
LARRIE V. HUTTON 

USING STATISTICS TO ASSESS THE PERFORMANCE OF 
NEURAL NETWORK CLASSIFIERS 

Neural network (NN) approaches to pattern classification problems both complement and compete with 
statistical approaches. Each approach has unique strengths that can be exploited in the design and evaluation 
of classifier systems. In the spirit of emphasizing this complementary nature, four points are made in this 
article. First, classical (statistical) techniques can be used to evaluate the performance of NN classifiers. Second, 

classifiers often outperform classical techniques. Third, classifiers may have advantages even when their 
ultimate pelformance on a training set can be shown to be no better than the performance of a classical 
classifier. Finally, it is suggested that methods that are routinely used in statistics, but not in approaches, 
should be adopted for the latter as well. 

INTRODUCTION 
Neural network ( ) technologies are being investigat­

ed by several groups at the Applied Physics Laboratory. 
This article focuses on the use of's as pattern clas­
sifiers, particularly multilayer perceptrons (MLP'S) using 
the backpropagation algorithm. For example, Eberhart 
et al.I and Wilson et a1,2 classified electroencephalo­
graphic (EEG) waveforms with MLP'S. Similarly, Bankrnan 
et al.3 detected EEG K-complex waves with classifiers, 
and Eberhart and Dobbins4 diagnosed appendicitis by 
using both MLP'S and adaptive resonance theory (ART) 

networks. Olsen et a1.5 expanded upon Eberhart 's work 
by developing a system for automatically detecting sei­
zures in epileptics by using MLP'S (and classical statistical 
methods). 

Outside of biomedical research , Lee6 used MLP'S to 
recognize ship images. In addition, Sigillito et al.7 clas­
sified radar returns from the ionosphere with MLP'S, and 
in a related experiment involving the aurora, Newell et 
a1. 8,9 identified source regions of ionic precipitation with 
MLP s. 

Neural networks have also been employed in automat­
ic target recognition (ATR) task at APL. For example, 
Roth lO detected targets in high clutter environments with 
both feedforward and Hopfield networks , and Boone et 
al. II fused ensors with's in the development of a ship 
recognition classifier. Finally, Sigillito et al. I2 used MLP'S 

in the development of a system to detect defects shown 
in gray-scale images of fuzes. 

Because classification is often associated with classi­
cal statistics, it is significant that each of the studies just 
cited used technologies either instead of, or along 
with, classical approaches to develop classifier systems. 
It is also significant that an article on classifiers was 
sought for inclusion among the articles on statistics in 
this issue of the Technical Digest. Although NN and clas­
sical approaches can be used in the development of clas­
sifiers, both approaches are valid in the appropriate con-
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text and can coexist with each other. Indeed, 's can 
better be said to do statistics than to replace statistics. But 
just as some statistical approaches are better than others, 
some approaches may occasionally be superior to a 
more classical approach to pattern recognition and clas­
sification. 

To make the ensuing discussion more concrete, assume 
a classification system with nj (binary or real-valued) 
input elements and 110 output elements. (See the boxed 
insert for terminology.) Each of the I1j input elements 
might represent sensor information from the environ­
ment, the gray-level value of a pixel , or other pertinent 
information. Each of the 110 output elements represents the 
presence or absence of a category, for example, a partic­
ular type of tank or plane. When multiple categories exist, 
the output element with the highest value defines the 
active category. The combination of input and output 
vectors at anyone time defines a pattern vector, and the 
classification system produces an output vector that cor­
rectly classifies the corresponding input vector. A special 
example is a classification system with a single element 
in the output vector; if the value of that single element 
is above some threshold value, the presence of the object 
or category is assumed; otherwise, it is not. 

ASSESSING THE PERFORMANCE OF 
CLASSIFIERS 

Two major issues will be addressed in this section: (1) 
categorical measures of the performance of a classifica­
tion system, and (2) squared-error measures of perfor­
mance. Assessment of performance during learning is 
typically of greater concern for users of tools than it 
is for users of statistics, because users are more likely 
to have to contend with decisions of when to stop training. 
The ultimate performance, however, is equally important 
to u ers of either approach. 
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EXPLANA TION OF NEURAL NETWORK 
TERMINOLOGY 

