LOUIS MONCHICK

MODERN QUANTUM KINETIC THEORY
AND SPECTRAL LINE SHAPES

The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Ra-
man scattered line shape described. The distinguishing feature of this calculation is that it was completely
ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing
molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation em-
ployed a large assortment of tools: group theory, finite-element methods, classic methods of solving cou-
pled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix
methods of solving integral equations. Agreement with experimental results was excellent.

THE PROBLEM

Almost with the inception of quantum mechanics,
theorists—mostly nuclear and atomic physicists—had
developed the general scattering equations necessary to
describe collisions between fundamental particles. With
almost no exceptions, however, only a few angular
momentum and spin states were involved; as a result,
these calculations were not computationally intensive. In
principle, the general methodology was applicable to the
calculation of molecular inelastic and reactive collisions,
which are important ingredients of reaction rates, trans-
port properties, and, as in the present case, line broaden-
ing. Calculation of these cross sections, however,
requires inclusion of many rotation, spin, and orbital
angular momentum states as well as several vibrational
and electronic states. The number of required states
increases linearly and sometimes quadratically with the
molecular weight and complexity of the molecules; the
result is that problems involving molecular collisions
were forced to await the advent of modern computers
before they could be attacked. Even then the door had
been opened only a chink, because the speed of machines
had increased linearly with time, but the size and dura-
tion of a computation had increased as the cube of the
number of states: therefore, despite the advances in
kinetic and scattering theory, only rather approximate
methods have been applied to most real problems. These
methods, often elegant and ingenious and always plausi-
ble, nevertheless had limited applicability and somehow
made simplifying assumptions about the fundamental
physics of the process.

At present, only systems composed of hydrogen (H,).
deuterium (D,), and helium (He) can be attacked with a
minimum of ad hoc assumptions. As a result, these are
the only calculations that can be compared directly with
experimental results and thus serve as benchmarks for
simpler approximations. The calculations presented here
will be confined to a He-D, system because of the avail-
ability of extremely accurate experimental data for com-
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parison,' the availability of an extremely good model of
the interaction of helium with two deuterium atoms, and
the feasibility of carrying out the calculation in a finite
time and at a reasonable cost. The goal, which we did not
quite reach, was an entirely ab initio computation con-
taining assumptions only about the rate of convergence
of the numerical procedures used, with no experimental
quantities except Planck’s and Boltzmann’s constants
and the electronic charge and mass of the electron, deuter-
on, and helium nucleus. As described in the following
sections, practicality forced us to compromise for an ap-
proximation; judging from the outcome, this approxima-
tion was quite good. The next section presents a prelimi-
nary qualitative description of the theory of line shapes,
followed by a brief account of the kinetic theory of line
shapes, and then a description of the calculation.

PRELIMINARY REMARKS

Spectra, the interaction of light and matter, have been
and still are a major tool for studying electronic struc-
tures of atoms and molecules. Loosely speaking, this
subject might be characterized as the study of in-
tramolecular forces, because energy levels are deter-
mined by a balance between kinetic energy and coulom-
bic interactions. More recently, the realization that
collisions influence widths of spectral line shapes has led
to the use of spectra to measure intermolecular forces,
which are manifested in several contrasting mechanisms
that affect the widths and shapes of spectral lines. An
isolated atom or a molecule in an excited state is
metastable and. if it does not transfer its energy to some-
thing else first, radiates its extra energy in the form of a
photon. The energy of the photon will not correspond ex-
actly to the difference in energy levels of the excited and
ground states, AE = E; — E; = hw;. where # is Planck’s
constant divided by 27 and wj is the frequency of the
transition, but it will be distributed over a range of ener-
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gies. The plot of the intensity of the emitted light versus
the energy of the photon, Aiw, called the line shape, is
more or less a Lorentzian

S(w) o< (w— wy+ i1, (1)

where 7 is the e-folding lifetime of the excited state and
w is the angular frequency. It can be seen that the width,
Aw = lw;/, — wyl, at which the Lorentzian is one-half the
maximum, occurs at Aw = 7, which is just what one
would expect from the Heisenberg uncertainty principle.
This is called the natural width of a spectral line because,
absent any external influences (collisions, fields, mea-
suring apparatus) or motion of the radiating molecule,
this width is what would be observed.

