Limited system field testing, suitably combined with other factory, subsystem, and system tests, can be 
used to develop a model that will produce confident operational performance predictions. The approach 
is to fit a fundamental parametric state-space model to the test data, where the test and operational mission 
diversities are accounted for in the known model structure (developed from first principles) and the 
unknown parameters are generally common from test to test. New maximum likelihood parameter 
identification techniques have been developed that optimally and efficiently estimate the unknown 
parameters in large-scale system models and provide an identification uncertainty to quantify model 
confidence. The latter attribute allows test planning trade-offs to be conducted in terms of sizing, 
instrumentation requirements, and types of tests to achieve a desired numerical confidence. Application 
of the technology to a simplified example of missile inertial guidance test and evaluation is shown. 

INTRODUCTION 
High costs and implementation difficulties have tend­

ed to limit the u e of field testing in large-scale system 
evaluation and performance prediction. System perfor­
mance prediction has relied on either traditional empir­
ical methods (e.g. sampling of target errors from many 
te ts for accuracy performance) based on extensive re­
petitive field te ting over the entire range of possible 
operational mission conditions, or validation of complex 
engineering models based on a limited set of realistic 
field tests. The former is usually too costly and yields 
minimal insight into system understanding. The latter 
gives some as urance over the limited test conditions but 
cannot predict y tem performance over untested condi­
tions with quantified confidence. In addition, test plan­
ning and requirements are difficult to predict from system 
performance requirements. Both approaches neglect the 
rich source of detailed model information provided by 
each system test. 

For example, inertial navigation system (INS) accuracy 
prediction requires statistical I S error models that are 
valid over the entire set of operational mission condi­
tions. Traditionally, these error models have been devel­
oped by fitting well-known (from first principles) struc­
tural models to factory component and subsystem test 
data. At times the factory tests cannot sufficiently emu­
late all the operational mission conditions, resulting in 
poorly determined models. Field testing is then used to 
validate that the factory-derived model is "good" over the 
set of field test conditions (not necessarily good over 
untested mission conditions). When mismatches between 
the model and data occur, attempts are made to modify 
the factory model to match the field test data. Generally, 
however, no systematic approach is used to extract the 
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error model parameter information from the field tests for 
comparison and/or combination with the factory-derived 
model. The traditional methodologies could not handle 
the nonrepeatable and complex nature of these tests, ne­
glecting the rich source of model information contained 
therein. Also, it was difficult to quantify the test require­
ments (type, size, instrumentation) and numerically relate 
them to some high-level system performance require­
ment. Consequently, ad hoc reasoning was usually used 
to justify test requirements. 

The methodology we describe in this article provides 
a computational technique for identifying the system 
model from all types of test data. It estimates the un­
known common fundamental parameters of detailed 
state-space system models with known tructures and 
supplies its own estimation uncertainty so that quantifi­
able confidence statements can be attached to model 
predictions. This latter capability also allows test plan­
ning requirements analyses to be conducted before the 
start of any test program by numerically relating system 
performance confidence statements to specific test char­
acteristics. We will define the applicable generic state­
space model and describe the overall operation of the 
maximum likelihood identification methodology. I (The 
nonspecialist reader may wish to skip the second, more 
theoretical section.) Next, we define a simplified missile 
inertial guidance test and evaluation example and discuss 
the numerical simulation results, contrasting this method 
with a more traditional approach. 

Other examples of the use of system identification 
technology include (1) instrumentation and sensor mod­
eling and validation;2 (2) missile, aircraft, and projectile 
aerodynamic modeling;3-S (3) flexible structures model-

Johns Hopkins APL Technical Digest, Volume 13 , Number 2 (/992) 



ing;6 (4) geomagnetic field modeling;7 (5) power plant, 
petrochemical, and other industrial process modeling;8 
(6) image and signal processing;9 and (7) on-line tuning 
of controllers. 10 

DEFINITION OF THE 
IDENTIFICA TION PROBLEM 

The identification methodology presumes that, for 
each test, the model for the system and associated test 
instrumentation consists of a known linear (or lineariz­
able) state-space structure with a set of generally com­
mon unknown parameters. The system portion of the 
structure essentially transforms (via covariance/Monte 
Carlo simulations) the parameters into system perfor­
mance such as target accuracy or circular error probable 
(CEP; radius of the circle centered on the target containing 
50% of the probable target errors) for a missile guidance 
system. We assume that the structure can be known 
confidently from first principles. With the unknown 
parameters independent of scenario (i.e., all test and 
operational mission characteristic dependence is in the 
structure), diverse tests can be combined for statistical 
" leverage" in the model identification process. 

