
SPECIAL TOPIC -----------------------------------------------------------------------------------

MARK A. BAKER, STEPHEN A. MACK, and HOWARD C. SCHOEBERLEIN 

STATISTICAL ASPECTS OF TURBULENCE 
AND MICROSTRUCTURE IN THE OCEAN 

The ocean ha a large range of length scales controlled by vastly different phy ical processes. Patches of 
small-scale fluctuations in velocity (turbulence) and temperature and salinity (microstructure) are distributed 
intermittently in time and space throughout the ocean. This article discusses the ources and statistic of small­
scale fluctuations along with techniques to discriminate between sources of microstructure in the ocean. 

INTRODUCTION 

The ocean ha complex velocity and scalar fields with 
a staggeringly wide spectrum of dynamically important 
length scales ranging from the mesoscale 1000-km scales 
of ocean circulation patterns down to the millimeter 
scales of small-scale turbulence. The smaller-scale end 
of the spectrum, represented by scales on the order of 
10 m down to centimeters, is the subject of this article. 
Detern1ining sources of small-scale fluctuations in veloc­
ity (turbulence) and temperature, conductivity, and salin­
ity (microstructure) and the relative contributions of each 
source to vertical diffusion is a very active field of re­
search in oceanography. An understanding of the distri­
bution and source of turbulence and microstructure has 
been a focus of analysis of at-sea microstructure mea­
surements gathered by The Johns Hopkins University 
Applied Physic Laboratory for over a decade. 

Small-scale velocity fluctuations act on the back­
ground gradient of calar quantities such as temperature, 
conductivity, and salinity to produce microstructure. 
Double-diffusive convection, a consequence of the large 
difference in the molecular diffusion rate of temperature 
and salt, also produces microstructure, but in a manner 
fundamentally different from turbulence. Salt fingers, a 
form of double-diffusive convection, vertically transport 
(diffuse) greater amounts of salt and nitrates than heat, 
whereas turbulence vertically transports (diffuses) salt, 
nitrates, and heat at the same rate. The temperature and 
salinity gradient observed in the upper portion of the 
large midlatitude Central Water masses of the ocean 
indicate that these are likely areas for double-diffusive 
convection. I The microstructure patches also contain 
fluctuations of nitrates, oxygen, or any other scalar prop­
erty with a vertical gradient that is mixed by the turbu­
lence or affected by salt fingering. The rates at which 
these other scalar properties are diffused vertically by 
turbulence and salt fingering can be directly tied to the 
vertical diffusion rate of temperature and salinity. With­
in an oceanic control volume, estimation of the average 
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microstructure activity allows estimation of the average 
vertical diffusion rate of temperature and alinity. The 
intermittency of micro tructure activity within a given 
oceanic control volume presents a difficult sampling 
problem. 

An understanding of the vertical diffusion rates of 
scalar properties such as heat, alt, and inorganic nitrogen 
is important for planetary-wide issues such as global 
warming, climate, and large-scale ocean circulation 
model . The increase in carbon dioxide in the Earth's 
atmosphere has led to predictions of global warming, 
since increasing levels of carbon dioxide cause the atmo­
sphere to retain increasing amounts of the heat radiated 
from the Earth. Climate is largely determined by the 
complex interactions between the atmosphere and the 
ocean. The major solar input of heat into the Earth's 
climatic system occurs at the equator. Both the atmo­
sphere and the ocean tran port heat from the equatorial 
region toward the pole . The ocean has a much greater 
heat capacity than the atmosphere, but the ocean circu­
lation moves toward the poles much more slowly than the 
atmospheric circulation. Correct modeling of the ocean 
circulation leads to a better understanding of the dynam­
ics of our climatic system. 

The ocean is considered, by modelers of the Earth's 
carbon cycle, to be the major sink for atmospheric carbon 
dioxide.2 The rate at which the ocean can absorb carbon 
dioxide is proportional to the rate that photosynthesis by 
photosynthetic microorgani ms can utilize inorganic car­
bon. Some of the inorganic carbon incorporated by the 
microorganisms is removed from the cycle by sinking and 
vertical transport losses to deep water. The rate of pho­
tosynthesis in the ocean is limited by the rate at which 
inorganic nitrogen is supplied from deep ocean waters to 
the microorganisms in the illuminated upper ocean. 
Models of the inorganic carbon-nitrogen cycle have 
neglected the effects of salt fingering and have generally 
assumed that the supply of inorganic nitrogen to the upper 
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ocean is controlled by turbulence. But vertical diffusion 
rates of salt3 and inorganic nitrogen due to salt fingers 
may be 10 times greater than those due to turbulence. 
Changes in weather and precipitation patterns due .to 
global warming could affect the vertical temperature and 
salinity gradients in the ocean in a way that leads to an 
increase in salt fingering activity. In that case, alt fin­
gering could provide a mechanism to counteract in­
creased global warming through the positive effect of salt 
fingering on the rate of photosynthesis in the upper 
ocean.2 

Measurements of turbulence and microstructure in the 
ocean have been gathered for over two decades, but the 
inherent variability in ocean environments and the slowly 
varying (in space and time) large-scale random processes 
that are the sources of small-scale activity still leave the 
ocean woefully undersampled, both in space and time. In 
addition, small-scale activity is intermittent in time and 
space, presenting challenging sampling and tatistical 
problems. Vertical profiles allow easier acces to the 
physics underlying a particular patch of small-scale ac­
tivity, but provide little information on the horizontal 
extent. Sample sets that cover a large horizontal extent 
are difficult to obtain by the vertical profiling approach. 
A towed chain, with a reasonable vertical aperture of 
thernlistor and conductivity sensors, generates a two­
dimensional slice of the ocean and quickly provides a 
large microstructure ample set. Large data sets obtained 
by towed chain of thermi tors and conductivity sensors 
only partially addres the sampling and source issues. 
Ideally, small-scale velocity, temperature, and conductiv­
ity measurements should be coupled with colocated 
velocity and shear measurements over the larger vertical 
scales appropriate to the physical mechanism generating 
the turbulence and microstructure activity. The identifi­
cation of the sources of turbulence and micro tructure 
would then be less difficult. 

In this article we will di cuss background information 
on the ocean environment relevant to understanding 
small-scale mixing proce es along with the sources of 
small-scale activity. The statistics of turbulence and mi­
crostructure and techniques to distinguish between sourc­
es of microstructure are also presented. 