In the real world, a molecule is never isolated. It has
frequent collisions with other molecules, less frequent
ones with the walls, and occasional interactions with
externally imposed fields. Consequently, the state,
particularly the velocity, of an individual radiating mole-
cule is not known exactly, but it is distributed according
to some probability rule, usually taken to be the
Maxwell-Boltzmann distribution law

fO = A~ lexp(-E, /kT) , (2)

where ,

o is the aggregate quantum number or the set of all

the quantum numbers describing all the possible

degrees of freedom,

E, is the energy of this state, including kinetic and

thermal,

k is Boltzmann’s constant,

T is the absolute temperature,

9 is the probability of the molecule occupying that

state, and

A~!is a normalization constant.
The kinetic energy component of E, is mv?, where m is
mass and v is velocity, which means that the radiating
molecule is seldom at rest relative to an observer, and
therefore every possible value of velocity along the line
of sight shifts the frequency of the radiated line by the
well-known Doppler shift formula. The center of gravity
of each corresponding Lorentzian is shifted as well; thus,
the observed line shape must be the resultant of all possi-
ble shifted natural line shapes. The result is the familiar
Doppler line shape, essentially a Gaussian.

Doppler line shapes are seen only at pressures low
enough that the mean time required to complete a radia-
tive transition is reduced to values below the mean time
between collisions. At somewhat higher pressures, radi-
ating molecules will collide and change direction several
times before the radiation process is completed. Conse-
quently, molecules no longer move in straight lines but
execute something like the “drunken man’s walk.” As a
result, even if a molecule does not change its speed, the
average velocity along a line of sight, as seen by an ob-
server, decreases, and the line shape narrows and
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changes shape. This phenomenon, called Dicke narrow-
ing, has been observed many times since it was first
predicted.’

What has been neglected up to this point is that every
collision introduces an uncertainty in the phase of the
radiator, which may be reinterpreted as an uncertainty in
energy, leading to a widening of the line shape. At high
energies and increasing collision frequencies, this effect
becomes more important than Dicke narrowing and
produces the pressure broadening generally seen at mod-
erate and high pressures. As is well known, the “drunken
man’s walk” is a diffusion mechanism that measures the
average momentum transferred per collision. This value,
in turn, is a function of the average component of force
along the initial direction of relative motion of two
molecules.’ As an empirical rule of thumb, this process
is determined mainly by elastic collisions and the orien-
tation-averaged intermolecular potential. Line broaden-
ing, on the other hand, can be a sensitive function of in-
elastic and reorientating collisions that can occur only if
the potential has orientation-dependent components. Ob-
servation of a process dependent on the presence of
orientation-dependent components is what interests
chemical physicists.

THE KINETIC THEORY OF LINE SHAPES

The descriptions in the previous section were con-
fined to an elementary “hand-waving” level and could be
refined; but the resulting theory, although easily visual-
ized, would be rather clumsy and jerry-built. The most
rigorous way to proceed is to solve the Schrodinger
equation or its equivalent, the von Neumann equation,
for N interacting molecules and N’ photons. The number
of interacting molecules, however, is on the order of
10%, which is completely out of the range of feasibility.
The popular approach of direct simulation by Monte
Carlo methods is also infeasible: even though the num-
ber of particles is manageable, 100 to 1000, correlations
between gas-phase collisions are negligible, and relevant
scattering events are few. It is simpler to use single-parti-
cle kinetic equations in which the effects of all possible
interactions are accounted for by effective collision cros
sections. ‘

Because radiative transitions are functions of the ini-
tial and final states and an electromagnetic field, it is nat-
ural to use density matrices, p', the superscript 1 signify-
ing the description of a single representative molecule.
The macroscopic value of any classical dynamic vari-
able, A, is then determined by