Many of the terms used in this article are based on the 
following definitions: 

where ET is the total error across all no output nodes for all 
np pattern in the training set tkp is the target (desired) value 
for the kth output node and pth pattern (alternatively, the 
kth category or the kth element in the output vector), Wkj 

is the weight (conductance) from the jth node to the kth 
node in the layer above, and (3k is the current bias term for 
the kth node. The squashing function f(x) is typically the 
logistic function, I/O + e-X

) . To simplify notation, the sub­
script k indicates the kth output node, j the jth hidden node, 
and i the ith input node. A fully connected feedforward 
architecture is assumed to be present unless indicated oth­
erwise. In other words, each input node 0; has a weight to 
each hidden node OJ, and each hidden node has a weight to 
each output node Ok. Thu , W kj is a hidden-to-output weight, 
and w ji is an input-to-hidden weight. The details of the 

Categorical Measures of Performance 
Although "percent correct" is probably the most com­

monly used performance measure for a classification sys­
tem, it is not the only one. A number of other useful 
measures are shown in Table 1. 

One particularly u eful measure of overall perfor­
mance, which combines sensitivity and specificity mea­
surements, is the receiver operating characteristic (ROC) 

curve. An ROC curve (see Fig. 1) is generated by plotting 
sensitivity as a function of false alarm rate. The false 
alarm and ensitiviry values for each point on the curve 
are generated by varying the detection threshold. A com­
pletely random system, which would be just as likely to 
predict a signal as a false alarm, would produce a straight 
line from lower left to upper right on the ROC graph. A 
perfect discriminator would produce two straight lines, 
one going from lower left to upper left, and then from 
upper left to upper right. A curve bowed in the opposite 
direction from lower left to lower right to upper right is 
possible but not likely, since such performance would be 
worse than chance. It is easy to construct an ROC curve 
for an MLP, since one needs only the real-valued output 
(and associated target value) for each pattern in the da­
tabase of interest. The trade-off between sensitivity and 
specificity (which is 1, the false alarm rate) can be read 
directly from the graph. A commonly used statistic, d', 
i the distance between the upper left comer and the ROC 

curve as measured along the minor diagonal. 
In addition to using the ROC curve to examine the trade­

off between false alarms and sensitivity, the area under 
the curve can be used to derive an overall index of good­
ness that is independent of the prior probabilities. 14.15 An 
advantage to using this area, which should range between 

292 

backpropagation algorithm that is assumed here can be 
found in Rumelhart et al. 13 

The learning rule for the hidden-to-output weights is 

flWkj (t) = TJOkOj + aflwkj(t -1), 

differing only in the subscript for the input-to-hidden 
weights. The learning rate typically lies between 0.01 and 
0.7; 0 k Oj is an e timate of dEl dWkj , and a is a so-called 
momentum term (typically in the range from 0 to 0.7), 
which minimizes the effect of high-frequency fluctuations 
in the error surface. A multilayer perceptron is assumed to 
have at least one hidden layer of neurons, whereas a logistic 
perceptron, which also incorporates a squashing function, 
has connections only between input and output elements. 

In a typical example, a sample is drawn from some pop­
ulation of np pattern , in which each pattern consists of 
nj + 110 elements; a pattern vector, therefore, consists of both 
an input and a target vector. The sample is u ually split into 
a training set on which the neural network or classical 
classifier is trained, and a test set on which the performance 
of the cla sifier is assessed. The performance on the test set 
is taken as a measure of the perfornlance on the population 
from which the sample that included both training and te t 
sets wa drawn. 

0.5 and 1.0 for all practical purposes, as opposed to using 
a single point on the curve, i that the area summarizes 
the results over all threshold values, and thus provides a 
convenient method of comparing two diagnostic systems 
over a broad range of condition . A significance measure 
for the difference between areas is provided by Meis­
trell. 16 

The information required to generate each point on an 
ROC curve is obtained by enumerating, for a given thresh­
old, the number of true positives, true negatives, false 
positives, and false negatives for one pass through the 
pattern database. The other points are generated by 
changing the threshold (i.e., the output value required to 
classify an input pattern as an instance of the category). 

Although ROC curves are said to be independent of the 
prior probabilities, one should not ignore them. A simple 
exercise in Bayesian statistics makes this point clear. 
Assume that you have a population in which 1 % are at 
risk for AIDS. You have an instrument that correctly iden­
tifies persons without AIDS 95% of the time, and persons 
with AIDS 95% of the time. A person, randomly sampled 
from the population, tests positive. Does he/she have 
AIDS? Probably not. In fact, the person is 5 times more 
likely not to have AIDS than to have it. This exercise 
illustrates the importance of prior probabilities- and in­
corporating them into training sets-and the dangers of 
overreliance on any single statistic. 