THE OCEAN ENVIRONMENT 
The ocean is a stratified medium that typically increas­

es in density with increa ing depth. The density of sea­
water p (a nominal value is 1.025 gm/cm3) at a particular 
depth is largely determined by temperature (T) and sa­
linity (S). The relative contributions to density by tem­
perature and salinity are defined by the coefficients of 
thermal expansion, (X = -(l/p)(ap/dT) (salinity and pres­
sure held constant) and haline contraction, /3 = (l/p)(ap/ 
as) (temperature and pressure held constant). Depth or 
pressure also plays a role since seawater is compressible; 
therefore, increasing depth implies increased density. The 
role of pressure in determining the density of seawater 
is largely constrained to the deep ocean. The temperature 
and salinity field of the ocean is complex; water masses 
with different temperature and salinity characteristics in­
teract throughout the ocean. The velocity field of the 
ocean is also complex; large-scale circulation patterns, 
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currents, surface waves, internal waves, and near inertial 
frequency internal waves are only some of the large-scale 
processes that affect small-scale mixing activity in the 
ocean. Fronts, which are identified by sharp temperature, 
salinity, and density changes occurring over a few kilo­
meters, are another source of small-scale activity. This 
complex system of currents , water masses, and physical 
processes poses a difficult sampling problem for inves­
tigators seeking to parameterize small-scale mixing ac­
tivity in the ocean. Researchers have generally focused 
on only a small aspect of these physical processes and 
then only in a few areas of the ocean. The Laboratory's 
at-sea experiments have largely focused on the upper 
200 m of the Sargasso Sea (western portion of the North 
Atlantic Ocean) and the Tongue of the Ocean (near the 
Bahamas). 

We can divide the upper ocean vertically into three 
regimes: a well-mixed surface layer; the seasonal pycno­
cline, where the density changes sharply over a few tens 
of meters; and the main pycnocline, where the density 
increases slowly with depth. Figure 1 shows the three 
regimes from the average of several vertical profiles 
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Figure 1. Vertical profiles of temperature, salinity, aT = 1000 
(p - 1), and the Brunt-Vaisala frequency (see Sources of Micro­
structure section) based on the average of ten vertical profiles from 
the Sargasso Sea. The depth regimes corresponding to the sur­
face layer, seasonal pycnocline, and the beginning of the main 
pycnocline are indicated. Temperature and salinity both decrease 
over the depth range of 60 to 100 m, pointing toward salt fingering 
as a potential source of microstructure. 

343 



M. A. Baker. S. A. Mack. alld H. C. Schoeberlein 

typical of the Sargasso Sea. Between 60 and 100 m, both 
temperature and salinity decrease with depth, but density 
increases with depth because of the significantly greater 
contribution of temperature to the density. Since the 
profile only extends to a depth of about 200 m, only the 
beginning of the main pycnocline is shown. 

The surface layer falls into three modes: active mixing, 
mixed, and stratified. The first two are marked by only 
small changes in density over the depth of the surface 
layer. The mixed mode implies that mixing activity has 
ceased (dampened by, for example, surface heating due 
to solar input), but only small changes in density are 
observed with increasing depth within the surface layer. 
The stratified mode occurs when the upper portion of the 
water column exhibits significant stratification right to 
the surface. This typically occurs under the conditions of 
low wind coupled with surface heating. Activity in the 
surface layer is generally controlled by wind and solar 
forcing; frontal regions between water masses of differ­
ent types also produce small-scale activity in the surface 
layer. Active mixing in the surface layer typically is 
caused by either high winds coupling into the surface 
layer through wind-wave interactions or by convection 
induced by surface cooling. Diurnal change in solar heat­
ing may sometimes playa larger role in the dynamics of 
the upper layer than mixing produced by wind forcing. 
Nighttime cooling of the near sUlface water, even without 
wind, can lead to strong mixing through vertical convec­
tion. The surface water becomes more dense than the 
water below and becomes hydrodynamically unstable. 
Solar heating in the afternoon can suppress wind-driven 
mixing in the surface layer by increasing the density 
gradient to the point that the surface forcing due to the 
wind cannot overcome the buoyancy force due to the 
stratification. 

An example of the importance of the diurnal cycle was 
revealed by vertical profiles of turbulence and micro­
structure obtained during an APL field test in January 
1982 in the Tongue of the Ocean. Mixing in the surface 
layer strongly depended on the diurnal solar cycle.4 A 
well-mixed surface layer with strong mixing activity ex­
tending to the seasonal pycnocline occurred at night 
because of convective mixing induced by surface cool­
ing. Daytime solar heating strongly suppressed mixing 
activity in the surface layer. 

The seasonal pycnocline is a transitional layer between 
the surface and deeper layers. The seasonal pycnocline 
is typically marked by a sharp change in density over a 
small depth range on the order of meters. The sharp 
density change in the pycnocline acts as a barrier to 
energy exchange between the surface and deep layers. 
For a turbulent event to occur in the pycnocline, the 
inertial force driving the turbulence must overcome the 
strong restraining forces due to the sharp density change 
in the pycnocline. Activity in the seasonal pycnocline is 
generally controlled by interactions with mixing activity 
in the surface layer and the level of internal waves. Large­
scale eddies and fronts can also trigger mixing activity 
in the seasonal pycnocline. 

The main pycnocline is a broad, diffuse layer that 
separates the seasonal thermocline from the deep ocean. 
It is insulated from surface effects by the seasonal pyc-

344 

nocline and is marked by the ubiquitous presence of 
internal waves. In the open ocean, away from sources 
such as currents, seamounts, and islands, the major sourc­
es of activity in the main pycnocline are internal waves 
and near inertial frequency internal waves, large-scale 
horizontal eddies, and double-diffusive processes. 

SOURCES OF MICROSTRUCTURE 
Within the three general ocean depth regimes, differ­

ent physical processes drive the occurrence of small-scale 
fluctuations in velocity, temperature, and salinity. The 
density stratification provides a restraining force that re­
sists overturning. This restraining force is characterized 
by the Brunt- Vaisala frequency, defined by N = (gjp)j 
(dpjdz)I /2 (where g is the gravitational constant and the 
z axis is positive down), which represents the frequency 
at which a water parcel would oscillate vertically about 
its equilibrium depth if the water parcel was adiabatically 
displaced. For a portion of the water column to overturn 
and produce turbulence and microstructure, the inertial 
forces of the physical process driving the overturn must 
exceed the resistant or buoyancy forces due to the strati­
fication. Shear from internal waves and near inertial fre­
quency internal waves, currents, fronts, and large-scale 
eddies can all generate small-scale activity through shear 
instabilities. Microstructure generated by shear insta­
bilities is referred to as turbulence-induced microstruc­
ture. Double-diffusive convection depends on the local 
temperature and salinity contributions to the local density 
rather than the shear produced by larger-scale processes. 
Microstructure generated by double-diffusive convection 
is referred to as double-diffusive microstructure. 