(A)=1 ojA;i= L (ilo'li) CilAt) = T (ilo'Ali)
7 y i (3)

where A is the quantum operator corresponding to A, and
li) and (jl are the generalized Hilbert-space vectors- cor-
responding to the states 7 and j. In this representation, p,-lj
and Aj; are seen to be the quantum analogs of aclassical
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distribution function and a classical dynamic variable.
Indeed, the diagonal element of p', p; can be identified
as the population density of the ith quantum state. The
off-diagonal elements, p,',v. i # j, which vary with time as
explih (E, - E;)t] in the absence of any interaction, are
interference terms. In the presence of an external field.
they have the added significance of being a measure of
the polarization induced by the field.

Another characteristic of singlet-density matrices is
that, because they describe single, representative mol-
ecules, all information concerning fluctuations is lost.
This characteristic is not a drawback as regards line
shapes, however, because they are directly related to the
spectral response function, which in turn is related to p, a
Laplace transform of p,

S(w) =Y GIP'5 Plj) ., 4)
p= Jexp(twt + tk-x)p dt dx . (5)

Here P and its adjoint, P", are the operator equivalents of
the polarization of the radiating molecule induced by an
electromagnetic field. In the presence of a weak or
moderate-strength electromagnetic field, the density ma-
trix obeys the following equation if the translational
degrees of freedom can be treated classically* as

o — wy + K- x)pp, + (Thp) = '113(2) o . (6)

where (T5'?) is a shorthand notation of the average sum
of all the interactions of the other N — 1 molecules with
the Nth, and 5* is the density matrix of a pair of
molecules obtained by fixing their quantum state and
averaging and summing over the states of the remaining
N — 2 molecules. Thus defined, p'* is a complex func-
tional of 5", (Tp'?) is a complex functional of 5%, and
the reduced kinetic equation is in principle exact even
though fluctuation phenomena are buried deep inside
(Tﬁ(l))'

In actuality, however, the exact form of (T'?) is not
known, and we have to use a set of approximations that,
although for the most part supply a very good description
of dilute gases, have not gone unchallenged. These ap-
proximations are as follows: (1) the interaction between
the two molecules is described from knowledge of the
results of completed collisions that occur on a time scale
that is much smaller than that of any other process in the
gas; (2) before a collision, or sets of collisions, the states
of two molecules are totally uncorrelated; and (3) only
first-order corrections need be retained for deviations
from local equilibrium. The first assumption is known to
violate detailed balance in the theory of spectra of over-
lapping lines and to yield poor descriptions of the far
wings of broad spectral lines because the spectral re-
sponse function depends directly on the difference of the
radiation field frequency and the natural resonant fre-
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quency of the line. According to the Heisenberg uncer-
tainty principle, the uncertainty in the radiative lifetime
varies inversely with this frequency difference; thus, the
duration of a collision cannot be considered negligible
far out in the wings of a spectral line. These reservations
can be waived in the present case, which concerns very
narrow, exactly resonant, isolated lines. The second ap-
proximation is Boltzmann's stosszahlansatz, which has
been violated by many computer experiments designed
to simulate dense gases and liquids, but which, it seems,
can be safely ignored at low and moderate pressures. The
third is well satisfied by the experiment considered here.

The rather complex term T5'* has been written as the
result of operating on a density matrix ¥ with a “su-
peroperator” or tetradic T: both terms are common us-
age. The first approximation allows us to write Tp® in a
form that slightly resembles the familiar Boltzmann col-
lision operator:”-°

Ts® = - 2n)' J d P U d’pp, f"3p?*e

2y .+ l ~(2 ~(2) .+
X tp" 7t + 5 (1p"~ — p"'f'):| . (7

Here ¢, which will be discussed briefly in the next sec-
tion, is the familiar t-matrix of scattering theory; 7’ is its
adjoint; and 571", 1p'?, and p'*'t" are matrix products.
All integrations and implied sums are understood to be
confined to the energy shell, that is, those collisions
where energy is conserved. The second and third approx-
imations allow us to replace 5 by 5, fi-