The 2 X 2 table (true positive, false positive, false 
negative, true negative) used to generate the ROC curves 
and associated statistics is actually a special type of 
no X no table where no is the number of decision classes. 
In such a table, the number of correct classifications can 
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Table 1. Commonly used measures of performance in diagnostic systems. 

Computation 
Measure Description ( X 100 for percent) 

Hit 
Correct rejection 
False alarm 
Miss 

True positive 
True negative 
False positive 
False negative 

TP 
TN 
FP 
FN 

Percent correct, accuracy Number right/number of cases (TP + TN) / 

Sensitivity , true positive ratio 
Specificity, true negative ratio 
False alarm rate, false positive 

Percent of positive instances detected 
Percent of negative instances detected 
Percent of negative instances 

(TP + TN + FP + FN) 
TP / (TP+ FN) 
TN / (TN + FP) 
FP / (TN + FP) 

ratio 

Positive predictive value, 
selectivity 

incorrectly diagnosed 

Percent of time that a positive 
signal indicated a positive 
instance 

TP / (TP + FP) 

100,-~'-~-----=~=---~------~----~ 

80 

20 40 60 80 100 
False alarm rate (%) 

Figure 1. Two examples of receiver operating characteristic 
curves. The black example is a much worse discriminator than the 
blue example. A random discriminator would produce a straight 
line along the main diagonal. (Reprinted from Ref. 7, p. 265.) 

be obtained by summing the entries along the diagonal , 
and misclassifications can be obtained by summing the 
off-diagonal elements. A very general metric for assess­
ing the performance is to compute a utility function , 

110 110 

V = k I Inij f (V ij), 
j== l i==l 

(1 ) 

where k is a scaling (or normalizing) constant, nij is the 
frequency with which the ith class is placed in the jth 
category, and f(Vij) is the cost (or utility) of each entry 
in cell ij of the no X no matrix. For example, if k = 
l/np' f (V i) = 1 for all i = j , and f(Vij) = 0 for all i "# j, 
then V simply reduces to the proportion correctly clas­
sified. For no > 2, the construction of ROC curves requires 
appropriate definitions for sensitivity and false alarm 
rate. If FAR is defined as the probability that a nonoccur-
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rence of some event is misclassified as an instance of that 
event, then no ROC curves must be generated to provide 
the coverage that a single ROC curve would provide in the 
2 X 2 example. 

Continuous Measures of Performance 
The preceding section stressed categorical measures of 

performance. In this section, measures that treat real 
values of the output nodes are discussed. The concern is 
thus not just with final classifications, but how close each 
output is to the target classification of 0 or 1. 

A common and useful measure of an N classifier is 
the rms error, 

Erms (2) 

which is merely the square root of the average squared 
error. The notation used here and elsewhere is tkp (value 
of the kth target on the pth pattern), Okp (value of the kth 
output node on the pth pattern), np (number of patterns), 
and no (number of output categories). Sometimes the k 
or p subscripts will be dropped if they are not required 
for clarity. 

Since both target and system output range between 0 
and 1, Erms ranges between 0 and 1 as well. It can measure 
the progress (or ultimate performance) of a single system 
or can be used to compare several different systems. One 
advantage of Erms' as opposed to a simple sum of squared 
error measure (which is usually the objective function in 
an MLP), is that it is normalized by the number of output 
variables and the number of patterns. Thus, it can be used 
to compare the performance of systems that differ in these 
two regards. 
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A related measure is average absolute error, defined 
as 

L Lit kp - 0 kp I 
p k 

(3) 

where Itkp - okpl is the absolute value of the error on the 
pth pattern for the kth output node. An Eabs value that is 
substantially smaller than Enns suggests that some pat­
terns are generating higher-than-average errors (large ab­
solute values for t kp - 0 kp affect Enns more than Eabs), and 
that there is something unusual about those patterns. For 
example, such patterns may have been misclassified 
when category assignments were made when the training 
or test set was created, or they may be associated with 
input features that were not incorporated in the pattern 
database. 