Mathematically, we assume that each system (or sub­
system/component) under test is represented by the fol­
lowing di crete-time linear state-space model for each 
test (realization) j (j = I, ... , N), with unknown param­
eters in the vector 0, 

X{+I = <1>/ (fJ)x { + w{ k = 0,1 , ... , n(j) - I. (1) 

The state at time k, xi, is observed indirectly by 

z{ = H { (fJ)x { + v{ k = 0, 1, ... ,n(j) , (2) 

and where x6, wi, and v{ are mutually independent ran­
dom vectors for all k, j with dimensions p(j), p(j), and 
m(j), respectively. (Dimensions for the other terms can 
be inferred from Eqs. 1 and 2.) The initial state x6 and 
the white noise sequences wi and v{ have Gaussian dis­
tributions with respective means of p-6(0), 0, and ° and 
respective covariances of E6(0), R{(O), and Q{(O). 

Given N realizations (tests) of the random process (sys­
tem) represented by the model in Equations 1 and 2, our 
objective i to determine the maximum likelihood estimate 
(MLE), OML ' of O. The p-6(0), E6(0), <I> { (O), H{(O), Q{(O), and 
R{(O) have known structures that embody the scenario char­
acteristics. The only unknown are the elements of 0, the 
q-dimensional parameter vector with elements that are in­
dependent of scenario and generally common across most 
realizations. The elements of 0 need not be in each test, and 
the dimensions of x 6, wi, and v{ can differ from test to test. 
Thus, we can combine system subsystem, and component 
tests that are measured by different instrumentation (differ­
ent state-space models with possibly some different ele­
ments of 0 in each test type). This methodology can apply 
to nonlinear state-space models as long as they can be 
linearized about a nominal solution to obtain the form of 
Equations 1 and 2. Essentially, a number of realizations will 
be needed to estimate elements in p-6(0) and E6(0), but only 
one realization may be sufficient for some elements in 
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<I>{ (O) , H{(O), Q{(O), and Ri(O). The tate-space models in 
Equations 1 and 2 are quite broad, including linear regres­
sion and autoregressive moving average models, each with 
their own specialized identification techniques. We will 
concentrate on the more difficult general problem, however. 

For example, in INS testing, the inertial model must be 
linearized about a nominal trajectory of the system to fit 
the form of Equations 1 and 2. Typical I S elements in 
o will be the 10' values in E6(0) of the accelerometer, gyro, 
and misalignment biases; time constants in <I> { (O) for the 
Markov processes; spectral density values in Q{(O) for 
the Markov and random-walk processes; and residual 
mean errors (in the factory calibrations) in p-6 (0). (The 
simplified problem at the end of this article illustrates 
these types of random processes.) Occasionally, instru­
mentation measurement noise covariances may be un­
known in Ri (O). For detailed INS models one could easily 
expect the number of unknown elements to be in the 
thirties or more (some possibly in the hundreds). In other 
applications (e.g. , evaluation of aircraft aerodynamic char­
acteristics) , the model must be linearized about an esti­
mated aircraft trajectory. Here the unknown elements are 
stability and control coefficients, along with parameters 
characterizing atmospheric turbulence. 

The method of maximum likelihood essentially uses 
the known structure of the model defined in Equations 
1 and 2 to calculate the analytical form of how the un­
known parameters, 0, influence the probability density of 
observing a set of measurement data from an ensemble 
of N tests. When a specific set of measurelllent data is 
obtained from the tests, the best estimate, 0 ML ' is the 
value of 0 that maximizes the probability density of ob­
taining thAose data over some allowable set of values for 
O. Thus, 0 ML is the value that makes the actual measure­
ments "most likely" (or the value giving the greatest 
chance of getting the data you actually obtain). As more 
and more data are gathered, the estimate will approach 
the true value, with an estimation error that is approxi­
mately Gaussian-distributed with a computable covari­
ance (uncertainty) that is the inverse of the so-called 
Fisher inf9rmation matrix. I I Thus, for a missile I S, the 
estimate 0 ML can be transformed (via the identified 
Monte Carlo or covariance simulation) to target impact 
to obtain an accuracy estimate, CEP , whereas the inverse 
Fisher information matrix, [if(J~~, can be transforme<Lto 
target impact to calculate confidence intervals about CEP. 