Here we have implicitly assumed that the He concen-
tration is so much larger than the D, concentration that
the He is always in equilibrium; this equilibrium reduces
the dissimilarity somewhat between Tp and the Boltz-
mann collision operator, but the kinetic equation still re-
tains t-matrices rather than cross sections as a necessary
component because of the possibility of interference pat-
terns set up after every collision. The initial wave packet,
essentially a partially localized plain wave, is broken up
into a set of scattered waves corresponding to the set of
final states populated by the collision. The vibrational
and electronic energy levels usually are sufficiently well
separated to allow scattered waves to separate in space
before the next collision and not mutually interfere (Fig.
1). Nearly degenerate states, such as those that occur in
rotation multiplets and electronic fine structure, usually
cannot separate as well as those shown in the figure,
resulting in interferences.

Equation 7 shows that, because py,, is not known ex-
actly but only implicitly as the solution of a rather com-
plicated equation, it will be a rather complex function of
all the translational and internal degrees of freedom. As
in the case of the Boltzmann equation, p may be simpli-
fied slightly because of several constraints that T must
satisfy in all stages of approximation. One is that T be
independent of the frame of reference:; in particular, it
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Inelastically
scattered wave
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Figure 1. A wave packet approaches a target, in this example
(top), a diatomic molecule. A short time after the collision (bot-
tom), the primary beam, slightly attenuated, is on the verge of col-
liding with another molecule. Elastically scattered waves are radi-
ating outward with the same relative velocity as the primary beam
and have moved the same distance from the target. Inelastically
scattered waves have moved away at a slower speed and are
well separated from the elastically scattered waves.

should be rotationally invariant. It is then natural to
expand pp, in an infinite series of density matrices
minimally affected by the orientation of the gas relative
to an observer. These matrices are chosen to be the irre-
ducible representations of the rotation group, U‘j-’% a®
which have the property that all matrices with a given
value of J and M transform under rotations into linear
sums of the other matrices with the same value of J and
M, and no others.” Then p can be expanded as

~ _ ~JM IM A
o, = L Bjja() Uifu®). (8)
JM,L,q ’

The eigenfunctions, U, are really operators and must cou-
ple rotation eigenfunctions of the translational momen-
tum, Y,,L,(O), to the rotational angular momentum of the
states before and after the radiative transition; ¢ is the
magnitude of the pseudo-angular momentum resultant of
lj;m;) and (j,m,l, and J is the resultant of adding the
momenta L and ¢. By the usual quantization rules, the al-
lowed values of ¢ and J are restricted to
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lji = Jel = g = i + Jp
lg— LI£J<qg+L.

Because of the rotational invariance of T, this choice
of expansion has the desirable consequence that all
tetradics of T and other rotationally invariant superoper-
ators are block diagonal in J and M. In mathematical no-
tation,

(U LO) [T UL G =0,

Jilf Ji'ifa
J#EI'M £ M'. 9)

This is shown schematically in Figure 2, specifically,

Top, =2 L L L L Ulu®

JM JI/}‘ gL j"j/’ q'L’

oo

xj KA gLv o T ")
0

~JM 2
X Bjrjprqr (V) Sdv (10)

As shown in Equation 10, other desirable dividends of
this elementary application of group theory are as fol-
lows: (1) the kernel and the expansion coefficient under
the integral sign are now scalars; (2) the integration over
velocity orientations has been buried in the kernel; and
(3) the kernel itself is a symmetric function of the dy-
namic variables before the collision, which are represent-
ed by the primed quantities, and the postcollision vari-
ables, which are represented by the unprimed quantities.
The last feature now allows us to employ any of the bat-
tery of methods developed for integral equations with
symmetric kernels.®