One particular type of shear instability is the Kelvin­
Helmholtz shear instability or billows. Figure 2 shows a 
sequence of photographs of the time history of this type 
of instability as demonstrated5 in a laboratory two-layer 
tank experiment. A density interface is subjected to a 
constant shear, producing billows that break down into 
turbulence and thicken the interface. The instability is 
characterized by the Richardson number, defined by 
Ri = N2ju?(where u: is the vertical shear of the horizontal 
velocity) , which is the ratio of the buoyancy forces to the 
inertial forces. The theoretical threshold6 for the inertial 
forces to overwhelm the restraining forces due to the 
density stratification is Ri = 0.25. Measurements of the 
Richardson number in the ocean show a cutoff at 0.25, 
indicating that Ri values less than 0.25 are not allowed 
to persist. Large shear values are observed in the regions 
above and below major current systems. In the open 
ocean away from sources such as seamounts and strong 
currents, the random supposition of shears due to internal 
waves and near inertial fequency internal waves intermit­
tently generates shear values sufficient to induce turbu­
lent mixing.7 

Double-diffusive convection, a consequence of the 
large difference in the molecular diffusion rates of tem­
perature (DT) and salt (Ds), DT "'" I OODs, has two distinct 
classes termed diffusive layering and salt fingering. 
Large regions of the ocean (e.g., the Central Waters of 
the Pacific and the Atlantic oceans, the Sargasso Sea, the 
Arctic Ocean, and the outfall of the Mediterranean Sea 
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in the Atlantic Ocean) have vertical gradients of temper­
ature and alinity conducive to double-diffusive convec­
tion. Besides the sign of the vertical profiles of temper­
ature and salinity, the relative contribution of temperature 
and salinity to the density plays a role in determining 
whether a double-diffusive instability can occur. The 
density ratio,8 defined by Rp = exf:1T!{U!lS, provides a 
measure of the potential for the occurrence of double­
diffusive instabilities. The temperature and salinity dif­
ference is over a vertical interval. If temperature and 
salinity are both decreasing with depth and if 1 < Rp < 
100, then salt fingering may occur. If temperature and 
salinity are both increasing with depth and the density 
ratio is between ° < Rp < 1, then diffusive layering may 
occur. If Rp :=s; 0, then the stratification is stable from a 
double-diffusive viewpoint. Turbulence is independent of 
the value of the density ratio. Temperature and salinity 
gradients in the upper Arctic Ocean increase with depth, 
favoring diffusive layering; temperature and salinity 
profiles often reveal a step like structure called a thermo­
haline staircase, which is characteristic of diffusive lay­
ering. The general decrease with depth of the vertical 
gradients of temperature and salinity in the Sargasso Sea 
favors salt fingering. Since microstructure measurements 
discussed within this article have been derived from the 
Sargasso Sea, detailed discussion of double-diffusive 
processes will be limited to salt fingering. 

A simple model of the salt fingering process starts with 
a stable stratification of warm, salty water overlaying 
cool, fresher water (temperature stable, salinity unstable, 
but density stable). The interface is given a sinusoidal 
perturbation, moving the cool, fresher water into the 
warm, salty layer, and the warm, salty water down into 
the cool, fresh layer. Heat diffuses from areas of high 
temperature to low temperature. Salt fingers grow in both 
directions since the upper layer warms the upward cool 
fresher perturbations (become less dense), and the down­
ward warm, salty perturbations cool (become more 
dense) as heat is lost from the perturbation to the colder, 
lower layer. Because of the slow diffusion rate of salt 
compared with temperature, salt fingers transport more 
salt than heat. Salt finger microstructure activity is 
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Figure 2. Time sequence of the formation and 
breakdown of a Kelvin- Helmholtz shear instabil­
ity. The instability was generated by imposing a 
steady shear on a sharp density interface. The 
instability rolls up the interface into billows (1), 
which break down into a turbulent field (2-5) and 
thicken the interface (6). (Reprinted, with permis­
sion , from Ref. 5.) 

patchy, limited in vertical extent, and in some ways 
appears similar to turbulence-generated microstructure. 
This intermittency or patchiness may be due to the ran­
dom straining of the temperature and salinity profiles by 
internal waves. The random strain field of the internal 
waves can distort the temperature and salinity gradients 
such that the density ratio nears I, enhancing the prob­
ability of double-diffusive convection. The observed 
intermittency of salt finger microstructure may also be 
due to the interleaving and incorporation of anomalous 
(in terms of the temperature- salinity relationship) smal1-
scale water masses into the general water mass.9 

Time series of salt fingering exhibit a narrowband, 
limited-amplitude appearance, whereas turbulence-gen­
erated microstructure exhibits a more wideband, vari­
able-amplitude appearance. A shadowgraph 10 of a field 
of salt fingers generated in the double-diffusive tank in 
the APL Hydrodynamics Research Laboratory is shown in 
Figure 3. An internal wave propagates from left to right 
through the field of salt fingers, distorting the field of salt 
fingers from a vertical orientation toward a more hori­
zontal orientation. The ubiquitous nature of internal 
waves in the ocean suggests that the same process occurs 
in the ocean. Note the regularity of the width of the 
"fingers" and the lack of variance at larger scales in the 
figure. If a temperature or conductivity sensor cut hor­
izontally through the salt finger field, the time series 
would appear narrowband and limited in amplitude, even 
with the distortion of the salt finger field by the internal 
wave. The variance of the temperature and conductivity 
gradient spectra would be concentrated in a relatively 
narrow wavelength band about the I-mm average hori­
zontal wavelength of the salt fingers. 

In stark contrast to the regular appearance of the salt 
finger field in Figure 3, Figure 4 demonstrates the irreg­
ular nature of turbulence and turbulence-induced micro­
structure. Fluorescein dye is injected through a grid in the 
Hydrodynamics Research Laboratory's recirculating 
flow channel, and a laser sheet is used to induce the dye 
to fluoresce over the 88 cm X 56 cm cross section of the 
channel. A wide range of dye scales is visible. The ve­
locity field created by the grid stirs and strains the dye 
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Figure 3. Salt finger field created in the 
double-diffusive tank in the APL Hydro­
dynamics Research Laboratory 10 to 
study the interaction of internal waves 
with salt fingers . An internal wave pro­
pagates from left to right, straining and 
distorting the salt finger field . The hori­
zontal scale of the vertically oriented salt 
fingers is about 1 mm. (For reference, a 
scale in centimeters is shown.) 

