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STATISTICAL ASPECTS OF TURBULENCE
AND MICROSTRUCTURE IN THE OCEAN

The ocean has a large range of length scales controlled by vastly different physical processes. Patches of
small-scale fluctuations in velocity (turbulence) and temperature and salinity (microstructure) are distributed
intermittently in time and space throughout the ocean. This article discusses the sources and statistics of small-
scale fluctuations along with techniques to discriminate between sources of microstructure in the ocean.

INTRODUCTION

The ocean has complex velocity and scalar fields with
a staggeringly wide spectrum of dynamically important
length scales ranging from the mesoscale 1000-km scales
of ocean circulation patterns down to the millimeter
scales of small-scale turbulence. The smaller-scale end
of the spectrum, represented by scales on the order of
10 m down to centimeters, is the subject of this article.
Determining sources of small-scale fluctuations in veloc-
ity (turbulence) and temperature, conductivity, and salin-
ity (microstructure) and the relative contributions of each
source to vertical diffusion is a very active field of re-
search in oceanography. An understanding of the distri-
bution and sources of turbulence and microstructure has
been a focus of analysis of at-sea microstructure mea-
surements gathered by The Johns Hopkins University
Applied Physics Laboratory for over a decade.

Small-scale velocity fluctuations act on the back-
ground gradients of scalar quantities such as temperature,
conductivity, and salinity to produce microstructure.
Double-diffusive convection, a consequence of the large
difference in the molecular diffusion rates of temperature
and salt, also produces microstructure, but in a manner
fundamentally different from turbulence. Salt fingers, a
form of double-diffusive convection, vertically transport
(diffuse) greater amounts of salt and nitrates than heat,
whereas turbulence vertically transports (diffuses) salt,
nitrates, and heat at the same rate. The temperature and
salinity gradients observed in the upper portion of the
large midlatitude Central Water masses of the ocean
indicate that these are likely areas for double-diffusive
convection.! The microstructure patches also contain
fluctuations of nitrates, oxygen, or any other scalar prop-
erty with a vertical gradient that is mixed by the turbu-
lence or affected by salt fingering. The rates at which
these other scalar properties are diffused vertically by
turbulence and salt fingering can be directly tied to the
vertical diffusion rates of temperature and salinity. With-
in an oceanic control volume, estimation of the average
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microstructure activity allows estimation of the average
vertical diffusion rates of temperature and salinity. The
intermittency of microstructure activity within a given
oceanic control volume presents a difficult sampling
problem.

An understanding of the vertical diffusion rates of
scalar properties such as heat, salt, and inorganic nitrogen
is important for planetary-wide issues such as global
warming, climate, and large-scale ocean circulation
models. The increase in carbon dioxide in the Earth’s
atmosphere has led to predictions of global warming,
since increasing levels of carbon dioxide cause the atmo-
sphere to retain increasing amounts of the heat radiated
from the Earth. Climate is largely determined by the
complex interactions between the atmosphere and the
ocean. The major solar input of heat into the Earth’s
climatic system occurs at the equator. Both the atmo-
sphere and the ocean transport heat from the equatorial
regions toward the poles. The ocean has a much greater
heat capacity than the atmosphere, but the ocean circu-
lation moves toward the poles much more slowly than the
atmospheric circulation. Correct modeling of the ocean
circulation leads to a better understanding of the dynam-
ics of our climatic system.

The ocean is considered, by modelers of the Earth’s
carbon cycle, to be the major sink for atmospheric carbon
dioxide.” The rate at which the ocean can absorb carbon
dioxide is proportional to the rate that photosynthesis by
photosynthetic microorganisms can utilize inorganic car-
bon. Some of the inorganic carbon incorporated by the
microorganisms is removed from the cycle by sinking and
vertical transport losses to deep water. The rate of pho-
tosynthesis in the ocean is limited by the rate at which
inorganic nitrogen is supplied from deep ocean waters to
the microorganisms in the illuminated upper ocean.
Models of the inorganic carbon—nitrogen cycle have
neglected the effects of salt fingering and have generally
assumed that the supply of inorganic nitrogen to the upper
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ocean is controlled by turbulence. But vertical diffusion
rates of salt® and inorganic nitrogen due to salt fingers
may be 10 times greater than those due to turbulence.
Changes in weather and precipitation patterns due to
global warming could affect the vertical temperature and
salinity gradients in the ocean in a way that leads to an
increase in salt fingering activity. In that case, salt fin-
gering could provide a mechanism to counteract in-
creased global warming through the positive effect of salt
fingering on the rate of photosynthesis in the upper
ocean.’

Measurements of turbulence and microstructure in the
ocean have been gathered for over two decades, but the
inherent variability in ocean environments and the slowly
varying (in space and time) large-scale random processes
that are the sources of small-scale activity still leave the
ocean woefully undersampled, both in space and time. In
addition, small-scale activity is intermittent in time and
space, presenting challenging sampling and statistical
problems. Vertical profiles allow easier access to the
physics underlying a particular patch of small-scale ac-
tivity, but provide little information on the horizontal
extent. Sample sets that cover a large horizontal extent
are difficult to obtain by the vertical profiling approach.
A towed chain, with a reasonable vertical aperture of
thermistor and conductivity sensors, generates a two-
dimensional slice of the ocean and quickly provides a
large microstructure sample set. Large data sets obtained
by towed chains of thermistors and conductivity sensors
only partially address the sampling and source issues.
Ideally, small-scale velocity, temperature, and conductiv-
ity measurements should be coupled with colocated
velocity and shear measurements over the larger vertical
scales appropriate to the physical mechanism generating
the turbulence and microstructure activity. The identifi-
cation of the sources of turbulence and microstructure
would then be less difficult.

In this article we will discuss background information
on the ocean environment relevant to understanding
small-scale mixing processes along with the sources of
small-scale activity. The statistics of turbulence and mi-
crostructure and techniques to distinguish between sourc-
es of microstructure are also presented.