Tangent to the blocks diagonal in J (Fig. 2) are two
parallel diagonal rows that result from the coupling of
the J, J + 1 blocks by the drift terms in the quantum
Boltzmann equation. This comes about because, al-
though the collision terms are independent of the place-
ment of an observer, the presence of an electromagnetic
field defines a preferred direction that enters into the drift
terms. At the higher densities, the collision terms—repre-
sented by the diagonal blocks—dominate, and the Y|
component of the density matrix is effectively decoupled
from the higher-order nonspherical terms. The line shape
is then determined by the pressure-broadening cross sec-
tion and assumes the familiar Lorentzian shape. At
progressively lower densities, however, the drift terms
become more important, and more and more nonspheri-
cal terms are coupled by the kinetic equation, affecting
the spherical term to at least second order. The most im-
portant of these are the Y9"*! tensorial components. The
matrix element of the collision operator sandwiched by
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Wieere WRWyeere WyW oo e WyW,eeo-

Figure 2. The matrix of the collision kernel KL( Wi, W/v'), where
the velocity distribution function has been expanded in spherical
harmonics Y (?) , and W;is the postcollision and W,-'the precolli-
sion values of the (normalized) velocity evaluated at the pivot
points of a suitably chosen Gaussian integration algorithm. Each
X corresponds to a nonvanishing matrix element.

these components is the momentum transfer cross sec-
tion, long familiar to the kinetic theory of diffusion. The
line width, which is dominated by the relaxation term at
high densities, decreases as the density is decreased until
the diffusion terms, which vary inversely with the densi-
ty, assume the dominant role and the line width increases
again, eventually approaching the Doppler line shape at
very low pressures.

THE COMPUTATION

Several years ago, scientists at the National Institute
of Standards and Technology' began extremely accurate
measurements of Raman scattering of D, in several
gases, including He. These experiments measured the
polarized Stokes-Raman Q-branch (Aj = 0) scattering of
frequencies corresponding to the v =0 — 1 vibrational
transition of D, at densities ranging from a fraction of an
Amagat to 8 Amagats. An Amagat is a unit of density
and volume defined as the ratio of the number of
molecules per cubic centimeter to the number of
molecules per cubic centimeter in a perfect gas at | at-
mosphere of pressure and at 0° C. In coherent anti-
Stokes—Raman scattering a laser beam is formed with a
multiple of some frequency approximating the separa-
tion of two quantum levels of a chosen molecule. The
sample is irradiated with this beam and a probing beam
with a different tunable frequency. Spectral transitions
are now induced; this is called scattering because pho-
tons are taken out of the primary beam. If the transition is
to a higher level, this is called anti-Stokes scattering. If
the initial and final rotational states are the same, this is
called a Q-branch transition.

This set of experimental conditions included line
shapes dominated by the Dicke narrowing as well as
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those characterized by high-pressure broadening. At the
same time, Robert Blackmore (a postdoctoral fellow at
APL), Sheldon Green (a scientist at NASA), and I under-
took a calculation of these effects in D, immersed in He,
making a minimal number of extraneous physical as-
sumptions. This calculation required (1) ascertaining the
intermolecular forces between D, and He, (2) solving the
scattering equations for all events relevant to line-shape
broadening, and (3) inserting the resulting cross sections
into the appropriate kinetic theory and solving for the
spectral response function, which produces the line
shape.

A glance at the collision kernels describing classic
structureless particles shows that they are not simple.
The quantum version is even more complex. For as sim-
ple a system as D,-He, as many as eight angular momen-
ta are coupled in the final complex formula for the colli-
sion kernels, K’(j,jrqLv: j.j;q’L'v"). The first step is
the computation of matrix elements of the D,-He poten-
tial energy for a small set of rotational and vibrational
states; the second step is the solution of the scattering
equations for the t-matrices; the third step is the insertion
of these t-matrices into collision kernels; and the fourth
step is the solution of the quantum kinetic equation.