The maximum likelihood method was chosen over other 
criteria for estimating 0 for the following reasons: 

1. The most likely model (most likely value of 0 to 
have caused the observed test measurements) is an intu­
itively pleasing criterion. 

2. Generally, it is also asymptotically (as the number 
of test samples gets large enough) an unbiased and min­
imum mean-square-error estimate. 
A 3. It provides a computationally practical estimate, 
0ML' an asymptotic estimation covariance matrix, [if(J~~ , 

and an asymptotic normal distribution to calculate con­
fidence intervals. 

4. The estimation uncertainty [if(J~~ depends on the quali­
ty (observability) and quantity (sample size) of the test 
data. If needed, a priori infOlmation based on engineering 
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judgment can be blended in to reduce the estimation 
uncertainty. 

MAXIMUM LIKELIHOOD 
IDENTIFICA TION ALGORITHMS 

The MLE is obtained by maximizing the conditional 
probability density function of the data given 0 or equiv­
alently the log likelihood function, 

log L(O) ~ log p(ZI, ... ,ZNIO) , 

where zj ~ (Zlo·' z j,( .» ' are the data from each real-
, ••• , /I 1 

ization j, the super cript t denotes the matrix transpose, 
and p(·IO) is the conditional probability density function 
of the data given 0 ( ~ means defined as). The traditional 
MLE approach 11,12 to the foregoing state-space problem 
reformulates the log likelihood function in terms of the 
Kalman filter innovation ; the resulting Scoring (Gauss­
Newton) algorithm requires a Kalman filter plus q "dif­
ferentiated Kalman filters" for each realization per iter­
ation to calculate the log likelihood gradient and Fisher 
infOlmation matrix . Thi exploding (as q becomes large 
in large-scale systems) computational burden plus the 
known slow and erratic numerical convergence character 
of Scoring under poor starting values have limited its 
practical application. 13 Initial work at APL concentrated 
only on the simpler problem of estimating the elements 
of p6(O) and L6(O) , which did not require q-differentiated 
Kalman filters. I

4-16 

These problem were alleviated l7 by reformulating the 
MLE around the log likelihood of the "complete" data, 

where Xj ~ (x 6', . . . , x~:u/ and z j, X j are termed the 
complete data from the realization j. This resulted in an 
expectation-maximization (EM) algorithm, where the i + 1 
iteration is given by the expectation step 

and the maximization step 

(4) 

where E[ ] is the expectation operator. The EM idea is 
to maximize the complete data log likelihood, log LC(O), 
which results in relatively simple solutions for the max­
imum. Since the complete data are not available, how­
ever, the next best thing is to maximize the average value, 
given the measurements . It is proved in Ref. 13 that 
whenever a value of 0 satisfies G(O; Oi) > G(Oi; Oi), then 
log L(O) > log L(Oi) and the algorithm will converge to a 
stationary Roint of the log L(O) under mild regularity 
conditions. 8 The expectation step required only a single 
Kalman filter and fixed interval smoother for each real­
ization per iteration regardless of the size of q. The max­
imization step is achieved by setting aG(O; Oi) laO = 0 and 
solving for O. (This does not always guarantee a maxi­
mum, so that the condition G(Oi+l; Oi) > G(Oi; Oi) should 
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be checked after each iteration.) When Po' LO' Q, R, <1>, 
and H are all unknown and constant (across k and j) , 
simple analytical solutions result for Oi+l . The more re­
alistic partially known model cases were olved I by using 
the Kroneker product and matrix calculus to calculate the 
gradient of G(O; Oi) . Qua i-analytical solutions for the 
zeroes of the gradients resulted in general expressions for 
the maximization step. The amount of computation for 
this EM algorithm is about equal to three "Kalman filters" 
per realization per iteration, independent of the value of 
q as compared with the previous traditional approach 
requiring q + 1 Kalman filters per realization per itera­
tion. The EM algorithm has good tarting characteristics 
but slows down as the iterate near a stationary point of 
the log L(O).17 Also, no Fisher information calculation is 
required. 