Figure 4. Turbulence-induced microstructure produced in the Hydrodynamics Research Laboratory's recirculating flow channel. 
Fluorescein dye injected from a grid upstream and illuminated by a laser sheet across the 88 cm x 56 cm cross section of the channel 
visually demonstrates the wide range of scales present in turbulence-induced microstructure. 

field. Dye scales much smaller than any turbulent veloc­
ity scale are created by the training action of the small­
scale eddies. The largest isotropic eddy generated by the 
grid is about 10 cm (grid rod spacing is 10 cm). Based 
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on the turbulence levels of the velocity field measured 
by a hot-film anemometer, the smallest turbulent cale is 
about 1 cm, and the smallest dye wavelength would be 
about 0.03 cm, which implies that more than two decades 
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of dye scales are present. Since fluorescein dye is salt­
based, the contrast and small-scale detail apparent in 
Figure 4 are representative of a patch of salinity micro­
structure. A patch of temperature microstructure, on the 
other hand, would have less contrast because of the 
smoothing effect of the higher molecular diffusion rate 
of temperature compared with salt. The measured turbu­
lence level are comparable to active turbulent patches 
in the ocean. 

The kinetic energy of the turbulence is finally dissipat­
ed (converted into heat) at the smallest scales of the 
turbulence, where the inertial forces become equal to 
viscous forces. Much as the stratification provides a force 
resistant to the vertical rotation of larger scales of the 
turbulence, the viscosity of the water provides a force that 
impedes the rotation in any direction of smaller cales 
and limits the transfer of energy to smaller scales. Tur­
bulence in the ocean is characterized by the kinetic en­
ergy dissipation rate, E, which is a measure of the inten­
sity of the turbulence and is proportional to the variance 
of the small-scale velocity gradient field . Typical turbu­
lent velocity scales for ocean turbulence patches are on 
the order of a few meters to about a centimeter. Turbu­
lence stirs and strains the temperature (or salinity and 
conductivity) field to small scales. Molecular diffu ion of 
temperature acts to reduce and limit the high-gradient 
regions produced by the straining action of the turbulence 
on the temperature field. Microstructure activity in the 
ocean induced by turbulence is characterized by the 
dissipation rate of temperature variance, XT, which is the 
counterpart of the kinetic energy dissipation rate for the 
temperature field and is proportional to the variance of 
the small-scale temperature gradient field. Typical scales 
for temperature microstructure are on the order of a meter 
to millimeters. 

Oceanic measurements of E are usually obtained using 
vertical profilers equipped with airfoil probes that sense 
the velocity components orthogonal to the vertical pro­
file. The airfoil probes are piezoelectric beams, similar 
to a phonograph needle. The transverse deflections of the 
piezoelectric beam produce a voltage proportional to ve­
locity. The voltages are usually analog-differentiated, 
thus generating a signal proportional to the velocity gra­
dient. Thermistors and conductivity sensors are used to 
measure XT. Without large corrections for sensor re­
sponse, thermistors and conductivity sensors often cannot 
resolve the millimeter scales of the temperature gradient 
field required to accurately estimate XT. Estimates of the 
bandpassed temperature gradient variance are often used 
to characterize microstructure activity. 

An example of the intermittent distribution of micro­
structure activity in the ocean is shown in Figure 5. The 
two-dimensional slice (15 m X 2.2 km) of microstructure 
activity was derived II from towed conductivity chain 
measurements in the Sargasso Sea obtained during an APL 

field test in November 1984. The time series for each 
sensor represents pre-emphasized conductivity (conduc­
tivity plus the derivative of conductivity) and is plotted 
in a min/max format. The vertical motion of the towed 
chain is indicated by the bottom trace. The time series 
are marked by the intermittent occurrence of microstruc-
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ture activity. Large portions of the segment have no dis­
cernible microstructure activity. Five patch groups are 
highlighted in Figure 5. (A patch group i defined as a 
spatially contiguous set of patches.) Patch groups 1 and 
2 have the narrowband, limited-amplitude characteristics 
of salt fingering. Patch groups 3 and 4 have the wideband, 
highly variable amplitudes characteristic of turbulence­
induced microstructure. It is unclear from a visual inspec­
tion whether patch group 5 is due to salt fingering or 
turbulence. Blowups of single-sensor cuts through patch 
groups I (salt fingering) and 3 (microstructure created by 
turbulence) in Figure 6 show the differences in the ap­
pearance of the time series of the two processes. Statis­
tical discrimination techniques using these differences to 
determine whether a patch of microstructure is due to salt 
fingering or turbulence will be discussed in detail later 
in this article. 

TURBULENCE AND MICROSTRUCTURE 
STATISTICS: IMPLICATIONS OF 
LOGNORMALITY AND INTERMITTENCY 

Some important issues in oceanography concern the 
average turbulence and microstructure levels for a given 
ocean volume (area and layer) and the large-scale pro­
cesses forcing the small-scale activity. These average 
levels affect the vertical diffusion rates of passive scalars 
such as temperature, oxygen, and nutrients, which are 
important for microorganisms. In addition, turbulent dis­
sipation of kinetic energy is an important factor in mod­
eling large-scale currents such as the equatorial undercur­
rent. To form a meaningful estimate of the mean levels 
and calculate the associated uncertainty, the underlying 
distribution of the turbulence and microstructure must be 
considered. The probability distribution of the magnjtude 
of turbulence and microstructure statistics determines 
which sampling strategies are appropriate and which es­
timators should be used to calculate parameters such as 
the mean value. Variability of the statistics of turbulence 
and microstructure in space and time is inherent since the 
underlying process driving the small-scale activity gen­
erally varies slowly in space and time. Because of the 
typical 100 to 1 aspect ratio of vertical to horizontal 
density gradients (with the exception of fronts) and the 
physics of the large-scale sources, the sources and the 
available energy for small-scale mixing change with 
depth much more than with horizontal distance. Even in 
a given layer, variability of the source with time should 
be considered. 

Statistics of Microstructure Parameters 
Probability distributions that are approximately log­

normal are typically observed 12 for E, XT, and bandpassed 
temperature gradient variance (see the boxed insert for 
a review of the lognormal distribution). If a random vari­
able x such as E, XT, or bandpassed temperature gradient 
variance is lognormally distributed, then In(x) is Gauss­
ian-distributed with expected value p, and variance if-. 
Several factors must be considered before testing a sam­
ple set for lognormality (or any distribution). Is the sam­
ple set composed of independent, identically distributed 
(from the same parent population) random variables? 
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Figure 5. A 15 m x 2.2 km segment of pre-emphasized min/max conductivity from the towed chain data taken from below the seasonal 
thermocline in the Sargasso Sea. The depth variation of the towed chain is shown by the bottom trace. The microstructure is distributed 
intermittently throughout the segment (computer-generated material , Ref. 11). Five patch groups are highlighted. The appearance of patch 
groups 1 and 2 is consistent with salt fingering as the source. Patch groups 3 and 4 appeared to be microstructure generated by turbulence. 
The source of patch group 5 is not clear visually. It could be salt fingering, turbulence, or a mixture of both. The density ratio is gray-scaled 
for the microstructure patches. 