THE OCEAN ENVIRONMENT

The ocean is a stratified medium that typically increas-
es in density with increasing depth. The density of sea-
water p (a nominal value is 1.025 gm/cm?) at a particular
depth is largely determined by temperature (7') and sa-
linity (S). The relative contributions to density by tem-
perature and salinity are defined by the coefficients of
thermal expansion, o = —(1/p)(dp/dT ) (salinity and pres-
sure held constant) and haline contraction, 3 = (1/p)(dp/
dS) (temperature and pressure held constant). Depth or
pressure also plays a role since seawater is compressible;
therefore, increasing depth implies increased density. The
role of pressure in determining the density of seawater
is largely constrained to the deep ocean. The temperature
and salinity field of the ocean is complex; water masses
with different temperature and salinity characteristics in-
teract throughout the ocean. The velocity field of the
ocean is also complex; large-scale circulation patterns,
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currents, surface waves, internal waves, and near inertial
frequency internal waves are only some of the large-scale
processes that affect small-scale mixing activity in the
ocean. Fronts, which are identified by sharp temperature,
salinity, and density changes occurring over a few kilo-
meters, are another source of small-scale activity. This
complex system of currents, water masses, and physical
processes poses a difficult sampling problem for inves-
tigators seeking to parameterize small-scale mixing ac-
tivity in the ocean. Researchers have generally focused
on only a small aspect of these physical processes and
then only in a few areas of the ocean. The Laboratory’s
at-sea experiments have largely focused on the upper
200 m of the Sargasso Sea (western portion of the North
Atlantic Ocean) and the Tongue of the Ocean (near the
Bahamas).

We can divide the upper ocean vertically into three
regimes: a well-mixed surface layer; the seasonal pycno-
cline, where the density changes sharply over a few tens
of meters; and the main pycnocline, where the density
increases slowly with depth. Figure 1 shows the three
regimes from the average of several vertical profiles
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Figure 1. Vertical profiles of temperature, salinity, oy = 1000
(o — 1), and the Brunt-Vaisala frequency (see Sources of Micro-
structure section) based on the average of ten vertical profiles from
the Sargasso Sea. The depth regimes corresponding to the sur-
face layer, seasonal pycnocline, and the beginning of the main
pycnocline are indicated. Temperature and salinity both decrease
over the depth range of 60 to 100 m, pointing toward salt fingering
as a potential source of microstructure.
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typical of the Sargasso Sea. Between 60 and 100 m, both
temperature and salinity decrease with depth, but density
increases with depth because of the significantly greater
contribution of temperature to the density. Since the
profile only extends to a depth of about 200 m, only the
beginning of the main pycnocline is shown.

The surface layer falls into three modes: active mixing,
mixed, and stratified. The first two are marked by only
small changes in density over the depth of the surface
layer. The mixed mode implies that mixing activity has
ceased (dampened by, for example, surface heating due
to solar input), but only small changes in density are
observed with increasing depth within the surface layer.
The stratified mode occurs when the upper portion of the
water column exhibits significant stratification right to
the surface. This typically occurs under the conditions of
low wind coupled with surface heating. Activity in the
surface layer is generally controlled by wind and solar
forcing; frontal regions between water masses of differ-
ent types also produce small-scale activity in the surface
layer. Active mixing in the surface layer typically is
caused by either high winds coupling into the surface
layer through wind—wave interactions or by convection
induced by surface cooling. Diurnal change in solar heat-
ing may sometimes play a larger role in the dynamics of
the upper layer than mixing produced by wind forcing.
Nighttime cooling of the near surface water, even without
wind, can lead to strong mixing through vertical convec-
tion. The surface water becomes more dense than the
water below and becomes hydrodynamically unstable.
Solar heating in the afternoon can suppress wind-driven
mixing in the surface layer by increasing the density
gradient to the point that the surface forcing due to the
wind cannot overcome the buoyancy force due to the
stratification.

An example of the importance of the diurnal cycle was
revealed by vertical profiles of turbulence and micro-
structure obtained during an ApL field test in January
1982 in the Tongue of the Ocean. Mixing in the surface
layer strongly depended on the diurnal solar cycle.* A
well-mixed surface layer with strong mixing activity ex-
tending to the seasonal pycnocline occurred at night
because of convective mixing induced by surface cool-
ing. Daytime solar heating strongly suppressed mixing
activity in the surface layer.

The seasonal pycnocline is a transitional layer between
the surface and deeper layers. The seasonal pycnocline
is typically marked by a sharp change in density over a
small depth range on the order of meters. The sharp
density change in the pycnocline acts as a barrier to
energy exchange between the surface and deep layers.
For a turbulent event to occur in the pycnocline, the
inertial force driving the turbulence must overcome the
strong restraining forces due to the sharp density change
in the pycnocline. Activity in the seasonal pycnocline is
generally controlled by interactions with mixing activity
in the surface layer and the level of internal waves. Large-
scale eddies and fronts can also trigger mixing activity
in the seasonal pycnocline.

The main pycnocline is a broad, diffuse layer that
separates the seasonal thermocline from the deep ocean.
It is insulated from surface effects by the seasonal pyc-
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nocline and is marked by the ubiquitous presence of
internal waves. In the open ocean, away from sources
such as currents, seamounts, and islands, the major sourc-
es of activity in the main pycnocline are internal waves
and near inertial frequency internal waves, large-scale
horizontal eddies, and double-diffusive processes.

SOURCES OF MICROSTRUCTURE

Within the three general ocean depth regimes, differ-
ent physical processes drive the occurrence of small-scale
fluctuations in velocity, temperature, and salinity. The
density stratification provides a restraining force that re-
sists overturning. This restraining force is characterized
by the Brunt—Viisild frequency, defined by N = (g/p)/
(dp/dz)"” (where g is the gravitational constant and the
z axis is positive down), which represents the frequency
at which a water parcel would oscillate vertically about
its equilibrium depth if the water parcel was adiabatically
displaced. For a portion of the water column to overturn
and produce turbulence and microstructure, the inertial
forces of the physical process driving the overturn must
exceed the resistant or buoyancy forces due to the strati-
fication. Shear from internal waves and near inertial fre-
quency internal waves, currents, fronts, and large-scale
eddies can all generate small-scale activity through shear
instabilities. Microstructure generated by shear insta-
bilities is referred to as turbulence-induced microstruc-
ture. Double-diffusive convection depends on the local
temperature and salinity contributions to the local density
rather than the shear produced by larger-scale processes.
Microstructure generated by double-diffusive convection
is referred to as double-diffusive microstructure.

