CHARLES H. ROMINE

ON AN UNSOLVED PROBLEM OF OLGA TAUSSKY

This article summarizes recent investigations about an unsolved problem in the distribution of eigen-
values over a class of matrices. Several elementary results in matrix theory are used to generate initial
results. Empirical results based on a computational study are also presented. The empirical study was moti-
vated by the ready availability of high-performance computers that can quickly compute thousands of

eigenvalues.

INTRODUCTION

While doing some background reading on the theory
of matrices, I recently read a survey paper by Olga
Taussky' that is a written record of a lecture given by her
at the second advanced seminar conducted by the
Mathematics Research Center of the U.S. Army. Many
results summarized in that paper concern the perturba-
tion theory of matrix eigenvalues: the analysis of the
effect that small perturbations in the elements of the
matrix have on the eigenvalues (characteristic roots).
After presenting several interesting theorems in perturba-
tion theory, she asked the following intriguing question:

An unsolved problem is: Take a matrix A, replace its ele-
ments in all possible ways by numbers which have the
same absolute value. What is the region in the complex
plane covered by all their roots?

The purpose of this article is to describe some investi-
gations into Taussky’s question. I do not claim that the
results presented here are new, although I have been un-
able to locate research that has cited Taussky’s paper. On
the other hand, her paper appeared more than twenty-five
years ago, and it is likely that the problem has been ad-
dressed. Moreover, although the question is not ad-
dressed in the paper, she was surely aware of some of the
elementary results given here. The advances in comput-
ing resources since the paper appeared, however, make it
possible to study the problem empirically. In fact, a pri-
mary motivation for working on the problem was the
ability to compute and plot thousands of eigenvalues
with almost instant turnaround in an interactive session.
The results presented should give the reader an apprecia-
tion for the role that computing can play in the investiga-
tion of theoretical questions in numerical analysis.

BACKGROUND

In this section, let us review some notational conven-
tions and well-known theorems of matrix theory that we
will use in the sequel.

We denote the real numbers by R, the complex num-
bers by C, and the set of all n X n matrices with real
(complex) entries as R"*” (C"*"). Unless otherwise
specified, all matrices under consideration are assumed
to lie in C"*".
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Definition 1. A matrix A is singular if there exists
some nonzero vector x for which Ax = 0 is satisfied.
Otherwise, it is called nonsingular.

Equivalently, the matrix A is singular if and only if
det A = 0. (Recall that det A denotes the determinant of
the matrix A.)

Definition 2. A number N\ € C is an eigenvalue of the
matrix A if it satisfies the equation

AX = XX (1)

for some complex vector x. The set of all eigenvalues of
A is the spectrum of A, denoted A(A).

Equation 1 can be rewritten as AXx — Ax =0 or
(A — N )x =0, where [ is the n X n identity matrix

1 0 0 0
0o 1 0 0
=0 0 1 0
0O 0 0 1

In particular, N\ is an eigenvalue of A if and only if
det (A — NI) =0. It is easy to show that det (A — \1)
is a polynomial of degree n in A; hence, by the Fun-
damental Theorem of Algebra, A has exactly n eigen-
values, although they need not be distinct.

Definition 3. The nth degree polynomial
det (A — A1) is called the characteristic polynomial of
the matrix A.

Hence, the eigenvalues of A are simply the roots of its
characteristic polynomial.

The characteristic polynomial is clearly a function of
the entries of the matrix; hence, the eigenvalues (roots of
the characteristic polynomial) are also functions of the
entries of the matrix. How “well-behaved” a function the
eigenvalues are with respect to the entries of the matrix is
described in the following theorem.

Theorem 1. The eigenvalues of a matrix A are con-
tinuous functions of the entries of A.
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Loosely speaking, continuity of the eigenvalues means
that a small enough change in the entries of A will ensure
that the eigenvalues of A change very little, a fact that
will have important consequences later.

Another elementary theorem in matrix theory that will
be useful to us is the following.

Theorem 2. For any scalar z € C and matrix A, if A is
an eigenvalue of A, then zA is an eigenvalue of zA.

Finally, we present a theorem on the “approximate™
location of the eigenvalues of a matrix.

Theorem 3 (Gerschgorin, part 1): 1f A =D +F,
where D = diag(d,, d>. . . ., d,) is the diagonal of A,
then

NA)c U D;, (2)
i=1
where
D; = {:EC:I:—(I,-ISEI]},»I} . (3)
J=1

The D; are called the Gerschgorin disks. and A(A) is
simply the region of the complex plane formed by the
union UD; of these disks. For simplicity, the Gersch-
gorin disks are represented by circles in the figures. The
reader should bear in mind, however, that the Gersch-
gorin disks consist of the entire interior of these circles,
not just the boundary.