Some years ago, a molecular orbital calculation was
carried out for the electronic energy of two hydrogen-
like atoms and a helium atom clamped in space at several
configurations.” For this clamped potential energy sur-
face, V(Irl, IR, r - R). which is known as the Meyer—
Hariharan—Kutzelnigg potential, Il is the distance be-
tween D, and He, |R| is the D-D internuclear distance,
and r - R is a measure of the relative orientation of D,
and He. The potential energy surface is also valid for two
D atoms and one He atom clamped in space. The accura-
cy of this surface is borne out by many comparisons of
experiment and predictions based on it. At each D,-He
separation and relative orientation, the potential energy
surface was calculated at five D-D separations. It is now
convenient to replace the R-dependent potential energy
surface, V, by the vibrational matrix elements of V, that
is, by a set of integrals of V' sandwiched by the initial and
final vibrational state. The method chosen to solve the
wave equation for the relative nuclear motion was, by in-
terpolation in the variable R, to evaluate V at the pivot
points of a suitable Hermite polynomial. This procedure
is similar in spirit to the pseudospectral methods de-
scribed by Ku and Rosenberg in this issue. The differen-
tial equation in R could then be converted to a matrix
equation, which was then solved with the usual normali-
zation and boundary conditions. When the vibrational
energy eigenvalues calculated at large D,-He separations
were compared with spectroscopic values, accuracies of
=(0.2% were indicated for the vibrational wave func-
tions, x,(IRl). Most of the calculations of vibrational—
rotational matrix elements,

JdR [x, (IRDY , (R)YV(Irl, IRI, 7 - R)x.(IRDY ,,(R) ,
(11)
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were carried out with rigid rotor rotational wave func-
tions, Y/ (R) , with rotational energies corrected for cen-

m
trifugal stretching. A final set also included centrifugal
stretching in the vibrational wave function. The vibra-
tional and rotational quantum numbers included were v =
0.landj=0,1,2,3,4,5, 6, 7. These calculations were
carried out in overnight runs on an IBM AT, and the poten-
tial energy matrices were then sent via BITNET to New
York for step two.

Because this is a quantum mechanical system, the
scattering information is obtained not from trajectories
but from solving the Schrodinger equation with the solu-
tions having the asymptotic form

exp(ek - X, (IRDY,,(R)

m

—= L 2auexpulk I ey jm X (IRDY(R) -
vii'm’

(12)

The usual practice in molecular-scattering calculations is
to expand a prototype wave function in the set of all pos-
sible internal states—and a few closed channels as well—
and a large number of partial waves representing the
resultant of the rotational and orbital angular momenta of
the trajectories of relative motion. This representation is
chosen because scattering equations are rotationally in-
variant in the relative motion frame of reference and be-
come block diagonal if the expansion set is taken to be
the set of total angular momentum eigenfunctions. The
required number is established by making a few test cal-
culations to determine the rate of convergence. The time-
independent Schrodinger equation is then solved at a sin-
gle total energy for all possible independent boundary
conditions, and the solutions are then combined into
wave functions having the asymptotic form of Equation
12. The requisite scattering information is determined by
the asymptotic value of the wave function at the comple-
tion of the collision and succinctly represented by the
contracted set of data composed of the t-matrices. The t-
matrices represent the contracted set. These data are cal-
culated automatically by a software package called MOL-
scaT,'® which requires as input only the potential energy
matrices calculated in step one. The scattering informa-
tion was destined for a Q (Aj = 0) branch v=0 — 1 Ra-
man line, requiring calculations for v = 0 and for v = 1.
The required calculations were performed on a NASA IBM
360 during several overnight runs, and the results were
returned to APL on tape.

In step three, the t-matrices were recoupled to form
the collision kernels. This step was necessary because
the scattering matrices and the collision kernels are rota-
tionally invariant in different spaces. Development of a
formula for the collision kernels was not a straightfor-
ward task,” but rather depended on choosing a momen-
tum space transformation that is not at all obvious. One
final approximation was introduced that set ¢ = 0 and
reduced the size of the computation. The subsequent
coding of the resultant formula for the computer was
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laborious but straightforward. In line broadening, the
coding involved summing products of two t-matrices and
terms representing all the possible couplings of the mag-
nitudes of six angular momenta. No chains of interior
matrix multiplications could be optimized other than the
sums over magnetic quantum numbers that already had
been carried out analytically and were now buried inside
the coupling coefficients, which are known in the trade
as 6-J symbols. The code was optimized somewhat by
evaluating the 6-J symbols recursively, but even then a
typical calculation took between thirty minutes and two
hours on the Ahmdahl 5890-200E.