One particular type of shear instability is the Kelvin—
Helmbholtz shear instability or billows. Figure 2 shows a
sequence of photographs of the time history of this type
of instability as demonstrated” in a laboratory two-layer
tank experiment. A density interface is subjected to a
constant shear, producing billows that break down into
turbulence and thicken the interface. The instability is
characterized by the Richardson number, defined by
Ri = N°/u’(where u. is the vertical shear of the horizontal
velocity), which is the ratio of the buoyancy forces to the
inertial forces. The theoretical threshold® for the inertial
forces to overwhelm the restraining forces due to the
density stratification is Ri = 0.25. Measurements of the
Richardson number in the ocean show a cutoff at 0.25,
indicating that Ri values less than 0.25 are not allowed
to persist. Large shear values are observed in the regions
above and below major current systems. In the open
ocean away from sources such as seamounts and strong
currents, the random supposition of shears due to internal
waves and near inertial fequency internal waves intermit-
tently generates shear values sufficient to induce turbu-
lent mixing.’

Double-diffusive convection, a consequence of the
large difference in the molecular diffusion rates of tem-
perature (D) and salt (Ds), Dt = 100Dg, has two distinct
classes termed diffusive layering and salt fingering.
Large regions of the ocean (e.g., the Central Waters of
the Pacific and the Atlantic oceans, the Sargasso Sea, the
Arctic Ocean, and the outfall of the Mediterranean Sea
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in the Atlantic Ocean) have vertical gradients of temper-
ature and salinity conducive to double-diffusive convec-
tion. Besides the sign of the vertical profiles of temper-
ature and salinity, the relative contribution of temperature
and salinity to the density plays a role in determining
whether a double-diffusive instability can occur. The
density ratio,® defined by R, = aAT/BAS, provides a
measure of the potential for the occurrence of double-
diffusive instabilities. The temperature and salinity dif-
ference is over a vertical interval. If temperature and
salinity are both decreasing with depth and if 1 <R, <
100, then salt fingering may occur. If temperature and
salinity are both increasing with depth and the density
ratio is between 0 < R, < 1, then diffusive layering may
occur. If R, < 0, then the stratification is stable from a
double-diffusive viewpoint. Turbulence is independent of
the value of the density ratio. Temperature and salinity
gradients in the upper Arctic Ocean increase with depth,
favoring diffusive layering; temperature and salinity
profiles often reveal a steplike structure called a thermo-
haline staircase, which is characteristic of diffusive lay-
ering. The general decrease with depth of the vertical
gradients of temperature and salinity in the Sargasso Sea
favors salt fingering. Since microstructure measurements
discussed within this article have been derived from the
Sargasso Sea, detailed discussion of double-diffusive
processes will be limited to salt fingering.

A simple model of the salt fingering process starts with
a stable stratification of warm, salty water overlaying
cool, fresher water (temperature stable, salinity unstable,
but density stable). The interface is given a sinusoidal
perturbation, moving the cool, fresher water into the
warm, salty layer, and the warm, salty water down into
the cool, fresh layer. Heat diffuses from areas of high
temperature to low temperature. Salt fingers grow in both
directions since the upper layer warms the upward cool,
fresher perturbations (become less dense), and the down-
ward warm, salty perturbations cool (become more
dense) as heat is lost from the perturbation to the colder,
lower layer. Because of the slow diffusion rate of salt
compared with temperature, salt fingers transport more
salt than heat. Salt finger microstructure activity is
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Figure 2. Time sequence of the formation and
breakdown of a Kelvin—Helmholtz shear instabil-
ity. The instability was generated by imposing a
steady shear on a sharp density interface. The
instability rolls up the interface into billows (1),
which break down into a turbulent field (2-5) and
thicken the interface (6). (Reprinted, with permis-
sion, from Ref. 5.)

patchy, limited in vertical extent, and in some ways
appears similar to turbulence-generated microstructure.
This intermittency or patchiness may be due to the ran-
dom straining of the temperature and salinity profiles by
internal waves. The random strain field of the internal
waves can distort the temperature and salinity gradients
such that the density ratio nears 1, enhancing the prob-
ability of double-diffusive convection. The observed
intermittency of salt finger microstructure may also be
due to the interleaving and incorporation of anomalous
(in terms of the temperature—salinity relationship) small-
scale water masses into the general water mass.’

Time series of salt fingering exhibit a narrowband,
limited-amplitude appearance, whereas turbulence-gen-
erated microstructure exhibits a more wideband, vari-
able-amplitude appearance. A shadowgraph'® of a field
of salt fingers generated in the double-diffusive tank in
the APL Hydrodynamics Research Laboratory is shown in
Figure 3. An internal wave propagates from left to right
through the field of salt fingers, distorting the field of salt
fingers from a vertical orientation toward a more hori-
zontal orientation. The ubiquitous nature of internal
waves in the ocean suggests that the same process occurs
in the ocean. Note the regularity of the width of the
“fingers” and the lack of variance at larger scales in the
figure. If a temperature or conductivity sensor cut hor-
izontally through the salt finger field, the time series
would appear narrowband and limited in amplitude, even
with the distortion of the salt finger field by the internal
wave. The variance of the temperature and conductivity
gradient spectra would be concentrated in a relatively
narrow wavelength band about the 1-mm average hori-
zontal wavelength of the salt fingers.

In stark contrast to the regular appearance of the salt
finger field in Figure 3, Figure 4 demonstrates the irreg-
ular nature of turbulence and turbulence-induced micro-
structure. Fluorescein dye is injected through a grid in the
Hydrodynamics Research Laboratory’s recirculating
flow channel, and a laser sheet is used to induce the dye
to fluoresce over the 88 cm X 56 cm cross section of the
channel. A wide range of dye scales is visible. The ve-
locity field created by the grid stirs and strains the dye
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Figure 3. Saltfingerfield createdinthe
double-diffusive tank in the APL Hydro-
dynamics Research Laboratory'® to
study the interaction of internal waves
with salt fingers. An internal wave pro-
pagates from left to right, straining and
distorting the salt finger field. The hori-
zontal scale of the vertically oriented salt
fingers is about 1 mm. (For reference, a
scale in centimeters is shown.)

l—10cm—|

Figure 4. Turbulence-induced microstructure produced in the Hydrodynamics Research Laboratory's recirculating flow channel.
Fluorescein dye injected from a grid upstream and illuminated by a laser sheet across the 88 cm X 56 cm cross section of the channel
visually demonstrates the wide range of scales present in turbulence-induced microstructure.

field. Dye scales much smaller than any turbulent veloc-
ity scale are created by the straining action of the small-
scale eddies. The largest isotropic eddy generated by the
grid is about 10 cm (grid rod spacing is 10 cm). Based
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on the turbulence levels of the velocity field measured
by a hot-film anemometer, the smallest turbulent scale is
about 1 cm, and the smallest dye wavelength would be
about 0.03 cm, which implies that more than two decades
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of dye scales are present. Since fluorescein dye is salt-
based, the contrast and small-scale detail apparent in
Figure 4 are representative of a patch of salinity micro-
structure. A patch of temperature microstructure, on the
other hand, would have less contrast because of the
smoothing effect of the higher molecular diffusion rate
of temperature compared with salt. The measured turbu-
lence levels are comparable to active turbulent patches
in the ocean.