Another useful measure is the proportion of variance 
(POV) accounted for. The POV is simply the square of 
the Pearson product-moment correlation, r, and is de­
fined for the kth output class as 

(4) 

where S~Ok is the covariance of the kth target and kth 
2 2 output vectors for all I1p patterns, and Slk and S Ok are the 

target and output variances, respectively. The POV is 
equivalent to the squared cosine of the angle between 
output and target vectors. It is useful because it is nor­
malized not just by the number of pattern presentations, 
as are E Ill1 s and Eabs' but by the variances of the target and 
output measures as well. It can be interpreted as the 
proportion of variance in the kth target class that is ac­
counted for by the NN or statistical model. 

Pineda 17 has suggested a related approach. Let s( be 
the target variance for the kth class for all np patterns. The 
average squared error between target and output for the 
kth category is 

LCtp -Op )2 

Em = ...!..p----- (5) 

for any output class k. A performance measure that, like 
POv, approaches 1 as the error approaches 0 is 

(6) 

Note that P can be negative if Em > s( (which is 
typically true at the beginning of training), is equal to 0 

when Em = s;, and approaches 1 as Em approaches O. 

Measures of Training Progress 
The behavior of P and Em can be used as a measure 

of training progress. Once training begins, Em quickly 
approaches s(. It is instructive to see why this happens, 
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because it has implications for initializing a network. 
Initially, the input-to-hidden and hidden-to-output 
weights are small in magnitude and centered around zero. 
Hence, changes in the input vector will tend to have a 
small effect on changing the value of any hidden node. 
In particular, each hidden node's output (after applying 
a logistic squashing function) should be around 0.5 re­
gardless of the input vector. But the outputs of the hidden 
nodes are attenuated by the near-zero hidden-to-output 
weights, so the average value of an output node should 
be around 0.5 as well. Consequently, the input vectors 
initially have little effect on the value of an output node, 
and the system can most quickly minimize elTor by 
adjusting op through the bias term. The bias for the output 
nodes is relatively labile, compared with the more slowly 
changing hidden-to-output weights, because it is affected 
directly by the target values for each pattern rather than 
being shielded by the hidden nodes. Recall that op is 
initially affected inconsequentially by the input vector, so 
the bias term disproportionately affects op. Since op will 
initially be constant through all pattern presentations, and 
because the fixed value of op that minimizes Em is the 
mean of tp' the system learns to set o p to the mean of tp' 

The system thus effectively learns the prior probability 
of target present without using information from the input 
vectors. Others 18-21 have shown that output values reflect 
the Bayesian posterior probabilities after training. When 
initializing the weights, it seems likely that input-to-hid­
den weights that are set to zero should facilitate the 
learning process described previously because that would 
minimize the interference from the input patterns as the 
system learns the prior probabilities. Lee6 reported that 
faster training does occur when the input-to-hidden 
weights are set to O. 

Other measures of network progress have been used 
by Sigillito and Eberhart,22 also at APL. In one method, 
inspired by Pineda,17 the angle between a vector whose 
elements are the values of all the weights in a network, 
and a vector with all elements equal, is found. Although 
the angle between the vectors does not itself give much 
information (it is possible that the final weight vector 
could be either farther from or nearer to the reference 
vector than it was at the beginning of the training), the 
rate at which the angle is changing indicates the speed 
at which the weight vector is approaching its final des­
tination in weight space. 

Sigillito and Eberhart22 suggested that the length of the 
weight vector indicates network progress, since weights 
start out as small random weights and increase in average 
absolute magnitude as output nodes are driven to their 
limits with training. Finding the variance of the normal­
ized weight vector gives an index of dispersion that 
indicates movement away from the relatively equal 
weights that were set during initialization. Hanson and 
BUlT23 also reported an increase in average absolute 
weight after training, and that the weight variance was 
a function of the average absolute weight, at least for very 
large networks. Although this result is consistent with 
Weber's Law, a well-known psychophysical law, it is not 
clear whether Hanson and Burr's observations apply 
generally. 
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RELA TIVE PERFORMANCE OF NEURAL 
NETWORK AND STATISTICAL CLASSIFIERS 

An classifier is a ymptotically equivalent to a sta-
tistical procedure when , given enough time, the perfor­
mance of the N converges to the performance of the 
statistical procedure. Although asymptotically equivalent 
networks are not uncommon ( 's do tatistics) , only the 
most common will be mentioned here. 