The well-known Scoring algorithm is another numer­
ical technique for finding the maximum of log L(O) and 
is given by 

Oi+1 = Oi + :!F (Oi ) - 1 a log L( 0) I . (5) 
00' ao 01 

, 

and the Fisher information matrix is given by 

:!F (Oi)=E{[alogL(O)I·][alogL(O)1 ·]'IOi} . 
00' ao 01 ao 01 (6) 

Again, the traditional approach to computing the gradient 
and the Fisher information matrix resulted in the explod­
ing dimensionality problem of q.11.12 It was shown in Ref. 
19 that Scoring is related to EM by Fisher 's Identity, 

aG(O; Oi) I . = a log L(O) I . 
ao 0

1 ao 0
1

' 
(7) 

Thus, the same Kalman filters and fixed interval smooth­
ers used in EM in Ref. 17 could also be used in Scoring, 19 

obviating the exploding dimensionality problem of q. The 
practical algorithm to accomplish this was developed by 
the authors, I again by using the Kroneker product and 
matrix calculus to determine general expressions for the 
gradient and Fisher information matrix of the log like­
lihood. As in the EM algorithm, the computation for the 
gradient is equivalent to about three Kalman filters per 
realization per iteration. The Fisher information matrix , 
however, requires considerable additional computation 
(i.e., smoother error cross covariances between all pairs 
of measurement times). We developed a new, simpler 
method to compute these cross covariances. I Experience 
has shown that only the cross covariances between 
"closely spaced" measurement times are needed for an 
adequate Fisher approximation. So far the extra compu­
tational burden for an approximate Fisher has been equiv­
alent to about three to five Kalman filters per realization 
per iteration. 

The complementary characteristics of the EM and Scor­
ing algorithms (EM having good starting convergence, 
poor finish, and no Fisher; Scoring having poor starting 
convergence, good finish, with Fisher calculation) plus 
their common Kalman filter/fixed interval smoother 
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computations provided a unified algorithm that starts out 
with EM and finishes with Scoring, exploiting the desir­
able convergence characteri tics of each procedure. Con­
sequently, computational reliability and efficiency are 
dramatically improved. A diagram of the overall proce­
dure is shown in Figure 1. When the algorithm is in the 
EM mode, the bank of Kalman filters/smoothers provide 
the estimation step, whereas the maximization step is 
accompli hed in the model identifier. The model uncer­
tainty, .':'/' O~~ , is calculated only when the algorithm is in 
the Scoring mode. After the identification algorithm has 
converged, the identified model and it uncertainty may 
be transformed into some ystem performance measure 
estimate with an associated confidence interval. A 

The asymptotic distribution of the estimate 0 ML is 
Gaussian, with a mean of 00 and covariance of ?fOO l (Oor l

, 

where 00 is the true value of O. Actually, for finite data, 
f!F0~~ is an approximation to the estimation error covari­
ance. Consequently, care must be exercised when using 
this quantity in data-poor situations or when the identi­
fiabi lity of a particular parameter or group of parameters 
is poor from the set of test . Identifiability of the model 
in Equations 1 and 2 is discussed in Ref. 11 , where it is 
related to the nonsingularity of the Fisher information 
matrix. Experience20 has shown that even if some param­
eters are poorly identifiable (i.e. , not well estimated), 
their combined projection into some higher-level (e.g., 
lower-dimensional) performance quantity such as trajec­
tory uncertainty or target accuracy (CEP) may still be 
reasonably approximated by the asymptotic property. 
Nevertheless, the diagonal elements of Pf8~~ (or its in­
verse) will indicate which components are poorly iden­
tifiable so that the tests can be modified (more data, better 
instrumentation, different test types) . One can calculate 
f!F8~ ~ from covariance simulations of the tests (before any 
real testing) , thus obtaining the basis for test planning and 
design. Required confidence intervals in a high-level sys­
tem performance criterion can be translated into test re­
quirements by iteratively simulating various combina­
tions of test types, test sizes, and instrumentation and then 

Testing Per-test processing 

Test 1 
System and zk' k= 0,1, ... , n(1) ~ Kalman 

~ measurement filter/smoother ~ 
process 

:}- Oi--I · · · Test N zZ k = 0, 1, ... , n(N) 
I 

~ 
System and I 

measurement Kalman 
~ ~ process filter/smoother 

I 

Large-Scale Pelfo rmance Prediction 

calculating Pf8~~ and the resulting confidence intervals 
until the confidence interval criterion is satisfied. 