The kinetic energy of the turbulence is finally dissipat-
ed (converted into heat) at the smallest scales of the
turbulence, where the inertial forces become equal to
viscous forces. Much as the stratification provides a force
resistant to the vertical rotation of larger scales of the
turbulence, the viscosity of the water provides a force that
impedes the rotation in any direction of smaller scales
and limits the transfer of energy to smaller scales. Tur-
bulence in the ocean is characterized by the kinetic en-
ergy dissipation rate, e, which is a measure of the inten-
sity of the turbulence and is proportional to the variance
of the small-scale velocity gradient field. Typical turbu-
lent velocity scales for ocean turbulence patches are on
the order of a few meters to about a centimeter. Turbu-
lence stirs and strains the temperature (or salinity and
conductivity) field to small scales. Molecular diffusion of
temperature acts to reduce and limit the high-gradient
regions produced by the straining action of the turbulence
on the temperature field. Microstructure activity in the
ocean induced by turbulence is characterized by the
dissipation rate of temperature variance, xp, which is the
counterpart of the kinetic energy dissipation rate for the
temperature field and is proportional to the variance of
the small-scale temperature gradient field. Typical scales
for temperature microstructure are on the order of a meter
to millimeters.

Oceanic measurements of e are usually obtained using
vertical profilers equipped with airfoil probes that sense
the velocity components orthogonal to the vertical pro-
file. The airfoil probes are piezoelectric beams, similar
to a phonograph needle. The transverse deflections of the
piezoelectric beam produce a voltage proportional to ve-
locity. The voltages are usually analog-differentiated,
thus generating a signal proportional to the velocity gra-
dient. Thermistors and conductivity sensors are used to
measure xr. Without large corrections for sensor re-
sponse, thermistors and conductivity sensors often cannot
resolve the millimeter scales of the temperature gradient
field required to accurately estimate x1. Estimates of the
bandpassed temperature gradient variance are often used
to characterize microstructure activity.

An example of the intermittent distribution of micro-
structure activity in the ocean is shown in Figure 5. The
two-dimensional slice (15 m X 2.2 km) of microstructure
activity was derived'' from towed conductivity chain
measurements in the Sargasso Sea obtained during an APL
field test in November 1984. The time series for each
sensor represents pre-emphasized conductivity (conduc-
tivity plus the derivative of conductivity) and is plotted
in a min/max format. The vertical motion of the towed
chain is indicated by the bottom trace. The time series
are marked by the intermittent occurrence of microstruc-
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ture activity. Large portions of the segment have no dis-
cernible microstructure activity. Five patch groups are
highlighted in Figure 5. (A patch group is defined as a
spatially contiguous set of patches.) Patch groups 1 and
2 have the narrowband, limited-amplitude characteristics
of salt fingering. Patch groups 3 and 4 have the wideband,
highly variable amplitudes characteristic of turbulence-
induced microstructure. It is unclear from a visual inspec-
tion whether patch group 5 is due to salt fingering or
turbulence. Blowups of single-sensor cuts through patch
groups 1 (salt fingering) and 3 (microstructure created by
turbulence) in Figure 6 show the differences in the ap-
pearance of the time series of the two processes. Statis-
tical discrimination techniques using these differences to
determine whether a patch of microstructure is due to salt
fingering or turbulence will be discussed in detail later
in this article.

TURBULENCE AND MICROSTRUCTURE
STATISTICS: IMPLICATIONS OF
LOGNORMALITY AND INTERMITTENCY

Some important issues in oceanography concern the
average turbulence and microstructure levels for a given
ocean volume (area and layer) and the large-scale pro-
cesses forcing the small-scale activity. These average
levels affect the vertical diffusion rates of passive scalars
such as temperature, oxygen, and nutrients, which are
important for microorganisms. In addition, turbulent dis-
sipation of kinetic energy is an important factor in mod-
eling large-scale currents such as the equatorial undercur-
rent. To form a meaningful estimate of the mean levels
and calculate the associated uncertainty, the underlying
distribution of the turbulence and microstructure must be
considered. The probability distribution of the magnitude
of turbulence and microstructure statistics determines
which sampling strategies are appropriate and which es-
timators should be used to calculate parameters such as
the mean value. Variability of the statistics of turbulence
and microstructure in space and time is inherent since the
underlying process driving the small-scale activity gen-
erally varies slowly in space and time. Because of the
typical 100 to 1 aspect ratio of vertical to horizontal
density gradients (with the exception of fronts) and the
physics of the large-scale sources, the sources and the
available energy for small-scale mixing change with
depth much more than with horizontal distance. Even in
a given layer, variability of the source with time should
be considered.

Statistics of Microstructure Parameters

Probability distributions that are approximately log-
normal are typically observed'? for €, x1, and bandpassed
temperature gradient variance (see the boxed insert for
areview of the lognormal distribution). If a random vari-
able x such as €, xq, or bandpassed temperature gradient
variance is lognormally distributed, then In(x) is Gauss-
ian-distributed with expected value g and variance o”.
Several factors must be considered before testing a sam-
ple set for lognormality (or any distribution). Is the sam-
ple set composed of independent, identically distributed
(from the same parent population) random variables?
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Figure5. A 15 m X 2.2 km segment of pre-emphasized min/max conductivity from the towed chain data taken from below the seasonal
thermocline in the Sargasso Sea. The depth variation of the towed chain is shown by the bottom trace. The microstructure is distributed
intermittently throughout the segment (computer-generated material, Ref. 11). Five patch groups are highlighted. The appearance of patch
groups 1 and 2 is consistent with salt fingering as the source. Patch groups 3 and 4 appeared to be microstructure generated by turbulence.
The source of patch group 5 is not clear visually. It could be salt fingering, turbulence, or a mixture of both. The density ratio is gray-scaled

for the microstructure patches.