Perhaps the best known equivalence of and classi-
cal methods is provided by Stone,24 who showed that the 
delta rule used in linear perceptrons implements a mul­
tivariate multiple linear regression. Thus, the linear per­
ceptron will, in principle, develop weights that are equiv­
alent to the coefficient in multiple linear regression, 
where the linear perceptron 's bias is equal to the intercept 
of the regression analy is. If zero-mean inputs are used, 
the intercept should be zero. The POV will be identical 
as well. Since a Fisher linear discriminant analysis has 
been shown to be a special example of multiple regres­
sion analysis,25 a linear perceptron is also asymptotically 
equivalent to a Fisher linear discriminant analysis. 

Another example of a close correspondence, if not 
asymptotic equivalence, between a statistical tool and an 

classifier is found in the logistic perceptron, which 
approximates the performance of a logistic regression 
analysis.18 The MLP, which is the most widely used 
classifier, can be used to perform a nonlinear regression 
analysis-again, a common statistical method. Summa­
rizing, linear perceptrons, which use the delta rule , are 
equivalent to multivariate multiple linear regression ap­
proaches and to linear discriminant analysis. Logistic 
perceptrons, which u e the logistic function but do not 
have hidden layers, are equivalent to logistic regression, 
and MLP'S, which u e the generalized delta rule, can be 
used to perform nonlinear regression analyses. 

The original perceptron learning rule has not been 
discussed in this article. Although the classical percep­
tron can be shown to minimize classification en-or for any 
problem that is linearly separable, it uses a nondifferen­
tiable threshold function. Thus, it does not minimize a 
squared-error objective function and so is not di scussed 
further. 

No universal agreement has been reached as to whether 
NN or classical classifiers are better, and the question as 
to which should be preferred is not easy to answer. 
Reports that classical classifiers can outperform clas­
sifiers are not common, and the one unequivocal report 
reviewed here used questionable methodology.26 On the 
other hand, several studies27-29 have hown that MLP 'S or 
their variants can approximate any continuous function 
with arbitrary precision. In fact, any arbitrary function 
can be approximated with arbitrary precision.30.31 It is 
hard to imagine how a classical classifier could do better 
than that. Furthermore, simulations have confirmed that 
MLP'S generally do at least as well as, if not better than, 
quite sophisticated classical classifiers.27.28 

The battle for best thus rages on with no end in sight, 
and readers who expected this issue to be resolved here 
may be disappointed. As a working hypothesis , however, 
we will assume that the two approaches are about equal 
in terms of ultimate performance on the training set. 

Johns Hopkins APL Technical Digest. Volllme 13. Number 2 (1992) 

Neural NeMork Classifiers 

WHY USE NEURAL NETWORK CLASSIFIERS 
WHEN THEY ARE ONL Y ASYMPTOTICALLY 
EQUIV ALENT? 

The claim that N classifiers will generally outperform 
cla sical classifiers hinges on the assumption that Nand 
statistical classifiers may exhibit similar, if not equiva­
lent, performance if trained to convergence on the train­
ing et, but that only the cla ifier can validate its 
performance on the test set while it is learning on the 
training set. 28 The fact that training and test sets are likely 
to be different suggests the following thought experi­
ment. 

Consider that training and test sets are ideally both 
perfectly representative of the population from which 
they are presumably drawn , but typically at least one set 
i not perfectly representative of the population. When 
both training and test sets are equally repre entative of 
the population , an asymptotically equivalent classifier 
offer no advantage. The reason is simply that asymptotic 
equivalence on the training set translates into equivalence 
by definition on the test set. Thus, the training set gives 
a perfect indication of perfOImance on the te t set. 

If the two sets are not equally representative and es­
pecially if irregular decision boundaries are involved, a 
statistical classifier that does not train iteratively will 
almost always overtrain. The performance of the statis­
tical classifier cannot be affected by its performance on 
the test set because the classifier is designed to optimize 
performance on the training set. On the other hand, it is 
pos ible to assess performance over time with an 
classifier by examining its performance on the test 
set,32.33 since overlearning is manifested by deteriorating 
performance (after an initial rise to maximum) on the test 
set, and the weights can be frozen at that point. Thus, 