A portion of the elements in 0 may not be identifiable 
within the practical constraints on the te t instrumenta­
tion and test program. In this case some a priori knowl­
edge (from subjective judgment or other tests) about 
these elements may be used.21 First, the identifiable pa­
rameters are estimated, assuming the unidentifiable ele­
ments are known. Then their Fisher infOImation matrix 
is adjusted to account for the uncertainty in the uniden­
tifiable elements. The Fisher calculation in our technique I 
could be used to calculate the required adj ustments. 

SIMPLIFIED MISSILE INERTIAL 
GUIDANCE EXAMPLE 

To illustrate the efficacy of the identification tech­
nique, a very simplified missile inertial system test and 
evaluation problem will be considered. The performance 
of the inertial system is based on its error model, which 
is derived from first principles and is shown in Figure 2. 
The inertial instruments are on a local-level, stabilized 
platform; vehicle motion is constrained in two dimen­
sions (north-vertical) on a nonrotating Earth using a very 
good altimeter and where 

An, A v = north and vertical specific force (ft/s2) 
Vn north velocity (ft/s) 
RE Earth radius 
g Earth gravity magnitude 
bVn, bRn = errorsinnorthvelocity(ft/s)andposition(ft) 
Ij;e "computer-to-platform" misalignment 

de 
fde 
sde 
an 

fan 
11/3 

san 

Parameter 
identification 

Model 
identifier 

Oi+ 1 

about east (Ilrad) 
east gyro drift random walk (mrad/h) 
east gyro drift rate white noise 
east gyro torque scale factor bias (ppm) 
north accelerometer offset Markov process 
(Ilg) 
north accelerometer offset rate white noise 
north accelerometer offset Markov time 
constant (s) 
north accelerometer scale factor bias (ppm) 

_ .... 
I 

YOo/(01)- 11 
I 
I 
I 
I Figure 1. System identification flow. 

I 
L __________ J 

o "ML:: Oi+ 1 

-roo/(01)- 1 

Model confidence evaluation 

Covariance/ 
MonteCarlo 

system model 
simulation 

t 
Operational 
scenario(s) 

Performance 
measure 
function 

Johns Hopkins APL Technical Digesl. Volume 13. Number 2 (1992) 

~ 
Performance measure 
estimate and 
confidence interval 

303 



L. 1. Levy and D. W. Porter 

An estimation of the statistical parameters in this inertial 
model from factory and system test data is desirable to 
validate the predicted performance from the manufacturer. 
The initial values of oVn and oRn are assumed to be zero 
with no uncertainty since the missile is to be launched 
from a fixed and surveyed land site. The unknowns in the 
system model are the initial means and variances of de, 
sde, san, and an; the spectral amplitude of the white 
noises fde and fan; and the time constant 1/ fl. The initial 
value in tie is assumed to be -ani g because of the leveling 
process before launch. 

The operational missile scenario (trajectory into actual 
targets) i an 8000-nm flight with a 150-s constant 5.5-g 
boost at a thrust angle of 29° from the local horizon. The 
inertial system is used to control a reentry body deploy­
ment (with negligible deployment error) at 600 s. This 
operational scenario can never be tested, so a combina­
tion of other system tests will be used to extract the 
scenario-independent parameters (the unknowns de­
scribed above), which will then be projected via a co­
variance simulation of the operational scenario into an 
estimate of operational sy tem performance (impact error 
RMS). Three types of te ts will be used: 

1. Factory gyro and accelerometer test-stand data. 
2. High-performance aircraft testing of the missile I S 

on a test pallet using a Global Positioning System (GPS) 

precision-integrated Doppler track of sampled measure­
ments of position error at 10-s intervals for 1/4 h with 
0.1-ft (l o) uncorrelated measurement noise. The assumed 
trajectory of the aircraft is a horizontal "figure eight" in 
the north-vertical plane with 25 nm between foci and each 
turn of radius 30,000 ft at a constant speed of 1000 kt. 