Comparison to the lognormal distribution should be 
restricted to Jayers and volumes where the underlying 
physical proce driving the mixing activity is stationary 
over the sampJe period. If the sample set passes statistical 
tests for these criteria, and if no noise contamination of 
the data is pre ent, then and only then is it fair to test the 
data against the lognormal distribution and conclude that 
failure to agree with lognormal is significant. If system 
noise contamination exists, then the sample set has to be 
tested against a di tribution based on the combined log­
normal and noise di tributions rather than just the log­
normal distribution. 

The high-frequency or wave-number measurement re­
quirements for turbulence and microstructure observa­
tions typically lead to contamination by instrument noise. 
Monte Carlo imulations 12 indicate the departures from 
lognormality at small values frequently observed in eval­
uations of ocean turbulence, and microstructure measure­
ments are consistent with instrument noise. The measured 
data are assumed to be represented by the sum of a 
lognormal random variable and a chi-squared noise ran-

348 

dom variable. 12 The ensuing cumulative distribution 
function (CDF) results from the convolution of the log­
normal and noise probability density functions (PDF'S), 

implying that the noise contamination will occur over a 
range of values and not just at a sharp cutoff point. The 
underlying ocean is assumed to be represented by the 
linear portion of the CDF (Gaussian CDF plots as a straight 
line on Gaussian probability paper) uncontaminated by 
instrument noise. If significant instrument noise contam­
ination is present, then the arithmetic mean and standard 
deviation, m and s, yield poor e timates of the underlying 
p, and u. By using the linear region to estimate p, and u, 
the effects of instrument noise on the statistics are 
reduced. 

The histogram and CDF from towed chain data taken 
in the seasonal thermocline of the Sargasso Sea are 
shown in Figure 7. The CDF is based on 3-m samples of 
the logarithm of bandpassed (3- to O.OS-m) conductivity 
gradient variance. The CDF is plotted against a loglo and 
natural log axis on Gaussian probability paper. The his­
togram is shown in the upper portion of the figure. The 
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Figure 6. Blowup of single-sensor time series from patch groups 
1 (salt fingering, sensors 16 and 17) and 3 (turbulence-induced 
microstructure, sensors 29 and 30). The salt finger time series is 
limited in amplitude. The turbulence-induced time series displays 
highly variable amplitudes. 

corresponding CDF is shown by the black curve in the 
lower portion of the figure. The lognormal CDF and PDF 

predicted by the standard arithmetic estimators m and s 
are shown by the green curves and show poor agreement 
with the measured CDF and histogram. The blue curve on 
the CDF plot indicates the underlying lognormal distribu­
tion according to the lognormal plus noise model. The 
PDF (blue curve) predicted by the linear region displays 
excellent agreement with the histogram over the range 
where the data are not noise-contaminated. A Monte 
Carlo simulation based on the lognormal plus noise 
model is shown by the red curve on the CDF plot. The 
Monte Carlo simulation is based on the lognormal dis­
tribution estimated from the linear region and instrument 
noise contamination derived from noise spectra. The 
agreement between the measured and simulated CDF'S is 
excellent and indicates that the departure at the low­
magnitude end is consistent with system noise. The 
maximum likelihood estimate of the expected value (see 
the boxed insert) of the conductivity gradient variance is 
l.6 X 10- 4 (mrnbo/cm/m)2. The mean-to-median ratio is 
about 12, and the mean-to-mode ratio is 1856. 

Intermittency of Microstructure 
Describing their definition of "intermittent," Monin 

and Yaglom 13 note "This word is meant to denote the 
tendency of small-scale turbulence to concentrate into 
individual ' bunches ' surrounded by extensive flow re­
gions in which there are only much smoother large-scale 
disturbances (or perhaps no disturbances at all)." Their 
statement accurately describes the temporally and spa­
tially intermittent occurrence of patches of small-scale 
turbulence and microstructure in the ocean such as those 
observed for the towed chain segment seen in Figure 5. 
Kolmogorov addressed the issue of the intermittency of 
E in turbulence measurements with his third hypothesis. 14 

Arcording to Kolmogorov, the intermittency factor, 
u In E,. , is related to the external turbulent length scale L 
by 
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Figure 7. Lognormal evaluation of the logarithm of conductivity 
gradient variance computed from the 3- to 0.05-m wavelength 
band. The black curve in the lower portion corresponds to the 
measured cumulative distribution function (CDF), and the histogram 
is shown in the upper figure . The green curves correspond to the 
lognormal distribution estimated by the standard arithmetic mean 
and standard deviation. Poor agreement with the measured func­
tions is observed. The blue curves in the upper and lower portions 
correspond to the lognormal distribution estimated from the linear 
region of the CDF. The agreement of the estimated lognormal 
distribution with the measured histogram is excellent over the 
region not contaminated by system noise. The Monte Carlo simu­
lation (red curve) , assuming a lognormal plus noise random vari­
able, displays excellent agreement with the measured CDF. 

Ufn Er = A(x , f) + P-E In(L/r) , (1) 

where A(x, t) represents a function that depends on the 
characteristics of the large-scale motions, P-E is the uni­
versal Kolmogorov constant (measurements range from 
0.3 to 0.5), and r represents the scale over which E is 
averaged. The magnitude of the external length L is re­
lated to the scale of the forcing function represented by 
A(x, t). From Equation 1, the larger the external length 
scale of the turbulence, the larger the intermittency. Kol­
mogorov's hypothesis for the intermittency of the kinetic 
energy dissipation rate has been extended to the intermit­
tency of the dissipation rate of temperature variance. 13,15 

The factor u fn has been labeled the intermittency 
factor 12 since the larger the underlying value of ufn ' the 
larger the intermittency of the intensity of turbulence and 

349 



M. A. Baker. S. A. Mack. and H. C. Schoeher/eill 

THE LOGNORMAL DISTRIBUTION 

If a random variable x is lognormally distributed, then 
In(x) is Gaussian-distributed with expected val ue JL and 
variance cJ. The probability density function (PDF) for x is 
given by 

PDF (x) = __ 1_ exp{ -[In (x)2- JLJ2 } , 
xa-fi; 2a 

(1) 

where JL and cJ are the expected value and variance, respec­
tively, of In (x) . The expected value of x is given by 
exp(JL + cJ/2). The median and the mode of x are given by 
exp(JL) and exp(JL - cJ), respectively. The mean-to-mode 
value for lognormal distribution i given by exp(3cJ/2). 
The mean > median > mode, unlike Gaussian random 
variables, wherein the mean = median = mode. 