classifiers can be made to maximize performance on 
the test set, whereas classifiers that do not permit iterative 
changes of the coefficients tend to overtrain on the train­
ing set. This is an argument against optimization tech­
niques, which use efficient methods to find a local min­
imum of the error surface on the training set. The logic 
of thi s argument has been discussed by Hecht-Nielsen,32 
although he does not suggest that weight updates be 
discontinued when performance on the test set is opti­
mum. Other researchers ,34.35 however, have used perfor­
mance on the test set as the criterion by which training 
is stopped. This procedure seems somewhat "unfair" in 
that it measures the classifier where its performance is 
optimum. Nevertheless, it is arguable that performance 
on a randomly sampled test set i a better indicator of 
performance on the population from which both training 
and test sets are drawn than any single stopping criterion 
based solely on performance on the training set. Whether 
or not this assumption is reasonable for realistic data sets 
remains an open theoretical and empirical question. The 
deterioration of performance on the validation set that 
occurs because of outliers in the training set data is 
widely recognized, however, in the field of machine 
learning, where methods exi t to prune branches of de­
cision trees that have been induced from the training set.36 

The pruned branches are those that are likely to lead to 
poor generalization of the population data. 
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Generally speaking, performance on the training set is 
relevant, but it is not the most important measure of 
performance. Performance on the test set is more impor­
tant since such performance is typically the defined mea­
sure of population performance. It would be remarkable 
if the two sets were uncorrelated because then the per­
formance on the training set would tell us nothing useful. 
Likewise, a perfect correlation would imply that the two 
sets are substitutable. Real world data sets are neither 
uncorrelated nor perfectly correlated, however. There­
fore, we want our classification system to learn about the 
training set only insofar as it reflects pertinent features 
of the testing set. Statistical approaches (or approach­
es) that blindly minimize the error on the training set will 
not reliably reflect those pertinent features. 

I have assumed that classifiers, and not classical 
classifiers, will be designed to optimize performance on 
some presumed population data. In practice, this assump­
tion may not hold. The methods described here are valid 
for either classical or NN approaches as long as the clas­
sifier does not produce its solution in a single pass, but 
instead produces intermediate solutions that can be used 
to test against the validation data. Neural network appli­
cations that do not avail themselves of the techniques 
described here suffer from the same problems that befall 
classical classifiers if the classifier either cannot pro­
duce intermediate solutions (i.e., it is not iterative) or 
does not consider test set performance when setting the 
coefficients for the field data. It is true, however, that NN 

approaches that use backpropagation are capable, in prin­
ciple, of exploiting the information obtained from inter­
mediate solutions; many classical approaches are not. 

A few additional points should be mentioned: First, if 
performance on the statistical classifier can be assessed 
at regular intervals , and the statistical classifier performs 
as well as the classifier, then it is more difficult to 
choose between the two methods. Considerations other 
than ultimate performance, such as speed, computational 
complexity, storage requirements, human comprehensi­
bility, and general acceptance of the method chosen (e.g., 
political considerations), would then necessarily dictate 
the choice of methods.37 

Second, MLP'S (and methods in general) have an 
advantage over any classical method that makes assump­
tions about population parameters. Although one of the 
virtues of techniques is that they do not require an 
underlying model (i.e., they are universal approxima­
tors) , it must be remembered that nonparametric methods 
also exist in statistics. In fairness, such desirable attri­
butes are not exclusively the domain of models. Of 
course, if the underlying distribution can be fully de­
scribed in terms of its parameters, one can do no better 
than to use those parameters, but usually that is not the 
kind of problem that motivates one to use neural net­
works in the first place. 

Finally, the dangers of overtraining with small data sets 
cannot be overemphasized. Assume that you are locked 
in a room with some data. Your job is to produce a 
classifier that will do the best possible job on data to 
which you do not currently have access. (If you have 
access to more data, you should train using those data as 
well. If you have access to all possible data, there is no 
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point in training with a subset at all, because you really 
want a lookup table.) Theoretical statements about how 
well the system could perform in principle are not useful; 
you need to produce a set of weights that will do the best 
possible job on data that are not available for training. 
The rule is "quit when you're ahead on the test set." (You 
have, of course, taken the data in your room and split it 
into a training and a test set.) To see why this rule is 
important, consider the following thought experiment. 