3. Mis ile flight tests over a 6000-nm range with a 
150-s constant 5.5-g boost at a thrust angle of 42°. A GPS 

precision postflight track of the same quality and sample 
rate as in the aircraft tests is assumed for 600 s of tracking. 

The model in Figure 2 for each system test and the 
operational scenario can be expressed as a linear, contin­
uous dynamics, state-space model given by (suppressing 
the j superscript and with the subscript t denoting con­
tinuous time) 

Figure 2. Simplified inertial system er­
ror model. 
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X I = A I X I + w, 0 :::; t :::; tl1 , (8) 

where w, is a seven-dimensional white noise vector hav­
ing a spectral density matrix n I' The measurements from 
the system tests are discrete time as in Equation 2. The 
appropriate EM and Scoring algorithms can be easily ob­
tained by running the discrete-time Kalman filter and 
smoother at a small enough At (possibly smaller than the 
time between measurements) so that 

and 

where I is the identity matrix. 
In this case, 

t/;e 
oVn 
oRn 

XI = de 
sde 
an 
san 

0 
Av 
0 

A -1- 0 
0 
0 
0 

0 
0 
0 

WI = fde 
0 

fan 
0 

0 
0 
I 
0 
0 
0 
0 

0 I - Vn/RE 
- g/RE 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

(9) 

(l0) 

(lla) 

0 0 
I An 
0 0 
0 0 ; (lIb) 
0 0 

-{J 0 
0 0 

(12a) 
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0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

n,= 0 0 0 2 
a jde 0 0 0 (12b) 

0 0 0 0 0 0 0 
0 0 0 0 0 2 

a fa il 0 
0 0 0 0 0 0 0 

-Jlall 
0 
0 

Jlo = Jl de 
Jl sde 

(l3a) 

Jl a/I 

Jl sall 

2 
a (/II 0 0 0 0 2 

-a all 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

Eo = 0 0 0 2 0 0 0 a de 

0 0 0 0 2 0 0 a sde 

(13b) 

') 

0 0 0 0 2 0 -a~1I a all 

0 0 0 0 0 0 2 
a san 

where the associated discrete-time measurement is given 

by Equation 2 wherein 

Hk = [0 0 1 0 0 00] , (14) 

and measurement noise covariance Rk = (0.1 ft)2 for air­
craft and missile testing. 

In this example, 0 is the vector of unknown parameters, 

o [ 2 2 2 2 2 2 ]' = Jl de Jl sde Jlall Jl sail a de a sde a all a sail {3 a jde a fa il . (15) 

The assumed true values of 0, shown in Table 1, cause 
(via simulation) an operational impact error of 1200 ft 
RMS. The objective is to process combinations of factory, 
aircraft, and missile test flights to estimate 0 and trans­
form (via covariance simulationsAas in Fig. 1) the model 
in Equations 8 through l3 with 0ML into an operational 
impact RMS along with a confid~nce interval derived from 
the asymptotic distribution of 0ML' The nominal values 
of 0 (our best guess from engineering jUdgment) are also 
shown in Table 1 and cause an operational impact error 
of 1900 ft RMS. Models for the two system tests , aircraft 
and missile, have the same dimension and are structurally 
similar except for differing acceleration profiles. 

The simplified gyro factory tests feature mounting the 
gyro on a precision test turntable with the gyro input axis 
orthogonal to the Earth rotation vector and the gyro signal 
generator output driving the turntable motor. With no 
input to the gyro torquer, the turntable would stay fixed 
relative to the Earth except for gyro drift effects. A known 
torquer input, Tg, will cause the table to rotate at a nom­
inal rate of Tg• Each gyro test will involve torquing the 
gyro ± 1000/h for 1 h each; the turntable orientation is 
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Table 1. Test and evaluation results for Qlissile guidance 
example (the 90% confidence interval = OML ± ex) . 