Comparisons to the lognormal distribution should be
restricted to layers and volumes where the underlying
physical process driving the mixing activity is stationary
over the sample period. If the sample set passes statistical
tests for these criteria, and if no noise contamination of
the data is present, then and only then is it fair to test the
data against the lognormal distribution and conclude that
failure to agree with lognormal is significant. If system
noise contamination exists, then the sample set has to be
tested against a distribution based on the combined log-
normal and noise distributions rather than just the log-
normal distribution.

The high-frequency or wave-number measurement re-
quirements for turbulence and microstructure observa-
tions typically lead to contamination by instrument noise.
Monte Carlo simulations'” indicate the departures from
lognormality at small values frequently observed in eval-
uations of ocean turbulence, and microstructure measure-
ments are consistent with instrument noise. The measured
data are assumed to be represented by the sum of a
lognormal random variable and a chi-squared noise ran-

348

dom variable.'” The ensuing cumulative distribution
function (CDF) results from the convolution of the log-
normal and noise probability density functions (PDF’s),
implying that the noise contamination will occur over a
range of values and not just at a sharp cutoff point. The
underlying ocean is assumed to be represented by the
linear portion of the CDF (Gaussian CDF plots as a straight
line on Gaussian probability paper) uncontaminated by
instrument noise. If significant instrument noise contam-
ination is present, then the arithmetic mean and standard
deviation, m and s, yield poor estimates of the underlying
p and o. By using the linear region to estimate p and o,
the effects of instrument noise on the statistics are
reduced.

The histogram and CDF from towed chain data taken
in the seasonal thermocline of the Sargasso Sea are
shown in Figure 7. The CDF is based on 3-m samples of
the logarithm of bandpassed (3- to 0.05-m) conductivity
gradient variance. The CDF is plotted against a log,, and
natural log axis on Gaussian probability paper. The his-
togram is shown in the upper portion of the figure. The
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Figure 6. Blowup of single-sensor time series from patch groups
1 (salt fingering, sensors 16 and 17) and 3 (turbulence-induced
microstructure, sensors 29 and 30). The salt finger time series is
limited in amplitude. The turbulence-induced time series displays
highly variable amplitudes.

corresponding CDF is shown by the black curve in the
lower portion of the figure. The lognormal CDF and PDF
predicted by the standard arithmetic estimators m and s
are shown by the green curves and show poor agreement
with the measured CDF and histogram. The blue curve on
the CDF plot indicates the underlying lognormal distribu-
tion according to the lognormal plus noise model. The
PDF (blue curve) predicted by the linear region displays
excellent agreement with the histogram over the range
where the data are not noise-contaminated. A Monte
Carlo simulation based on the lognormal plus noise
model is shown by the red curve on the CDF plot. The
Monte Carlo simulation is based on the lognormal dis-
tribution estimated from the linear region and instrument
noise contamination derived from noise spectra. The
agreement between the measured and simulated CDF’s is
excellent and indicates that the departure at the low-
magnitude end is consistent with system noise. The
maximum likelihood estimate of the expected value (see
the boxed insert) of the conductivity gradient variance is
1.6 X 10~* (mmho/cm/m)>. The mean-to-median ratio is
about 12, and the mean-to-mode ratio is 1856.

Intermittency of Microstructure

Describing their definition of “intermittent,” Monin
and Yaglom" note “This word is meant to denote the
tendency of small-scale turbulence to concentrate into
individual ‘bunches’ surrounded by extensive flow re-
gions in which there are only much smoother large-scale
disturbances (or perhaps no disturbances at all).” Their
statement accurately describes the temporally and spa-
tially intermittent occurrence of patches of small-scale
turbulence and microstructure in the ocean such as those
observed for the towed chain segment seen in Figure 5.
Kolmogorov addressed the issue of the intermittency of
€ in turbulence measurements with his third hypothesis.'*
According to Kolmogorov, the intermittency factor,
Tine, , is related to the external turbulent length scale L
by
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Figure 7. Lognormal evaluation of the logarithm of conductivity
gradient variance computed from the 3- to 0.05-m wavelength
band. The black curve in the lower portion corresponds to the
measured cumulative distribution function (CDF), and the histogram
is shown in the upper figure. The green curves correspond to the
lognormal distribution estimated by the standard arithmetic mean
and standard deviation. Poor agreement with the measured func-
tions is observed. The blue curves in the upper and lower portions
correspond to the lognormal distribution estimated from the linear
region of the CDF. The agreement of the estimated lognormal
distribution with the measured histogram is excellent over the
region not contaminated by system noise. The Monte Carlo simu-
lation (red curve), assuming a lognormal plus noise random vari-
able, displays excellent agreement with the measured CDF.

"Izne,. = A(x, 1) + p In(L/r), e

where A(X, #) represents a function that depends on the
characteristics of the large-scale motions, g, is the uni-
versal Kolmogorov constant (measurements range from
0.3 to 0.5), and r represents the scale over which € is
averaged. The magnitude of the external length L is re-
lated to the scale of the forcing function represented by
A(x, t). From Equation 1, the larger the external length
scale of the turbulence, the larger the intermittency. Kol-
mogorov’s hypothesis for the intermittency of the kinetic
energy dissipation rate has been extended to the intermit-
tency of the dissipation rate of temperature variance.'>"

The factor ¢ has been labeled the intermittency
factor'? since the larger the underlying value of ¢} , the
larger the intermittency of the intensity of turbulence and
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THE LOGNORMAL DISTRIBUTION

If a random variable x is lognormally distributed, then
In(x) is Gaussian-distributed with expected value p and
variance o”. The probability density function (pDF) for x is
given by

PDR(r) = — exp{—[ln(.\‘)z— pl’ } )

xo2mw 20

where p and o” are the expected value and variance, respec-
tively, of In(x). The expected value of x is given by
exp(u + 0°/2). The median and the mode of x are given by
exp(u) and exp(pu — ¢7), respectively. The mean-to-mode
value for lognormal distributions is given by exp(307/2).
The mean > median > mode, unlike Gaussian random
variables, wherein the mean = median = mode.

