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ON AN UNSOLVED PROBLEM OF OLGA TAUSSKY 

This article summarizes recent investigations about an unsolved problem in the distribution of eigen­
value over a class of matrices. Several elementary results in matrix theory are used to generate initial 
re ults. Empirical results based on a computational study are also presented. The empirical study was moti­
vated by the ready availability of high-performance computers that can quickly compute thousands of 
eigenvalues . 

INTRODUCTION 

While doing some background reading on the theory 
of matrices, I recently read a survey paper by Olga 
Tausski that is a written record of a lecture given by her 
at the second advanced seminar conducted by the 
Mathematics Research Center of the U.S. Army. Many 
results summarized in that paper concern the perturba­
tion theory of matrix eigenvalues: the analysis of the 
effect that small perturbations in the elements of the 
matrix have on the eigenvalues (characteristic roots). 
After presenting several interesting theorems in perturba­
tion theory, she asked the following intriguing question: 

An unsolved problem is: Take a matrix A, replace its ele­
ments in all possible ways by numbers which have the 
same absolute value. What is the region in the complex 
plane covered by all their roots? 

The purpose of this article is to describe some investi­
gations into Taussky's question. I do not claim that the 
results presented here are new, although I have been un­
able to locate research that has cited Taussky's paper. On 
the other hand, her paper appeared more than twenty-five 
years ago, and it is likely that the problem has been ad­
dressed. Moreover, although the question is not ad­
dressed in the paper, she was surely aware of some of the 
elementary results given here. The advances in comput­
ing resources since the paper appeared, however, make it 
possible to study the problem empirically. In fact, a pri­
mary motivation for working on the problem was the 
ability to compute and plot thousands of eigenvalues 
with almost instant turnaround in an interactive session. 
The results presented should give the reader an apprecia­
tion for the role that computing can play in the investiga­
tion of theoretical questions in numerical analysis. 

BACKGROUND 

In this section, let us review some notational conven­
tions and well-known theorems of matrix theory that we 
will use in the sequel. 

We denote the real numbers by R, the complex num­
bers by C, and the set of all n x n matrices with real 
(complex) entries as RII x II (CII X II). Unless otherwise 
specified, all matrices under consideration are assumed 
to lie in Cn x il

. 
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Definition 1. A matrix A is singular if there exists 
some nonzero vector x for which Ax = 0 is satisfied. 
Otherwise, it is called nonsingular. 

Equivalently, the matrix A is singular if and only if 
det A = O. (Recall that det A denotes the determinant of 
the matrix A.) 

Definition 2. A number A E C is an eigenvalue of the 
matrix A if it satisfies the equation 

Ax = Ax (1) 

for some complex vector x. The set of all eigenvalues of 
A is the spectrum of A, denoted A(A) . 

Equation 1 can be rewritten as Ax - Ax = 0 or 
(A - A/)x = 0, where I is the n x n identity matrix 
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o 
1 
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In particular, A is an eigenvalue of A if and only if 
det (A - AI) = O. It is easy to show that det (A - A I) 
is a polynomial of degree n in A; hence, by the Fun­
damental Theorem of Algebra, A has exactly n eigen­
values, although they need not be distinct. 

Definition 3. The nth degree polynomial 
det (A - A I) is called the characteristic polynomial of 
the matrix A. 

Hence, the eigenvalues of A are simply the roots of its 
characteristic polynomial. 

The characteristic polynomial is clearly a function of 
the entries of the matrix; hence, the eigenvalues (roots of 
the characteristic polynomial) are also functions of the 
entries of the matrix. How "well-behaved" a function the 
eigenvalues are with respect to the entries of the matrix is 
described in the following theorem. 

Theorem 1. The eigenvalues of a matrix A are con­
tinuous functions of the entries of A. 
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Loosely peaking. continuity of the eigenvalue mean 
that a small enough change in the entrie of A will en ure 
that the eigenvalue of A change ver little , a fact that 
will have important con equence later. 

Another elementar theorem in matrix theory that will 
be u eful to u i the following. 

Theorem 2. For any calar: E C and matri x A, if A i 
an eigenvalue of A, then : A is an eigenvalue of :A . 

Finally, we pre ent a theorem on the approximate" 
location of th eigen a lue of a matri x. 

Theorem 3 (Gerschforin . part /): If A = D + F, 
where D = diag(d), d2, ..• ,d,J i the diagonal of A, 
then 

n 

(2) 
i= ' 

where 

( 3 ) 

The Di are called the Ger chgorin di k . and A( A) i 
imply the region of the complex plane formed by the 

union UDi of the e di k . For implicity, the Ger ch ­
gorin di k are repre ented by circle in the figure . The 
reader should bear in mind , however, that the Ger ch­
gorin disk con ist of the entire interior of the e circle, 
not just the boundary. 