An example of a lognormal PDF(X) is shown in the figure 
(top) along with the corresponding In(x) Gaussian PDF. The 
PDF for this example is based on the JL 0.73) and a (0 .37) 
estimated from the variable In(kurtosis) for the turbulence 
control patche di cussed in the text (Table 1). The mean, 
median, mode and mean-to-mode ratio (a suming lognor­
mality) are given by 6.0, 5.6, 4.9, and 1.22, respectively. 
The lognormal PDF i positively skewed with a relatively 
short upper-magnitude tail. The left and right ordinate axes 
correspond to the magnitude of the lognormal and Gaussian 
PDF'S, respectively. The upper and lower abscissas corre-
pond to the x values (for the lognormal PDF) and the In (x) 

values (Gaussian PDF), respectively. A econd example of 
a lognormal PDF and the corresponding Gaussian PDF is also 
displayed (bottom) for the same JL , but with a a value of 
2.24 that i repre entative of the value of a ob erved for 
E, XT, and bandpa sed temperature variance (text, Fig. 6) in 
the seasonal thermocline. Now the mean , median , mode, 
and mean-to-mode ratios are given by 69, 5.6, 0.04, and 
1856, respectively. The lognormal PDF is strongly positively 
skewed with a long upper-magnitude tail. 

Another difference between 10gnOlmal and Gaussian­
distributed random variables is how to best estimate such 
parameters as the expected value. Unlike the Gaussian dis­
tribution where the arithmetic mean i the maximum like­
lihood estimator of the expected value, the maximum like­
lihood estimato~9 of the expected value for a lognormal 
random variable, Xm1e, is given by exp(m + s2/2), where m 
and s are defined by 

and 

I M 
m = - L. In (xi) 

M i=1 

? 1 M ? 
s- = - L. [In(xi) - mJ-

M i=l 

(2) 

(3) 

and are the tandard arithmetic estimates of JL and cJ. 
Typically, M (number of samples) is replaced by M - 1 in 
Equation 3 to yield an unbiased estimate of cJ. Although 
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the arithmetic mean of x has theoretical confidence limits 
only for the asymptotic case of a large number of samples, 
theoretical confidence interval are availables l2 for the 
maximum likelihood estimator. 

The estimated expected value from small data sets with 
large cJ factors are likely to reflect estimates of the mode 
(most probable value) rather than the mean. One conse­
quence of a lognormal-distributed random variable with a 
large variance is that a large number of samples are required 
for the arithmetic mean to converge to the expected value 
compared with the number of amples required for a Gauss­
ian-distributed random variable. If the distribution is log­
normal , but the data have only a smaIl variance, the expect­
ed value can be accurately estimated by the arithmetic mean 
from a small number of samples. 
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Two examples of lognormal PDF'S (x) (black curves) and their 
correspond ing Gaussian PDF'S (In x) (blue curves) . A. fJ- = 1.73; 
(J= 0.37. B. fJ- = 1.73; (J= 2.24. The mean value of 69 would be 
well off to the right for B. The strong dependence of the 
lognormal distribution function on (Jcan be seen by the lengthy 
upper-magnitude tail (large positive skewness) exhibited in B 
compared with A. 
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microstructure in both space and time. Measurements of 
E in surface mi xing layers tend to have small intermitten­
cy factors (l to 2) rel ative to measurements in the sea­
sonal pycnocline. Since the vertical temperature gradient 
is usually small in the surface layer, making measure­
ments of XT difficult, XT values are usually reported from 
depths below the urface layer. Measurements of both E 

and XT in the seasonal pycnocline typically display large 
intermittency factors (3 to 7 ) . 12 This variation of u?n with 
depth implies that fewer samples are required in the 
surface layer compared with the seasonal or main pyc­
nocline in order to accurately estimate the expected 
value. 

The intermittency of microstructure can also be exam­
ined from the spatial distribution of microstructure activ­
ity. The statistics of the horizontal and vertical extent 
of microstructure patch groups were examined l 6 using 
200 km of towed thermistor data taken in the seasonal 
pycnocline of the Sargasso Sea in November 1982. The 
200 thermistors on the towed chain were spaced at 5-cm 
intervals and covered an aperture of 10m. Patches ob­
served on adjacent sensors are placed in the same patch 
group if the patches overlap horizontally. The average 
aspect ratio (width to height) of a microstructure patch 
group was about 200; widths and heights ranged from 
20 m to 1 km and 5 cm to 5 m, respectively. The average 
width and height of the microstructure patch groups were 
120 m and 55 cm, respectively. The spatial intermittency 
of the microstructure is highlighted by the observation 
that microstructure patches constituted only 6.9% of the 
data, and over 95% of the patches were less than 2 m tall. 

The spatial characteristics of microstructure patches 
should be considered in sampling strategies. Investigators 
must recognize that large data sets are usually required 
for intermittent variables such as turbulence and micro­
structure statistics. Assumption of lognorrnality and the 
intermittency factor ,; provide a framework for estimat­
ing how many independent samples are required to re­
solve the distribution. Separation of the microstructure 
into two classes, turbulence-induced microstructure and 
salt fingering , is addressed in the next section. 

DISCRIMINATION BETWEEN TURBULENCE­
INDUCED MICROSTRUCTURE AND 
SALT FINGERING 

Investigators are trying to tie small-scale activity to 
large-scale processes to ascertain the importance of a 
given large-scale process for a given ocean volume and 
for the overall oceanic system. Unconditional distribution 
functions for microstructure parameters do not provide 
information that allows discrimination between micro­
structure due to salt fingering and that due to turbulence. 
The Laboratory is investigating discrimination tech­
niques based on the temperature and salinity fields and 
the internal statistical and spectral characteristics of the 
microstructure. The density ratio, based on the local tem­
perature and salinity gradients, helps to identify where 
salt fingering microstructure would be likely, but does not 
provide a clear distinction between double-diffusive and 
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turbulence-induced microstructure when Rp > O. The 
wideband and highly variable amplitudes that are char­
acteristic of turbulence-induced microstructure versus the 
narrowband, limited-amplitude appearance of salt finger 
microstructure imply that the kurtosis 17 and the spectral 
slope of the temperature or conductivity gradient spec­
trum may help to di stinguish between turbulence-induced 
microstructure and salt fingering. (Kurtosis is discussed 
in detail later in thi s article.) The towed segment present­
ed in Figure 5 is used in this section to evaluate each of 
these stati stics as discriminants. 