For a proof of Gerschgorin’s theorem, see Golub and
Van Loan.” For our purposes, only the moduli of the en-
tries of F (i.e., the off-diagonal entries of A) are used in
the theorem, not the entries themselves. Hence, the disks
D; are invariant under replacement of the off-diagonal
elements of A by elements of the same modulus. (Recall
that the modulus, or absolute value of a complex number
z = a + (b is its distance to the origin in the complex
plane |z| = @’ + b” .) To simplify the discussion of such
replacements of elements of A, we present the following
definition.

Definition 4. The replacement of an element (or ele-
ments) of A by complex numbers with the same modulus
(moduli) as the original elements will be called a unit
change in A.

The term unit change denotes that the element (or ele-
ments) of A is multiplied by a complex number of modu-
lus one, that is, a complex number on the unit circle in
the complex plane.

To describe precisely the region in the complex plane
under consideration, we present the following definitions
and notation.

Definition 5. We denote the set of all complex ma-
trices whose entries have the same modulus as the entries
of A by M(A).

Definition 6. We denote the set of all eigenvalues of
all matrices in M(A) by A(A). In other words, A(A) is
the union of the eigenvalues of all possible matrices in
M(A):
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AA)= U

M E MA)

M) .

It is the region in the complex plane defined by A(A)
that we wish to identify.

LOCI OF EIGENVALUES

The problem of determining the region A(A) is diffi-
cult, but several elementary observations can be made.
First, if A is an eigenvalue of M € M(A), then every
point on the entire circle of radius |A| centered at (0, 0) is
an eigenvalue of some matrix in M(A). For a given
p € C with || = |\. we write u = ¢” \ for some 6 €
[0. 27]. Then by Theorem 2. u is an eigenvalue of ¢A,
which is in M(A).

Thus, we can imagine the region A(A) in the plane to
be an uncountable union of circles centered at the origin.
Moreover, by Theorem 1, the eigenvalues of A are con-
tinuous in the entries of A. Hence, since there are n
eigenvalues of the original matrix, by continuity there
are at most n disconnected regions in the plane covered
by A(A). Thus, A(A) consists of n concentric (possibly
overlapping) annuli centered about the origin. The re-
maining (and most difficult) problem is to determine the
inner and outer radii of the annuli.

One bound can be derived immediately from Gersch-
gorin’s theorem: that is, form the region obtained by
revolving the Gerschgorin disks D; about the origin. The
region D(A) swept out by the union of these disks will
form concentric (possibly overlapping) annuli, and
Gerschgorin’s theorem (together with the observation
made after the theorem) guarantees that

A(A)c DA) . (4)

A simple example will illustrate the conclusions
reached thus far. Suppose the original entries of a given
matrix A are multipled by ¢”, for random 6 uniformly
distributed on the interval [0, 2], and the eigenvalues of
the resulting matrix plotted. The graph thus generated
should give an indication of the region A(A). Here, a
2 x 2 matrix is sufficient, so let

2 1
NN

If the procedure is repeated 1000 times, the result is the
graph in Figure 1. (In each figure that follows, the
Gerschgorin disks of the original matrix are plotted,
along with the eigenvalues of 1000 random matrices in
M(A). The region D(A) can be generated by revolving
the disks about the origin.)

In this case, the two Gerschgorin disks D, and D, of
A, coincide, with D, = D, = {z:]z — 2| £ 1}, which is
the disk of radius 1 centered at 2. Thus, D(A,) is the an-
nulus with inner radius 1 and outer radius 3.

Note that the distribution of the eigenvalues plotted in
Figure 1 is densely concentrated around a central band in
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the interior of the annulus. Of course, we have no reason
to believe that a uniform distribution of € on [0, 27]
should result in a uniform distribution of eigenvalues in
A(A)). What initial distribution of 4 in the random mul-
tiplication procedure described above would result in a
uniform distribution of eigenvalues in A(A)? Does this
distribution depend on A?