In the final stage, the kernels were evaluated at the
pivot points of a Laguerre polynomial of order N = 30,
converting the integrals over v’ in Equation 10 into a
30 x 30 matrix multiplying a vector of order 30. As is
well known, this conversion is equivalent to approximat-
ing the density-matrix coefficients with an expansion in
Laguerre polynomials truncated at the 30th term. In prin-
ciple, the density matrix could have been expanded
directly in Laguerre polynomials, and each of the matrix
elements could have been evaluated individually as in
the older texts on kinetic theory. The present procedure
avoids that step by doing it automatically. Remembering
that, with the last approximation, J = L, Equation 6 could
then be mapped onto a matrix equation

A-x=y.

Matrix A is composed of 30 x 30 blocks clustered along
the diagonal with the blocks ordered by increasing
values of J. As noted in the previous section, the blocks
are coupled by two parallels to the diagonal (cf. Fig. 2),
which become increasingly important at lower densities.
Preliminary calculations indicated that including J-
blocks up to J = 5 was sufficient to represent the spheri-
cal part of the density matrix near the Dicke narrowing
minimum (Fig. 3). The final computation then proceed-

300 T T T

200

100

Molecular velocity distribution function

2 4 6 8 10
Normalized molecular velocity

-100 1 1 1 1
0

Figure 3. The deviation of the L = 0 component of the density
matrix, p, from a Maxwell-Boltzmann distribution as a function of
a normalized velocity and of the maximum value of L when p is
expanded in a series of spherical harmonics, Yy (¥).
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ed by inverting the 180 x 180 sparse matrix at a series of
densities and frequencies. This relatively small calcula-
tion could be done overnight on a 386 PC.

RESULTS

The experimental results to be reproduced were ob-
tained by first forming a sharply focused, almost mono-
chromatic laser beam corresponding to the Aj =0, Av =0
— 1 transition of D,. The beam entered a cell containing
a 90% He:10% D, mixture and traversed it about forty
times. The values that we have called “experimental”
have been corrected for backward scattering and interfer-
ences that occur each time a ray traversing the cell cross-
es another ray. The measured line shapes were then at-
tributed to Raman scattering in the forward direction,
and the line widths and shifts were calculated from
phenomenological formula fit to the measurements.

In the calculations reported here, the frequency grid
was fine enough to allow evaluation of the widths and
shifts directly from the numerical results. The high-
density widths and shifts vary almost linearly with den-
sity. The asymptotic density coefficients of these quanti-
ties are shown in Table 1.'"" Computations incorporating
centrifugal stretching and vibrationally inelastic effects
do not cause any significant improvement. Considering
the availability of only five points with which to evaluate
vibrational wave functions and the fact that width and
shift coefficients are evaluated by the asymptotic varia-
tion, the agreement with experimental results is about as
good as can be expected.

A representative set of line shapes® at a given value of
Jrot (€., the rotational quantum number) is shown in Fig-
ure 4. Line widths as a function of density and j,, are
shown in Figures 5 to 7 for both computed and ex-
perimental results. The difference between the two is due

Spectral response function

Relative frequency (cm™)

Figure 4. The spectral response function for jo; = 0 evaluated
at a set of densities ranging from 0.3 to 6 Amagats. At 6 Amagats,
the spectral response function is almost Lorentzian. (An Amagat
is a unit of volume and density defined as the ratio of the number
of molecules per cubic centimeter to the number of molecules per
cubic centimeter in a perfect gas at 1 atmosphere of pressure and
at 0° C; j,ot is the rotational quantum number.)

in part to differences in the numerical methods used for
extracting half-widths from the raw experimental data
and computed line-shape data. Detailed comparison of
calculated and experimental line shapes shows few dis-
cernible differences.'” All in all, the results were very
gratifying.