Assume that you have some data that have been du­
tifully split into a training and a test set; unbeknownst to 
you, all the data were generated with a random-number 
generator. What is the best way to minimize the quared 
error of such a set? The answer is "guess the mean." This 
method effectively uses the prior probabilities of the tar­
gets, which is something the classifiers will learn to do 
quickly, as we have seen. Error on the training et, and 
somewhat less reliably on the test set, will decrease until 
it approaches the normalized variance, where it should 
stop. If the training and test sets are different-and they 
will be unless the samples are very large and equally 
representative-then continuing to train on the training 
set to some predetermined level of error will force the 
classifier to exploit differences that do not really exist 
(recall, the data were random). 

Improved performance on the training set now comes 
at the expense of performance on the test set and, more 
to the point, poorer performance on the population that 
the test set represents. This problem can be avoided if 
performance on the test set is monitored and that infor­
mation is used when producing the effective weights. I 
have conducted simulations with small data sets, which 
maximize the possibility that training sets are unrepresen­
tative, and confirmed the overtraining effect. In fact, 
weight matrices were consistently produced that resulted 
in performances on the test set that were worse than 
guessing the mean! This result is to be expected under 
the conditions described. No one wants a classifier that 
performs at that level in the field. 

The importance of considering test set performance 
can be seen in Figure 2, which shows the error as a 
function of the number of passes through the training set 
for the training set itself (5 pattern vectors drawn random­
ly from a population of 100 pattern vectors), a test set 
(also 5 random pattern vectors) , and the entire population 
of 100 pattern vectors from which both stratified random 
samples were drawn. It is apparent in this admittedly 
contrived example that, almost unbelievably, one would 
be better off if the statistics on the training set were 
ignored. The test set data clearly track the population data 
better than the training set data. 

Of course, no one uses NN classifiers to classify ran­
dom data, and if no divergence between the training and 
test sets occurs, this admonition does not apply. With 
small data sets or unlucky splits, however, both of which 
can occur with real data, training to criterion on the 
training set will almost surely result in less-than-optimal 
performance on the population data. And it is the pop­
ulation data where performance really counts. The differ­
ences may not be as dramatic as in the experiment de­
scribed here, but they do exist, and they will be magnified 
if the MLP has a large number of hidden nodes. 
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Figure 2. Tracking population error: effect of overtraining in a 
very noisy envi ronment. The left arrow shows performance in the 
field (population data) if the weight matrix is saved when test set 
error is at a minimum. The right arrow shows field performance if 
training is stopped at an arbitrary rms error of 0.025. Overlearning 
on the training set exaggerates the importance of the test set 
performance. 

USING STATISTICAL METHODS TO 
ENHANCE THE PERFORMANCE OF NEURAL 
NETWORK CLASSIFIERS 

The first section of this article emphasized that statis­
tical methods must be used to evaluate the performance 
of both and statistical classifiers. The next two sec­
tions suggested that even when neural network and sta­
tistical classifiers are comparable in terms of their ulti­
mate performance, approaches may have other advan­
tages to support their use. This section offers suggestions 
for evaluating the performance of classifiers and for 
increasing their efficiency. The suggestions will be famil­
iar to any statistician. 

How Should Input Data Be Preprocessed for a 
Neural Network? 

One frequently used transformation in statistics is to 
convert each element in the input vector to its corre­
sponding z-score35

.
38 for the corresponding data column. 

A common variant is merely to convert each data column 
to a zero-mean vector,39 which minimizes interference 
between input elements.4o The z-score is obtained by 
subtracting the mean of the data column in question from 
each element, and then dividing the resultant value by the 
standard deviation of that column; the data column is thus 
linearly transformed to a zero-mean vector with unit vari­
ance. This simple method has several advantages: (1) It 
seems to speed up the learning process; (2) weights be­
come interpretable as measures of the importance of devi­
ations from the mean value, as opposed to deviations 
from zero; (3) initializing the input-to-hidden weights to 
zero has the effect of setting all weights immediately to 
the mean value for that element; (4) the average squared 
score becomes equal to one; and (5) every score in any 
column becomes equivalent to a corresponding score in 
any other column in terms of percentile ranks (assuming 
the original scores were normally distributed). These ad­
vantages theoretically should not be reflected in ultimate 
performance, but they do seem to speed up learning, and 
they make the input -to-hidden weight matrix easier to 
interpret. 
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How Can the Number of Input Nodes Be 
Minimized? 