An example of a lognormal PDF(x) is shown in the figure
(top) along with the corresponding In(x) Gaussian PDE. The
PDF for this example is based on the p (1.73) and o (0.37)
estimated from the variable In(kurtosis) for the turbulence
control patches discussed in the text (Table 1). The mean,
median, mode, and mean-to-mode ratios (assuming lognor-
mality) are given by 6.0, 5.6, 4.9, and 1.22, respectively.
The lognormal PDF is positively skewed with a relatively
short upper-magnitude tail. The left and right ordinate axes
correspond to the magnitude of the lognormal and Gaussian
PDF’s, respectively. The upper and lower abscissas corre-
spond to the x values (for the lognormal pDF) and the In(x)
values (Gaussian PDF), respectively. A second example of
a lognormal pDF and the corresponding Gaussian PDF is also
displayed (bottom) for the same p, but with a ¢ value of
2.24 that is representative of the values of ¢ observed for
€, x1- and bandpassed temperature variance (text, Fig. 6) in
the seasonal thermocline. Now the mean, median, mode,
and mean-to-mode ratios are given by 69, 5.6, 0.04, and
1856, respectively. The lognormal PDF is strongly positively
skewed with a long upper-magnitude tail.

Another difference between lognormal and Gaussian-
distributed random variables is how to best estimate such
parameters as the expected value. Unlike the Gaussian dis-
tribution where the arithmetic mean is the maximum like-
lihood estimator of the expected value, the maximum like-
lihood estimator” of the expected value for a lognormal
random variable, X,,,.. is given by exp(m + s/2), where m
and s are defined by

1
m=—
M ;

Mx

In(x;) (2)
|

and

2 - 2
s -HZI[ n(x;)—m] 3)

1=

and are the standard arithmetic estimates of p and o’
Typically, M (number of samples) is replaced by M — 1 in
Equation 3 to yield an unbiased estimate of ¢>. Although
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the arithmetic mean of x has theoretical confidence limits
only for the asymptotic case of a large number of samples,
theoretical confidence intervals are availables'” for the
maximum likelihood estimator.

The estimated expected values from small data sets with
large o” factors are likely to reflect estimates of the mode
(most probable value) rather than the mean. One conse-
quence of a lognormal-distributed random variable with a
large variance is that a large number of samples are required
for the arithmetic mean to converge to the expected value
compared with the number of samples required for a Gauss-
ian-distributed random variable. If the distribution is log-
normal, but the data have only a small variance, the expect-
ed value can be accurately estimated by the arithmetic mean
from a small number of samples.

A In(x)
—6 -4 -2 0 2 4 6 8
0.4 T T T T T T
—11.0
0.31
= Mode =
Sad | =
LDL 0.2 T
L% a
(s ¥
(05}
0 |
0

PDF(In x)

Two examples of lognormal PDF’s (x) (black curves) and their
corresponding Gaussian PDF’s (In x) (blue curves). A. u=1.73;
0=0.37.B. p=1.73; 0 = 2.24. The mean value of 69 would be
well off to the right for B. The strong dependence of the
lognormal distribution function on ¢ can be seen by the lengthy
upper-magnitude tail (large positive skewness) exhibited in B
compared with A.
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microstructure in both space and time. Measurements of
e in surface mixing layers tend to have small intermitten-
cy factors (1 to 2) relative to measurements in the sea-
sonal pycnocline. Since the vertical temperature gradient
is usually small in the surface layer, making measure-
ments of xrdifficult, x1 values are usually reported from
depths below the surface layer. Measurements of both e
and xrin the seasonal pycnocline typically display large
intermittency factors (3 to 7)."* This variation of ¢7, with
depth implies that fewer samples are required in the
surface layer compared with the seasonal or main pyc-
nocline in order to accurately estimate the expected
value.

The intermittency of microstructure can also be exam-
ined from the spatial distribution of microstructure activ-
ity. The statistics of the horizontal and vertical extent
of microstructure patch groups were examined'® using
200 km of towed thermistor data taken in the seasonal
pycnocline of the Sargasso Sea in November 1982. The
200 thermistors on the towed chain were spaced at 5-cm
intervals and covered an aperture of 10 m. Patches ob-
served on adjacent sensors are placed in the same patch
group if the patches overlap horizontally. The average
aspect ratio (width to height) of a microstructure patch
group was about 200; widths and heights ranged from
20mto 1 km and 5 cm to 5 m, respectively. The average
width and height of the microstructure patch groups were
120 m and 55 cm, respectively. The spatial intermittency
of the microstructure is highlighted by the observation
that microstructure patches constituted only 6.9% of the
data, and over 95% of the patches were less than 2 m tall.

The spatial characteristics of microstructure patches
should be considered in sampling strategies. Investigators
must recognize that large data sets are usually required
for intermittent variables such as turbulence and micro-
structure statistics. Assumption of lognormality and the
intermittency factor ¢ provide a framework for estimat-
ing how many independent samples are required to re-
solve the distribution. Separation of the microstructure
into two classes, turbulence-induced microstructure and
salt fingering, is addressed in the next section.

DISCRIMINATION BETWEEN TURBULENCE-
INDUCED MICROSTRUCTURE AND
SALT FINGERING

Investigators are trying to tie small-scale activity to
large-scale processes to ascertain the importance of a
given large-scale process for a given ocean volume and
for the overall oceanic system. Unconditional distribution
functions for microstructure parameters do not provide
information that allows discrimination between micro-
structure due to salt fingering and that due to turbulence.
The Laboratory is investigating discrimination tech-
niques based on the temperature and salinity fields and
the internal statistical and spectral characteristics of the
microstructure. The density ratio, based on the local tem-
perature and salinity gradients, helps to identify where
salt fingering microstructure would be likely, but does not
provide a clear distinction between double-diffusive and
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turbulence-induced microstructure when R, > 0. The
wideband and highly variable amplitudes that are char-
acteristic of turbulence-induced microstructure versus the
narrowband, limited-amplitude appearance of salt finger
microstructure imply that the kurtosis'” and the spectral
slope of the temperature or conductivity gradient spec-
trum may help to distinguish between turbulence-induced
microstructure and salt fingering. (Kurtosis is discussed
in detail later in this article.) The towed segment present-
ed in Figure 5 is used in this section to evaluate each of
these statistics as discriminants.