The achievements of this study can be summarized as
follows:

1. The accuracy of the Meyer—Hariharan—Kutzelnigg
He-H, potential energy surface was demonstrated once
again.

Table 1. Comparison of theoretical and experimental width and shift parameters for the Q(J) lines of D5 in
He at 298 K.
Width Shift

J Experiment®  Theory » ¥ Yaeo Experiment”  Theory

0 2.35 2:33 0.73 1.00 0.60 6.1 72

1 1.20 1.11 0.18 0.24 0.69 6.5 £

2 1.73 1.66 0.40 0.54 0.72 6.8 7

3 1.62 1.54 0.34 0.45 0.75 6.9 79

-+ 1.40 1:29 0.22 0.29 0.78 6.8 8.0

5 1.20 1.14 0.16 0.23 0.82 NM 8.2

Note: Theoretical values include centrifugal distortion in the potential matrix elements but not in the rotational energy
levels; vibrational inelasticity is ignored. The theoretical widths have been decomposed into the dephasing part, Ygep.

and the inelastic contributions within v =0 and v = 1, y",

NM = not measured.
Reprinted, with permission, from Ref. 1.

and y!

respectively. All values are in 10-3 cm~!/Amagat.

Jin?

G. J. Rosasco and W. Hurst, personal communication, 1989.
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Figure 5. The half-width at half-maximum (HWHM) of the spec-
tral response curve for the Stokes—Raman Q-branch scattering of
the v=0 — 1 transition of D, immersed in helium: jio; = 0 (ot iS
the rotational quantum number). The squares are experimental
data. The solid black line is the curve predicted by the calculation
described here. The circles are the results of a slightly amplified
calculation; the other symbols and colored lines are the results of
more approximate theories.
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Figure 6. The half-width at half-maximum (HWHM) of the spec-
tral response curve for the Stokes—Raman Q-branch scattering of
the v=0 — 1 transition of D, immersed in helium: jio; = 1 (jiot is
the rotational quantum number). The notation is the same as in
Figure 5.

2. Modern molecular-scattering methods have pro-
gressed to the point where they are, in principle, applica-
ble to all molecular and kinetic processes.

Johns Hopkins APL Technical Digest, Volume 12, Number 3 (1991)

Modern Quantum Kinetic Theory and Spectral Line Shapes

T T

0.020 T T

0.015 a 4

)

S 0010, 1

HWHM (cm~!

0.005 7

1 1 Il 1

2 4 6 8 10
Density (Amagats)

Figure 7. The half-width at half-maximum (HWHM) of the spec-

tral response curve for the Stokes—Raman Q-branch scattering of

the v=0 — 1 transition of D, immersed in helium: jio; = 2 (jiot iS

the rotational quantum number). The notation is the same as in

Figure 5.
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3. Generalized quantum Kinetic equations can be
solved by collision kernel methods, otherwise known as
discrete ordinate methods, that had been developed for
neutron diffusion and planetary escape processes, effect-
ing a significant improvement in computational speed
and accuracy. A drawback is that the results are not rep-
resented by a simple formula.

4. In principle, extensions to higher-order tensor
polarizations can be made by using sparse matrix and
perturbation methods.

5. In each of the preceding conclusions, the qualify-
ing phrase “in principle” means “provided enough com-
putational power is in hand.”

These calculations may be considered a validation of
the current state-of-the-art molecular scattering theory
and gas kinetic theory. Although not described here,
these calculations also served as benchmarks for simpler,
more approximate methods. The latter are now being ap-
plied to deuterium/hydrogen rotational transitions in the
upper atmospheres of the outer planets (J. Schaefer and
L. Monchick, unpublished data). One immediate appli-
cation is the estimation of the deuterium/hydrogen con-
centration in the atmospheres of Jupiter, Neptune, and
Saturn."
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