A more general solution is likely to be generated with 
an input vector that is stripped of elements that do not 
contribute to improving the performance. One approach 
is to use a strategy adopted in stepwise regression, where 
one input variable at a time is added to or ubtracted from 
the input vector and a regression analysis is performed. 
The variable that maximizes the change in POV is kept 
(or deleted) . With NN classifiers (or any nonlinear clas­
sifier), throwing variables out makes more sense than 
adding variables. For example, suppose you have a da­
tabase with four input variables that together predict the 
effectiveness of a drug. Suppose further that one variable 
(e.g., eye color) was weakly related to the dependent 
variable, and the other three variables (e.g., dosage, age, 
and sex) were unrelated to each other and to the depen­
dent variable. A three-way interaction occurs, however, 
such that moderate doses of the drug are quite effective 
for males in their mid-thirties, but it has no effect oth­
erwise. By adding variables one at a time, only eye color 
would make it into the model, because none of the other 
three variables alone would ever increase the POV ac­
counted for. On the other hand, starting with all the 
variables would result in a catastrophic drop in POV 
accounted for as soon as anyone of the three variables 
involved in the three-way interaction was removed. 
Removing eye color, however, would not affect the POV 
accounted for (even though it is weakly correlated with 
the dependent variables), since the interaction term (in 
this example) can fully account for the results. 

Another, less computationally inten ive, approach 
would be to replace each input vector with the vector of 
principal component scores for which significant eigen­
values exist. Although this approach is likely to reduce 
the input dimensionality, it may not be helpful if nonlin­
ear relationships dominate the input/output mapping.41 

Large eigenvalues provide information about the most 
important eigenvectors if the problem is a linear one. It 
is quite easy, however, to construct problems in which no 
variance occurs in the eigenvalues; thi s would happen, 
for example, if the output were strictly determined by 
interactions between the independent variables. 

How Should the Training and Test Sets Be Split To 
Provide the Best Estimate of Error on the Test Set? 

The obvious answer is to use large random samples of 
the population for both the training and test sets; alas, 
realistic samples are frequently so small that assuming 
good random samples is likely to be gratuitous. A general 
strategy for using small samples is to use a stratified 
random sample, or to resample many times on the pattern 
vectors that are available. Resampling techniques include 
the jackknife method42

.43 and other variations that include 
the well-known leaving-one-out method, k-fold sampling 
methods, and bootstrap methods.26

,42,43 In bootstrap 
methods, for example, the training and test sets are orig­
inally pooled into one large sample. The training set is 
generated by sampling the pooled set with replacement 
(i .e. , each sample that is taken is replaced before another 
sample is taken) until a training set is developed that is 
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equal in size to the original pooled sample. In one variant 
of the bootstrap method, the eO bootstrap, those pattern 
vectors not sampled constitute the test set, and the error 
rate on that set is the estimate of the true error rate for 
the sample. Typically, many of these partitions are gen­
erated, and the average of the estimated sample error rates 
defines the estimated population elTor rate. 

Although such resampling methods are computation­
ally very expensive, they are no longer infeasible. These 
powerful method can and should be adopted by the 
developer of classifiers. The computational burden 
is even greater for sampling methods, because the 
effects of learning rate and momentum terms, as well as 
the effects of initial random weights, for example, must 
also be taken into account. 

Although such methods permit accurate estimates of 
the true error rate, they do not give us the weight matrix 
that results in that error rate; obviously, the weight vec­
tors cannot be merely averaged over all samples. Thus, 
the suggestion that weight training should stop once the 
error rate on the te t set becomes flat or begins to increase 
is still valid. In other words, the weight-stopping strategy 
is relevant once one needs a set of weights to solve the 
problem that the classifier was designed to solve. The 
resampling methods give good estimates of the true error 
rate, but they cannot provide an actual set of weights. 

CONCLUSIONS 
Developers of applications that employ NN compo­

nent have much to gain by incorporating the tools that 
are routinely u ed by statisticians. Neural networks are 
powerful tools , but using them well requires foresight and 
careful interpretation. Best result require a consideration 
of the architecture, appropriate transformations of the 
input and output vectors, sampling methods, trategies 
for selecting the final weight matrix that avoid the over­
learning effect, and the most appropriate performance 
measures. The approaches suggested here can serve well 
but, like any set of rules , slavish devotion is to be avoided 
if the particulars of a situation dictate principled change 
to them. 

Neural network cla ifiers should not be looked at as 
competitors to classical approaches, but rather as exten­
sions of them. As classifiers prove their worth, it is 
hoped that tatistician will embrace them as one more 
set of useful statistical tools. 
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