Density Ratio as a Discriminant

Theoretical predictions'®'" indicate an enhanced

growth rate of salt flngers as R, approaches 1. Micro-
structure measurements %2 from vertical profiles and
towed chain measurements obtained during several APL
field tests in a variety of areas (Sargasso Sea, off San
Diego near San Clemente Island, and the Tongue of the
Ocean) that were conditionally sampled on R, showed a
significant increase in microstructure activity when R,
approached 1. The unconditional and conditional histo-
grams”' derived from 260 km of towed temperature and
conductivity chain measurements are displayed in the
upper plot of Figure 8. A cell of the unconditional his-
togram represents all the 1-s (=3-m) samples that fell
within the given density ratio bin. The conditional his-
togram is conditioned on the presence of microstructure
activity. The probability of microstructure activity, gen-
erated by dividing the conditional histogram by the un-

}«—Stable regime —>| f«—SaItflnger regime —>(

Uncondmonal
histogram

[] Conditional
histogram

102,960

;g 82,368

3 41,184
E |

0
0.25 T |

0.20 - 4

0.15 " Null hypothesis 7
o.1o% i }'—h | \?*- 1
0.05 ittt T T
OW b AT
12 9 -6 -3 0 3
Density ratio

Probability

Figure 8. The ratio of the unconditional histogram (all samples)
divided by the histogram conditioned on zero crossings > 2 (micro-
structure) plotted as a function of density ratio.?' An increased
probability of microstructure is observed for 0 < Rp < 4. Double-
diffusive convection requires density ratios between 0 and 100.
Since turbulence-induced microstructure should be independent
of the density ratio, the flat level observed for R < 0 should extend
to Fn‘ > 0, indicating the relative proportion of microstructure due to
turbulence (73%) and double-diffusive convection (27%). (Cell
width =0.50;90% confidence [N/12]; number of points = 2,436,100;
number of conditional points = 180,433; total probability = 0.074.)
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conditional histogram, is enhanced for R, near 1. The
relatively uniform probability of microstructure activity
for R, less than zero (non—double-diffusive regime)
should extend over the positive R, values (double-diffu-
sive regime), since turbulence caused by shear instabil-
ities should be independent of R,. Assuming this is true,
Figure 8 suggests that 27% of the microstructure activity
was due to double diffusion.

To illustrate the use as well as the limitations of using
density ratio to determine whether salt fingering or tur-
bulence is the source for individual patches of micro-
structure, we return to Figure 5. Gray scales correspond-
ing to limited ranges of R,—0 < R, < 1 (diffusive) and
1 <R, <4 (salt finger)—are displayed in conjunction with
the microstructure activity. Patch groups 1 and 2 gener-
ally have density ratios between | and 4 and display the
narrowband, limited-amplitude appearance of salt finger-
ing. Hence, a good correlation between salt fingering and
R, values in the salt finger regime occurs. Patch group 3
has the variable amplitude consistent with turbulence-
induced microstructure and R, values outside the double-
diffusive convection regime. Patch group 4 has R, values
between | and 4, but shows the wideband and highly
variable amplitude typical of turbulence-induced micro-
structure. Patch group 5 has the right density ratio for salt
fingering, but it is unclear visually whether the source is
salt fingering or turbulence. More robust statistical ap-
proaches to discriminating between salt fingering and
turbulence sources of microstructure are required and are
the subject of the following discussion.

Kurtosis as a Discriminant

Kurtosis, K, is a measure of the weight of the tails of
the probability distribution and is defined for small-scale
conductivity gradient data (demeaned) by

4
- L€

<(C\ )2 >2 2 (2)
where C, is the small-scale conductivity gradient. The
narrowband nature of salt fingering leads to a small
kurtosis on the order of 3 (Gaussian random variables
have a kurtosis of 3), whereas the highly variable ampli-
tudes characteristic of microstructure due to turbulence
typically produce kurtosis values on the order of 6.

To statistically discriminate between salt fingering and
turbulence as the source of the microstructure, the prob-
ability density function (PDF) of kurtosis is required for
each process. Investigators at APL have generated PDF’s
of kurtosis from localized regions (control patches) iden-
tified as turbulence-induced microstructure or salt finger-
ing from towed chain segments obtained during a No-
vember 1984 field test in the Sargasso Sea. The selection
of the control patches was based in part on R, and the
visual characteristics of the time series. The mean kur-
tosis estimates of 6 and 3 for the turbulence-induced
microstructure and salt finger control patches, respective-
ly, are consistent with measurements by other investiga-
tors.”>>* The means and standard deviations of the kur-
tosis estimates for the control patches are summarized in
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Table 1. The minimum overlap between the salt finger
and turbulence PDF’s occurred at a kurtosis value of 4,
which is used as the gray scale threshold in Figure 9 to
separate the two processes. The microstructure activity is
identified as salt fingering for kurtosis values <4 and is
attributed to turbulence for kurtosis values >4. Patch
group | was used as the control region to estimate the
PDF of kurtosis for salt fingering. The kurtosis values of
patch group 2 are completely consistent with salt finger-
ing, and the kurtosis values of patch group 3 are consis-
tent with turbulence-induced microstructure. Patch
groups 4 and 5 are dominated by kurtosis values greater
than 4, consistent with turbulence-induced microstruc-
ture, even though the density ratio values are between 1
and 4, which would suggest salt fingering as the source
of the activity. Hence, kurtosis can be used to discrim-
inate between turbulence-induced microstructure and salt
fingering, and it improves upon the use of density ratio,
particularly where R, values could support either turbu-
lence or salt fingering.

Spectral Slope as a Discriminant

Theoretical modeling®* of the turbulence-induced tem-
perature gradient spectrum predicts a temperature gradi-
ent spectral wave-number dependence of k' (slope of 1
on a log—log plot) over the range of scales before mo-
lecular diffusion of temperature induces a roll-off in the
spectrum. Measurements, both in the ocean and labora-
tory experiments, confirm the existence of the Batchelor
spectrum.” " In contrast to the wideband nature of mi-
crostructure created by turbulence, salt fingering has pre-
ferred scales on the order of a few centimeters. Lack of
variance at large scales leads to a steep temperature or
conductivity gradient spectrum with a spectral slope that
significantly exceeds 1. Spectra generated from a salt
finger spectral model’ and microstructure observa-
tions”?'~* yield spectral slopes of about 2 for salt finger-
ing patches.