Density Ratio as a Discriminant 
Theoretical predictions 18,19 indicate an enhanced 

growth rate of salt fingers as Rp approaches 1. Micro­
structure measurements 11 .20 ,2 1 from vertical profiles and 
towed chain measurements obtained during several APL 

field tests in a variety of areas (Sargasso Sea, off San 
Diego near San Clemente Island, and the Tongue of the 
Ocean) that were conditionally sampled on Rp showed a 
significant increase in microstructure activity when Rp 
approached 1. The unconditional and conditional histo­
grams2 1 derived from 260 km of towed temperature and 
conductivity chain measurements are displayed in the 
upper plot of Figure 8. A cell of the unconditional his­
togram represents all the I-s (:=::3-m) samples that fell 
within the given density ratio bin . The conditional his­
togram is conditioned on the presence of microstructure 
activity. The probability of microstructure activity, gen­
erated by dividing the conditional histogram by the un-

~Stable regime 4 ~Salt finger regime ~ 
102,960 ;----,-------,---,--.;..-:---,--,,--,-------,------,----i 

-E 82,368 
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Figure 8. The ratio of the unconditional histogram (ali samples) 
divided by the histogram conditioned on zero crossings ~ 2 (micro­
structure) plotted as a function of density ratio.21 An increased 
probability of microstructure is observed for 0 < Rp < 4. Double­
diffusive convection requires density ratios between 0 and 100. 
Since turbulence-induced microstructure should be independent 
of the density ratio, the flat level observed for R < 0 should extend 
to R > 0, indicating the relative proportion of m(Crostructure due to 
turb~lence (73%) and double-diffusive convection (27%) . (Cell 
width = 0.50 ; 90% confidence [NI12] ; numberofpoints = 2,436,100; 
number of conditional points = 180,433; total probability = 0.074.) 
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conditional histogram, is enhanced for Rp near 1. The 
relatively uniform probability of microstructure activity 
for Rp less than zero (non-double-diffusive regime) 
should extend over the positive Rp values (double-diffu­
sive regime), since turbulence caused by shear instabil­
ities should be independent of Rp. Assuming this is true, 
Figure 8 uggests that 27% of the microstructure activity 
was due to double diffusion. 

To illustrate the use as well as the limitations of using 
density ratio to determine whether salt fingering or tur­
bulence is the source for individual patches of micro­
structure, we return to Figure 5. Gray scales correspond­
ing to limited ranges of Rp-O < Rp :S; 1 (diffusive) and 
1 < Rp::; 4 (salt finger)- are displayed in conjunction with 
the microstructure activity. Patch groups 1 and 2 gener­
ally have density ratios between 1 and 4 and display the 
narrowband, limited-amplitude appearance of salt finger­
ing. Hence, a good correlation between salt fingering and 
Rp values in the salt finger regime occurs. Patch group 3 
has the variable amplitude consistent with turbulence­
induced microstructure and Rp values outside the double­
diffusive convection regime. Patch group 4 has Rp values 
between 1 and 4, but shows the wideband and highly 
variable amplitude typical of turbulence-induced micro­
structure. Patch group 5 has the right density ratio for salt 
fingering , but it is unclear visually whether the source is 
salt fingering or turbulence. More robust statistical ap­
proaches to discriminating between salt fingering and 
turbulence sources of microstructure are required and are 
the subject of the following discussion. 

Kurtosis as a Discriminant 
Kurtosis, K, is a measure of the weight of the tails of 

the probability distribution and is defined for small-scale 
conductivity gradient data (demeaned) by 

(2) 

where C r is the small-scale conductivity gradient. The 
narrowband nature of salt fingering leads to a small 
kurtosis on the order of 3 (Gaussian random variables 
have a kurtosis of 3), whereas the highly variable ampli­
tudes characteristic of microstructure due to turbulence 
typically produce kurtosis values on the order of 6. 

To statistically discriminate between salt fingering and 
turbulence as the source of the microstructure, the prob­
ability density function (PDF) of kurtosis is required for 
each process. Investigators at APL have generated PDF 'S 

of kurtosis from localized regions (control patches) iden­
tified as turbulence-induced microstructure or salt finger­
ing from towed chain segments obtained during a No­
vember 1984 field test in the Sargasso Sea. The selection 
of the control patches was based in part on Rp and the 
visual characteristics of the time series . The mean kur­
tosis estimates of 6 and 3 for the turbulence-induced 
microstructure and salt finger control patches, respective­
ly, are consistent with measurements by other investiga­
tors.22 ,23 The means and standard deviations of the kur­
tosis estimates for the control patches are summarized in 
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Table 1. The minimum overlap between the salt finger 
and turbulence PDF 'S occurred at a kurtosis value of 4, 
which is used as the gray scale threshold in Figure 9 to 
separate the two processes. The microstructure activity is 
identified as salt fingering for kurtosis values ::;4 and is 
attributed to turbulence for kurtosis values >4. Patch 
group 1 was used as the control region to estimate the 
PDF of kurtosis for salt fingering. The kurtosis values of 
patch group 2 are completely consistent with salt finger­
ing, and the kurtosis values of patch group 3 are consis­
tent with turbulence-induced microstructure. Patch 
groups 4 and 5 are dominated by kurtosis values greater 
than 4, consistent with turbulence-induced microstruc­
ture, even though the density ratio values are between 1 
and 4, which would suggest salt fingering as the source 
of the activity. Hence, kurtosis can be used to discrim­
inate between turbulence-induced microstructure and salt 
fingering , and it improves upon the use of density ratio, 
particularly where Rp values could support either turbu­
lence or salt fingering. 

Spectral Slope as a Discriminant 
Theoretical modeling24 of the turbulence-induced tem­

perature gradient spectrum predicts a temperature gradi­
ent spectral wave-number dependence of k ' (slope of 1 
on a log- log plot) over the range of scales before mo­
lecular diffusion of temperature induces a roll-off in the 
spectrum. Measurements, both in the ocean and labora­
tory experiments, confirm the existence of the Batchelor 
spectrum.25-27 In contrast to the wideband nature of mi­
crostructure created by turbulence, salt fingering has pre­
ferred scales on the order of a few centimeters. Lack of 
variance at large scales leads to a steep temperature or 
conductivity gradient spectrum with a spectral slope that 
significantly exceeds 1. Spectra generated from a salt 
finger spectral model9 and microstructure observa­
tions9.2 l-23 yield spectral slopes of about 2 for salt finger­
ing patches. 