For a proof of Ger chgorin' theorem, ee Golub and 
Van Loan.2 For our purpo e . only the moduli of the en­
tries of F (i.e .. the off-diagonal entrie of A) are u ed in 
the theorem, not the entrie them el e . Hence, the di k 
Di are invariant und r r placement of the off-diagonal 
element of A b element of the arne modulu . (Recall 
that the modulu , or ab olute value of a complex number 
z = a + ib i it di tance to the origin in the complex 

plane 1:1 = ~a2 + b2 
.) To implif the di cu ion of uch 

replacement of element of A. e pre ent the folIo ing 
definition. 

Definition 4. The replacement of an element (o r ele­
ments) of A by complex numbers with the same modulu 
(moduli ) a the original element will be called a unit 
change in A. 

The term unit change denote that the element (o r e le­
ments) of A i multiplied by a complex number of modu­
lu one, that i , a complex number on the unit circle in 
the complex plane. 

To describe precisel the region in the complex plane 
under consideration , we pre ent the following definition 
and notation. 

Definition 5. We denote the et of all complex ma­
trices who e entries have the arne modulu a the entrie 
of A by M(A) . 

Definition 6. We denote the set of all eigen alue of 
all matrice in M(A) by A(A). In other word. A(A) i 
the union of the eigenvalue of all po ible matrice in 
M(A) : 
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A( ) = U A(M) . 
.\1 E :1((A ) 

It i the r gion in the complex plane defined by A(A) 
that we wi h to identif . 

LOCI OF EIGE VAL ES 
Th problem of determining the region A(A) is diffi­

cult , but e eral I mentary ob er ation can be made. 
Fir t, if A i an eigen alu of M E M(A), then every 
point on the entire circle of radiu IAI centered at (0, 0) is 
an e igen alue of orne matri in M(A). For a given 
Il E C ith IIlI = IAI. e write Il = eiO A for some () E 
[0. 27r]. Then b Theorem _. Il i an e igenvalue of eioA, 
which i in I).,{( ) . 

Thu , we can imagine th region A( in the plane to 
be an uncountable union of circle cent r d at the origin . 
Moreo er. b Theorem 1, the igen alue of A are con­
tinuou in the ntrie of . Hence ince there are n 
e igen alue of the original matrix. b continuit there 
are at mo t n di connected r gion in the plane co e red 
b A(A). Thu . A con i t of n con entric (po ibl 
o erlapping) annuli centered about the origin. The re­
maining (and mo t difficult) problem i to determine th 
inner and outer radii of th annuli. 

One bound can be deri ed immediat I fro m G r ch­
gorin ' th orem; that i . form the r gion obtai ned b 
re 01 ing the Ger chgorin di k Di about the origin. The 
region 1) A) wept out b th union of th e di k ill 
form concentric (po ibl 0 erlapping) annuli. and 
Ger chgorin ' theorem (tog ther ith the ob ervation 
made after the th orem) guarantee that 

A( ) ~ 1) A) . 4) 

A imple e ample \ ill illu trate the conclu ion 
reached thu far. uppo th original entrie of a gi en 
matri A are multipled b e'o. for random () uniformly 
di tributed on the interval [0, -7rJ, and th eigenvalue of 
the re ulting matri plott d. The graph thu generated 
hould gi e an indication of the region A A . Here. a 

2 x _ matri i ufficient. 0 I t 

If the procedur i rep ated lOOO time . the r ult i the 
graph in Figure 1. (In ach figure that folIo . th 
Ger chgorin di k of the original matri are ploned. 
along with the e igen alue of 1000 random matrice in 
MCA) . The region 1)(A ) can be generated b re 01 ing 
the di k about the origin. ) 

In thi ca e, the t 0 Ger chgorin di k D , and D _ of 
A, coincide, \ ith D J = D2 = 1 ::1: - 21 ~ I }, which i 
the di k of radiu 1 centered at 2. Thu . 1) Al i the an­
nulu wi th inner radiu 1 and outer radi u 3. 

ote that th di tribution of the eigen alue ' plott d in 
Figure 1 i den e l concentrated around a central band in 

Johns Hop/" ins APL Technical Di~es( , \ oilime 12 . lImher 3 (/991 1 



the interior of the annulus. Of course, we have no reason 
to believe that a uniform distribution of () on [0, 27r] 
should result in a uniform distribution of eigenvalues in 
A( A I). What initial distribution of () in the random mul­
tiplication procedure described above would result in a 
uniform distribution of eigenvalues in A(A)? Does this 
distribution depend on A? 

The plot in Figure 1 makes it appear that A(A I ) = 
'DCA I) . On this basis, one might be tempted to conjecture 
that equality holds in general in Equation 4; that is, A (A) 
= 'D(A) for all A. But consider what happens to 'D(AI) if 
we replace the (2, 1) element of A I by some smaller val­
ue, for example, 

~J . 
Figure 2 shows the result of repeating the computa­

tional experiment on A2 . Note that the Gerschgorin disks 
are now distinct, but D2 c D I. Hence, the region 'D(A2) 
is the same as 'D(A I). However, Figure 2 reveals quite a 
different distribution of eigenvalues than in Figure 1. It 
appears that A(A2) is strictly smaller than 'DCA I). 