The plot in Figure 1 makes it appear that A(A,) =
D(A;). On this basis, one might be tempted to conjecture
that equality holds in general in Equation 4; that is, A(A)
= D(A) for all A. But consider what happens to D(A,) if
we replace the (2, 1) element of A; by some smaller val-
ue, for example,

2 1
Ar= [0.1 2} :

Figure 2 shows the result of repeating the computa-
tional experiment on A,. Note that the Gerschgorin disks
are now distinct, but D, < D,. Hence, the region D(A,)
is the same as D(A;). However, Figure 2 reveals quite a
different distribution of eigenvalues than in Figure 1. It
appears that A(A,) is strictly smaller than D(A)).

Might the computational experiment simply fail to
discover some of the points in A(A,)? The answer is no.
Consider the limiting case of shrinking the (2, 1) ele-
ment, namely, the 2 X 2 matrix

Since the eigenvalues of a triangular matrix are simply
the diagonal elements, the region A(A) is just the circle
of radius 2 centered at the origin, whereas D(A) is still
unchanged.

One final example will indicate the importance of
continuity of the eigenvalues. As discussed previously,
continuity implies that the region A(A) is the union of n
annuli centered at the origin. As we have just seen in the
last example, these annuli may in fact degenerate to cir-
cles. Nevertheless, a second part of Gerschgorin’s the-
orem will allow us to make further claims concerning the
number of disjoint annuli making up the region A(A).

Theorem 4 (Gerschgorin, part I1). If the union of m of
the disks D, is disjoint from the remainder of the disks,
that union contains exactly m eigenvalues of A.

Corollary 1. If the region D(A) consists of & disjoint
annuli, the region A(A) must consist of at least & disjoint
annuli.

To see this, recall that an annulus of D(A) is formed
by sweeping the disks D; around the origin. Each disjoint
annulus of D(A) must have been formed from the union
S of a subset of disks that are disjoint from the remainder
of the disks. Hence, S must contain at least one eigen-
value of A (indeed, by Theorem 4, part II, it must contain
exactly m eigenvalues, where m is the number of disks in
the union S). Thus, A(A) must have a nonempty compo-
nent (annulus) contained within the annulus formed by
rotating S about the origin.
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Figure 3 shows the result of the computational experi-
ment on a matrix with three disjoint annuli in D(Aj), cor-
responding to the matrix

4 1 1
As=|1 9 1
11 16

As seen from Figure 3, the region A(A5) consists of three
disjoint components, as required by the previous discus-
sion.

In contrast, Figure 4 shows the results on a matrix
with three overlapping annuli in D, corresponding to the
matrix

4 1 1
A,=|1 5 1
1 1 6

Evidently, the region A(A,) consists of a single annulus,
consistent with the fact that the Gerschgorin disks of A,
all overlap.

Im(A)

Re())

Figure 1.
matrix Ay.

Results of the computational experiment with
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Figure 2.
matrix Ao.

Results of the computational experiment with
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Figure 3. Results of the computational experiment with
matrix Az.
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Figure 4. Results of the computational experiment with
matrix Ag.

Since those disks overlap—and hence the region
D(A,) has only one connected component—the corollary
to Theorem 4, part II. says nothing about how many dis-
joint annuli A(A,) can contain. This leads naturally to the
following question: Is the converse of Corollary 1 true?
That is, if D(A) consists of k disjoint annuli, must A(A)
also have exactly k disjoint components?

A simple counterexample shows that the answer is no.
Consider the matrix

139 1 0
0 0 2

Since As is upper triangular, the region A(As) is just the
union of the three circles centered at the origin with radii
1.9, 2.1, and 2. These are clearly disjoint, so A(As) has
three disjoint components. The three Gerschgorin disks
corresponding to As are, however, the disk centered at

1.9 with radius 1. the disk centered at 2.1 with radius 1,
and the disk centered at 2 with radius 0 (i.e., the point 2).
Clearly, the region D(As) formed by rotating these disks
about the origin forms a single annulus with inner radius
0.9 and outer radius 3.1.

CONCLUSION

Sharp bounds on the eigenvalues of a general com-
plex matrix in terms of its elements do not now exist. Al-
though Gerschgorin’s theorem is not the sharpest known
bound, other bounds (such as the l1-norm and cc-norm
bounds) that are also invariant with respect to unit
changes in the entries of the original matrix are also in-
sufficient to categorize A(A). We claim that empirical in-
vestigations such as those described in the preceding sec-
tions, however, can offer insight into the behavior of the
eigenvalues of a matrix as it undergoes unit changes. Fu-
ture, more methodical computational investigations into
this distribution of eigenvalues may yield stronger
results for bounding the spectrum of a general complex
matrix.
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