The same control patches used to estimate the PDF’s of
kurtosis for turbulence-induced microstructure and salt
fingering were used to estimate the PDF’s of spectral slope
for each source.'' The means and standard deviations of
the spectral slopes for the control patches are summarized
in Table 1. Figure 10 displays gray scales of spectral slope
in conjunction with the microstructure activity for the
same segment of data shown in Figure 5. The microstruc-
ture activity is identified as due to turbulence for spectral
slopes <1.2 and as salt fingering for spectral slopes >1.2.
The minimum overlap between the salt finger and turbu-
lence PDF’s occurred at a spectral slope value of 1.2.
Spectral slopes for patch group 2 are consistent with salt

Table 1. Summary of the means (¢) and standard deviations (o) of
spectral slope, In(kurtosis), and kurtosis for turbulence-induced
microstructure and salt finger control patches."

Spectral slope In(kurtosis) Kurtosis
Control patches  u g W o I o

1.50 026 1.15 0.15 3.18 0.56
072 034 173 037 6.11 34

Salt finger
Turbulence
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Figure 9. Kurtosis is gray-scaled for the same data segment shown in Figure 5 (computer-generated material, Ref 11). Patch group 2 has
kurtosis values consistent with salt fingering. Kurtosis in patch groups 3 and 4 is dominated by values consistent with turbulence-induced
microstructure. Kurtosis values for most of the microstructure in patch group 5 are consistent with turbulence-induced microstructure, but
a small intermittent fraction appears to be in the range expected for salt fingering. Spatial mixtures are quite possible.

fingering; those for patch groups 3, 4, and 5 are consistent
with turbulence-induced microstructure. Spectral slope
also improves upon the use of density ratio as a discrim-
inant.

The Log-Likelihood Approach to Discrimination

Under current investigation'' at APL is an optimal dis-
crimination approach based on a statistic called the log-
likelihood ratio®® \, defined for a simple random variable

X as
P(xISF)
= 1 S
A n{P(,\'ITurb)} ’ 3

where P(xISF) and P(x|Turb) are the PDF’s of x given salt
fingering and turbulence, respectively. The likelihood
ratio technique is a formalism for minimizing the errors
in decision making by using the ratio of the PDF’s for the
observables that have different distributions in salt fin-
gering and turbulence. It is commonly used in hypothesis
testing and provides a quantitative measure of decision
making as well as estimates of the error in the decision
(e.g., probability of incorrectly identifying a sample as
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coming from the salt finger distribution when it really
comes from the turbulence distribution).

For A\ > 0, the log-likelihood ratio would identify a
patch as due to salt fingering; for A < 0, the patch would
be identified as due to turbulence; and for A = 0, salt
fingering or turbulence would be equally probable. This
optimal discrimination approach can be extended to
multiple variables (e.g., slope and kurtosis). For ease of
implementation, a Gaussian model is commonly used for
the parameters when warranted. In such cases the bivar-
iate distributions are uniquely determined by the means,
standard deviations, and correlation coefficients. Al-
though the spectral slope PDF’s for either salt fingering
or turbulence are nearly Gaussian, the kurtosis PDF’s for
turbulence have many larger values, causing the distri-
bution to be non-Gaussian. The distribution can be made
more nearly Gaussian by taking the natural logarithm of
the kurtosis.!'*” Hence, the log-likelihood ratio for a two-
parameter—slope, In(kurtosis)—system can be written
as

“)

- ln{ P[S, In(K)ISF] }
P[S, In(K)I Turb]
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Figure 10. Spectral slope is gray-scaled for the microstructure patches for the same data segment shown in Figure 5 (computer-generated
material, Ref. 11). Patch group 2 has spectral slopes consistent with salt fingering. Patch groups 3, 4, and 5 have spectral slopes consistent

with turbulence-induced microstructure.

where P[S, In(K)ISF] and P[S, In(K)ITurb] are the joint
Gaussian PDF’s of spectral slope and In(kurtosis) for salt
fingering and turbulence, respectively.

To characterize the joint PDF’s presented in Equation
4, the PDF’s of In(kurtosis) were generated for each source
from the same control patches used previously to estimate
the PDF’s of kurtosis and spectral slope. The PDF’s of
In(kurtosis) appeared more Gaussian for each source than
the PDF’s of kurtosis. The means and standard deviations
of spectral slope, In(kurtosis), and kurtosis for each test
segment are summarized in Table 1.

The log-likelihood approach of combining spectral
slope and In(kurtosis) offers the possibility of improving
discrimination between turbulence-induced microstruc-
ture and salt fingering for patches such as those in patch
group 5. Just as the success of the univariate discrimi-
nants kurtosis and spectral slope depended on the degree
of overlap between the PDF’s for each source, the success
of the log-likelihood approach also depends on the degree
of overlap between the joint PDF’s based on spectral slope
and In(kurtosis) for turbulence-induced microstructure
and salt fingering. The log-likelihood ratio technique,
however, should minimize errors in discrimination and
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present an excellent opportunity for properly character-
izing large regions of ocean.

CONCLUSIONS

The Johns Hopkins University Applied Physics Lab-
oratory has been involved in studies of small-scale mix-
ing activity in the ocean for over a decade. Microstructure
activity is distributed intermittently throughout the ocean.
The data sets gathered during APL field tests in the Sar-
gasso Sea provide the large sample base required to test
hypotheses concerning the distribution functions of mi-
crostructure and the relative contributions of turbulence-
induced microstructure and salt fingers to the overall
microstructure. Monte Carlo simulations indicate that the
probability density functions of bandpassed temperature
gradient variance are consistent with lognormal distribu-
tion functions. Heights of microstructure patches are
typically on the order of a meter with aspect ratios (width
to height) on the order of 200. Significant advances have
been made in developing statistical techniques to dis-
criminate between salt fingering and microstructure cre-
ated by turbulence. Discrimination results based on the
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univariate statistics of density ratio, spectral slope, and
kurtosis indicate that spectral slope and kurtosis improve
upon the use of the density ratio as a discriminant. An
optimal bivariate method of discrimination using the log-
likelihood ratio based on spectral slope and In(kurtosis)
was also outlined.

Many interesting ocean areas have not been sampled,
leaving unknown the levels and distribution of small-
scale activity in those regions. Scientists are endeavoring
to tie observations of microstructure to larger-scale pro-
cesses, but success in identifying the particular physical
mechanism producing the microstructure is still limited.
A great deal of work is left to be done.
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