Might the computational experiment simply fail to 
discover some of the points in A (A 2 )? The answer is no. 
Consider the limiting case of shrinking the (2 , 1) ele­
ment, namely, the 2 x 2 matrix 

Since the eigenvalues of a triangular matrix are simply 
the diagonal elements, the region A(A) is just the circle 
of radius 2 centered at the origin, whereas 'D(A) is still 
unchanged. 

One final example will indicate the importance of 
continuity of the eigenvalues. As discussed previously, 
continuity implies that the region A(A) is the union of 11 

annuli centered at the origin. As we have just seen in the 
last example, these annuli may in fact degenerate to cir­
cles. Nevertheless, a second part of Gerschgorin's the­
orem will allow us to make further claims concerning the 
number of disjoint annuli making up the region A(A). 

Theorem 4 (Gerschgorin, part II). If the union of m of 
the disks Di is disjoint from the remainder of the disks, 
that union contains exactly m eigenvalues of A. 

Corollary 1. If the region 'D(A) consists of k disjoint 
annuli , the region A(A) must consist of at least k disjoint 
annuli. 

To see this, recall that an annulus of 'D(A) is formed 
by sweeping the disks Di around the origin. Each disjoint 
annulus of 'D(A) must have been formed from the union 
S of a subset of disks that are disjoint from the remainder 
of the disks. Hence, S must contain at least one eigen­
value of A (indeed, by Theorem 4, part II, it must contain 
exactly m eigenvalues, where m is the number of disks in 
the union S). Thus, A(A) must have a nonempty compo­
nent (annulus) contained within the annulus formed by 
rotating S about the origin. 
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On An Unsolved Problem of Olga Taussf...ry 

Figure 3 shows the result of the computational experi­
ment on a matrix with three disjoint annuli in 'D(A 3), cor­
responding to the matrix 

1 
9 
1 

~] . 
16 

As seen from Figure 3, the region A(A3) consists of three 
disjoint components, as required by the previous discus­
sion. 

In contrast, Figure 4 shows the results on a matrix 
with three overlapping annuli in 'D, corresponding to the 
matrix 

1 
5 
1 i] 

Evidently, the region A(A4) consists of a single annulus, 
consistent with the fact that the Gerschgorin disks of A4 
all overlap. 

3 

2 

2 0 
E 

-1 

-2 

-3 

Figure 1. 
matrix A1 0 

3 

2 

2 0 
E 

-1 

-2 

-3 

Figure 2. 
matrix A 2 0 

-4 -2 0 2 4 

Re(}.) 

Results of the computational experiment with 

-4 -2 o 
Re(}.) 

2 4 

Results of the computational experiment with 
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Figure 3. 
matrix A 3 . 
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Figure 4. 
matrix A4 . 
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- 10 o 
Re(A) 

10 20 30 

Results of the computationa l exper iment with 

- 10 -5 o 
Re(A) 

5 10 15 

Resu lts of the computat ional exper iment with 

Since tho e di k overlap-and hence the region 
'D(A4) ha only one connected component-the corollar 
to Theorem 4, part II, ay nothing about how man di­
joint annuli A(A4) can contain. Thi lead naturall to the 
following que tion: I the con er e of Corollar 1 true? 
That is , if 'D(A) con i t of k di joint annuli, mu t A(A) 
also have exactl k di joint component ? 

A simple counterexample how that the an wer i no. 
Consider the matrix 

[

l.9 

A- = ~ 
1 
2.1 
o 

Since As i upper triangular the region A(A-) is ju t the 
un ion of the three circle centered at the origin with radii 
l.9, 2.1, and 2. These are clearly di joint 0 A(As) ha 
three disjoint component . The three Ger chgorin di k 
corresponding to As are, however, the di k centered at 
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l.9 with radiu 1, the di k centered at 2.1 with radius 1, 
and the di k centered at _ with radiu 0 (i .e. the point 2). 
Clearly, the region 'DCA:) fo rm d b rotating these disks 
about the origin form a ingle annulu with inner radius 
0.9 and outer radiu .1. 

CO CLUSIO 

Sharp bound on th eigen alue of a general com­
plex matrix in term of it lement do not now exist. Al­
though Ger chgorin ' th orem i not the sharpest known 
bound, other bound ( uch a the I-norm and oo-norm 
bound ) that are aloin ariant with respect to unit 
change in the entrie of the original matrix are also in-
ufficient to categorize A(A). We claim that empirical in­
e tigation uch a tho de cribed in the preceding sec­

tion . ho e er, an offer in ight into the behavior of the 
eigen alue of a matri a it undergoe unit changes. Fu­
ture. more methodical computational in e tigation into 
thi di tribution of eigen alue may yield tronger 
re ult for bounding the pectrum of a general comple 
matrix. 
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