() () ex 
() Units (nominal) (true) OML (±) 

Ilde mrad/h 0 0.4 0.31 0.09 

Ilsde ppm 0 0 -151 106 

Ilan Ilg 0 0 0.27 3.2 

Ilsan ppm 0 0 -0.41 1.4 

aJe (mrad/h)2 0.16 0.09 0.089 0.04 

a;de (ppm)2 40,000 90,000 120,540 55 ,800 

a;n (llg )2 400 100 118 48.3 

a~n (ppm)2 50 16 20.7 10.6 
{3 l/s 0.001 0.0025 0.0044 0.0008 

2 
a/de (mrad/h)2/s 0.0009 0.0001 0.00004 0.000015 

2 
alan (llg)2/s 1.0 0.25 0.248 0.019 

Total impact 
error RMS (ft) 1900 1200 1290 193 

(± 15%) 

sampled every 2 min with an angular noise error of 30 
p.rad (10'). The accelerometer is tested on the precision 
turntable by rotating its input axis 180° from local hor­
izontal to vertical to local horizontal in 20 min, measuring 
the integrated accelerometer output every 20 s with a 
noise error of 0.001 ftls (1 0'). The error models for these 
tests are shown in Figure 3, where ng and no represent the 
measurement noise in the angular and velocity measure­
ments, respectively. 

As before, these error models can be expressed by the 
generic form in Equations 2 and 8 through 10, where the 
gyro test is given by 

(16a) 

(l6b) 

and 

(l7a) 

(17b) 

The accelerometer test is given by 

[ 
OV] [0 1 A] 

XI = an ; AI = 0 - {3 0 ; 
san 0 0 0 

(l8a) 
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Figure 3. Simplified gyro and acceler­
ometer error models for factory testing 
(ng and na represent measurement noise 
in angular and velocity measurements, 
respectively ; A = 9 sin wi; Wa = 71"/1200 
rad/s). 

0 0 
2 

Wk = [fgn l 0, = [ 0 (J f an 

0 0 

and 

~o = [~~n l Eo = [ 

0 0 

0 2 
(J Gil 

J-t SGII 0 0 

Gyro 

Accelerometer 

0 l 0 

0 

(l8b) 

o 1 o ; 
(J ~GII 

(l9a) 

H k = [1 0 0]· R k = (0. 001 ft / s) 2 
. (l9b) 

Note that the gyro and accelerometer factory tests are 
structurally and dimensionally very different from the 
system tests. Combined, however, they will yield the 
same type of model information as the system tests. 

NUMERICAL RESULTS 
We conducted a "test planning" analysis to determine 

the appropriate combinations and numbers of different 
tests to achieve a system confidence requirement; that is, 
the true operational RMS was to be within ±15% of the 
estimated operational RMS with 90% confidence. To 
achieve this confidence by only traditional impact scor­
ing (sampling target errors from many tests) of test tra­
jectorie (not an operational estimate), we would need 
about thirty-five repeatable test flights with perfect im­
pact location instrumentation. Obviously, we hope to re­
quire significantly fewer missile tests by extracting more 
information per test and by using information from other 
test types (e.g., aircraft or factory) . The test planning 
analysis follows from Figure 1 where a Kalman filter/ 
smoother covariance analysis is run for each generic type 
of test, and (J is set to the nominal model (our best guess). 
The model identifier is then run in a "covariance only" 
mode to produce a Fisher information matrix for each 
type of test. Various combinations and numbers of tests 
can be merged by simply adding the appropriate Fisher 
information matrice . The inverse of the combined Fisher 
matrix along with the nominal (J defines a Gaussian dis-
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tribution from which sampled values of (J ML can be trans­
formed into impact means and covariances via an oper­
ational inertial model covariance simulation as shown in 
Figure 1. A distribution of RMS'S is then obtained from 
the distribution of impact means and covariances, yield­
ing the appropriate confidence interval . 

The analysis showed that twenty-nine test missiles 
would be needed to achieve the operational confidence 
requirement if the model was truly at the nominal values. 
The aircraft tests provided more information per test as 
only eighteen tests yielded acceptable confidence inter­
vals. By combining the two types of ystem tests and 
recognizing the relatively high co t of missile testing, we 
found that a set of four mis ile tests (to exercise and test 
other missile subsystems) and fifteen aircraft test satis­
fied the operational requirement. Obviously, many other 
combinations could be used. In fact, the tests themselves 
could be modified to produce more information per test. 
For example, by lengthening the aircraft tests to one hour, 
a combination of four mis ile and seven aircraft tests 
ati sfied the requirement. 