The same control patches used to estimate the PDF'S of 
kurtosis for turbulence-induced microstructure and salt 
fingering were used to estimate the PDF 'S of spectral slope 
for each source. lI The means and standard deviations of 
the spectral slopes for the control patches are summarized 
in Table 1. Figure 10 displays gray scales of spectral slope 
in conjunction with the microstructure activity for the 
same segment of data shown in Figure 5. The microstruc­
ture activity is identified as due to turbulence for spectral 
slopes ::;1.2 and as salt fingering for spectral slopes > 1.2. 
The minimum overlap between the salt finger and turbu­
lence PDF'S occurred at a spectral slope value of 1.2. 
Spectral slopes for patch group 2 are consistent with salt 

Table 1. Summary of the means (JJ-) and standard deviations (0") of 
spectral slope, In(kurtosis), and kurtosis for turbulence-induced 
microstructure and salt finger control patches.11 

Spectral slope In(kurtosis) Kurtosis 
Control patches J1. a J1. a J1. a 

Salt finger 1.50 0.26 1.15 0.15 3.18 0.56 
Turbulence 0.72 0.34 1.73 0.37 6.11 3.4 
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Figure 9. Kurtosis is gray-scaled for the same data segment shown in Figure 5 (computer-generated material , Ref 11). Patch group 2 has 
kurtosis values consistent with salt fingering. Kurtosis in patch groups 3 and 4 is dominated by values consistent with turbulence-induced 
microstructure. Kurtosis values for most of the microstructure in patch group 5 are consistent with turbulence-induced microstructure, but 
a small intermittent fraction appears to be in the range expected for salt fingering. Spatial mixtures are quite possible. 

fingering; those for patch groups 3, 4, and 5 are consistent 
with turbulence-induced microstructure. Spectral slope 
also improves upon the use of density ratio as a discrim­
inant. 

The Log-Likelihood Approach to Discrimination 
Under current investigation ll at APL is an optimal dis­

crimination approach based on a statistic called the log­
likelihood rati028 A, defined for a simple random variable 
x as 

A = In[ P(xl SF) ] , 
P (x ITurb ) 

(3) 

where P(xISF) and P(xITurb) are the PDF'S of x given salt 
fingering and turbulence, respectively. The likelihood 
ratio technique is a formalism for minimizing the errors 
in decision making by using the ratio of the PDF 'S for the 
observables that have different distributions in salt fin­
gering and turbulence. It is commonly used in hypothesis 
testing and provides a quantitative measure of decision 
making as well as estimates of the error in the decision 
(e.g., probability of incorrectly identifying a sample as 
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coming from the salt finger distribution when it really 
comes from the turbulence distribution). 

For A > 0, the log-likelihood ratio would identify a 
patch as due to salt fingering; for A < 0, the patch would 
be identified as due to turbulence; and for A = 0, salt 
fingering or turbulence would be equally probable. This 
optimal discrimination approach can be extended to 
multiple variables (e.g., slope and kurtosis) . For ease of 
implementation, a Gaussian model is commonly used for 
the parameters when warranted. In such cases the bivar­
iate distributions are uniquely determined by the means, 
standard deviations, and correlation coefficients. Al­
though the spectral slope PDF'S for either salt fingering 
or turbulence are nearly Gaussian , the kurtosis PDF 'S for 
turbulence have many larger values, causing the distri­
bution to be non-Gaussian. The distribution can be made 
more nearly Gaussian by taking the natural logarithm of 
the kurtosis. 11 ,27 Hence, the log-likelihood ratio for a two­
parameter-slope, In(kurtosis)-system can be written 
as 

A = In{ P[S, In(K)1 SF] } , 
P [ S, In ( K ) I Turb] 

(4) 
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Figure 1 O. Spectral slope is gray-scaled for the microstructure patches for the same data segment shown in Figure 5 (computer-generated 
material , Ref, 11). Patch group 2 has spectral slopes consistent with salt fingering, Patch groups 3, 4, and 5 have spectral slopes consistent 
with turbulence-induced microstructure, 

where P[S , In(K)ISF] and P[S , In(K) ITurb] are the joint 
Gaussian PDF'S of spectral slope and In(kurtosis) for salt 
fingering and turbulence, respectively. 

To characterize the joint PDF 'S presented in Equation 
4, the PDF'S of In(kurtosis) were generated for each source 
from the same control patches used previously to estimate 
the PDF 'S of kurtosis and spectral slope. The PDF'S of 
In(kurtosis) appeared more Gaussian for each source than 
the PDF 'S of kurtosis. The means and standard deviations 
of spectral slope, In(kurtosis) , and kurtosis for each test 
segment are summarized in Table 1. 

The log-likelihood approach of combining spectral 
slope and In (kurtosis) offers the possibility of improving 
discrimination between turbulence-induced microstruc­
ture and salt fingering for patches such as those in patch 
group 5. Just as the success of the univariate discrimi­
nants kurtosis and spectral slope depended on the degree 
of overlap between the PDF'S for each source, the success 
of the log-likelihood approach also depends on the degree 
of overlap between the joint PDF 'S based on spectral slope 
and In(kurtosis) for turbulence-induced microstructure 
and salt fingering. The log-likelihood ratio technique, 
however, should minimize errors in discrimination and 
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present an excellent opportunity for properly character­
izing large regions of ocean. 

CONCLUSIONS 
The Johns Hopkins University Applied Physics Lab­

oratory has been involved in studies of small-scale mix­
ing activity in the ocean for over a decade. Microstructure 
activity is distributed intermittently throughout the ocean. 
The data sets gathered during APL field tests in the Sar­
gasso Sea provide the large sample base required to test 
hypotheses concerning the distribution functions of mi­
crostructure and the relative contributions of turbulence­
induced microstructure and salt fingers to the overall 
microstructure. Monte Carlo simulations indicate that the 
probability density functions of bandpassed temperature 
gradient variance are consistent with lognormal di stribu­
tion functions. Heights of microstructure patches are 
typically on the order of a meter with aspect ratios (width 
to height) on the order of 200. Significant advances have 
been made in developing statistical techniques to dis­
criminate between salt fingering and microstructure cre­
ated by turbulence. Discrimination results based on the 
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univariate statistics of density ratio , pectral slope, and 
kurtosis indicate that spectral slope and kurtosis improve 
upon the use of the density ratio as a discriminant. An 
optimal bivariate method of discrimination using the log­
likelihood ratio based on spectral slope and In(kurtosis) 
was also outlined. 

Many interesting ocean areas have not been sampled, 
leaving unknown the levels and distribution of small­
scale activity in those regions. Scientists are endeavoring 
to tie observations of microstructure to larger-scale pro­
cesses, but uccess in identifying the particular physical 
mechanism producing the microstructure is still limited. 
A great deal of work is left to be done. 
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