Factory tests provided less information than either of 
the other two types of tests, requiring 100 accelerometer/ 
gyro tests to yield acceptable confidence intervals if the 
model is truly at the nominal values. When combined 
with a few aircraft tests , however, a significant reduction 
in the required number of factory tests occurs. For exam­
ple, the following combinations of aircraft and factory 
tests , respectively, met system test requirements; 0, 100; 
6, 20; 12, 6; 18, O. The factory tests alone have combi­
nations of parameters in (J that are poorly observable, 
resulting in high uncertainty in the tactical impact RMS 

projections. The aircraft tests provide significantly better 
observability of these same combinations, resulting in a 
complementary combination. 

In test planning analysis, one has to guess conserva­
tively at the range of possible "true" values that the model 
could take on to provide enough tests of adequate infor­
mation. A the true values get smaller with constant test 
instrumentation quality and number of tests, the percent­
age confidence intervals will grow. In other words, 
achieving the confidence requirement on a better guid­
ance system will require more or better test resources. We 
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therefore chose a conservative set of four missile tests , 
fifteen aircraft tests (1/4-h long), and fifteen factory tests 
that would have produced ± 11 % confidence intervals at 
the nominal model. This test program was then simulated 
to exercise the parameter e timation software shown in 
Figure 1. The results are shown in Table 1, with (} (nom­
inal) being the starting "gue sed~' value in the parameter 
estimation iterative process and 0 ML the final estimate of 
(} (true). The 90% confidence intervals were generated 
from the Fisher information matrix inverse evaluated at 
0ML' The 90% confidence intervals cover the true values 
for all parameters except for P sde' {3, and (J ~e ' This Fisher 
information matrix inverse is somewhat optimistic at the 
individual component level , being a lower bound on the 
estimation error covariance. Also, the evaluation of the 
Fisher information at (} ML is approximate since it is the­
oretically defined only at the true (}. One must therefore 
regard these confidence intervals as indications of param­
eter uncertainty that must be tempered by analyst expe­
rience. The overall impact RMS estimate for the operation­
al trajectory i very good and well within the confidence 
intervals, however. 

The convergence of the iteration process is shown in 
Figures 4 , 5, and 6. Figure 4 shows the likelihood func­
tion evaluated after each iteration to verify its increase. 
The first ten iterations use the EM algorithm, which ex­
hibits the classical EM behavior of slowing down in con-
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Figure 4. Convergence of likelihood function and projected op­
erational accuracy estimate. 
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Figure 5. Parameter estimates with rapid convergence. 
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Figure 6. Parameter estimates with slow convergence. 

vergence rate as the iterate nears the maximum. The 
switch (when it "looks" as though EM has sufficiently 
slowed down) to Scoring for the last ten iterations extracts 
the last bit of information from the tests. The projection 
of each iterate to operational impact RMS shows sufficient 
convergence by the fifth iteration, however. Figure 5 
shows similar rapid convergence characteristics in those 
individual parameter estimates. The benefit of continuing 
the iteration can be seen in Figure 6, where the individual 
parameter estimates are markedly improved by the Scoring 
iterations, yielding more accurate understanding of the 
detailed model. In any event, one iteration of Scoring 
would be needed to evaluate the Fisher information 
matrix for confidence interval calculation. 

The example we have presented is illustrative, but not 
truly representative, of the potential of this methodology. 
Realistic guidance models are much more complex with 
more dynamic acceleration profiles. These profiles should 
enable more detailed model information to be extracted per 
test, producing an even wider disparity between traditional 
impact scoring and the methodology presented in this article. 

CONCLUSIONS 
We have presented and demonstrated a new approach 

to system test and evaluation that uses detailed test data 
to estimate the underlying ensemble system model , which 
can then be extrapolated to unte ted cenarios for tactical 
system performance estimates. In addition, this method­
ology provides its own estimation error distribution , 
which allows confidence statements to be made for the 
model estimates and extrapolations and enables test plan­
ning analysis to be conducted before the test program for 
the more efficient use of test facilities. 
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