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PSEUDOSPECTRAL ELEMENT METHOD FOR 
COMPUTATIONAL FLUID DYNAMICS AND ITS 
PARALLEL IMPLEMENTATION 

The ba ic equation of fluid mechanic ha e been known ince earl in the nineteenth century, but their 

nonlinear character ha made it very difficult both to under tand their general features and to predict flow 

evolution in specific cases. The possibility of using computer to attack uch problem numerically was one 

of the original motivations for the development of tored-program digital computer and has remained in 

the forefront of large- cale computing e er ince. We review here the b i idea and report on orne recent 

work done at the Applied Phy ic L aboratory. 

INTRODUCTION 

CIa ical fluid mechanics i an approximate de crip­
tion of nature of er wide applicability. A few drop of 
pond water on a micro cope lide i an example, a i 
the univer e a a whole, to a fir t approximation. E en 
though the basic equation have been known ince earl 
in the nineteenth century. their nonlinearit ha 0 far 
prevented an adequat under tanding of their con e­
quence . We are often unable to predict accurately the 
flo w evolution in very imple ituations, let alone predict 
the weather. We do not e en know if a unique continuou 
flow field exi ts at all times for each mooth initial thre -
dimensional flow field . Furthermore. even if an exi -
tence and uniquene theorem i eventually e tablished. 
we expect that (for mo t range of fluid parameters) two 
flow field that are initiall almo t identical will e entu­
ally differ ignificantl . (It is known that the trajectorie 
of fluid particles can be chaotic even though the velocity 
fields are imply time peliodic at each point. ) Thi kind 
of beha ior pose intere ting challenge to our under­
standing of what it mean to compare theor and experi­
ment, or e en to compare 0 ten ibly identical experi­
ments with each other. 

Thi article concentrates on incompre ible flow -
those for which the fluid den it may be con idered con­
stant in pace and time. The complexity of geometrically 
similar incompre ible flow increa es with the Re -
nolds number, Re = ULlv, where i a t pical elocit. 
L is a typical length cale, and v i the kinematic molecu­
lar visco ity. Typical values of v are 10-6 m'l1 for water 
and 15 x IO-6 m21 for air, both at 20 °e. The following 
gives some typical Reynolds number for a few proce -
es : swimming water mold pore, 10-4; blood flow in 
dog's aorta,S x 10· olan Ryan' fast ball 2 x 10-· car 
on interstate highway, 3 x 106

; and hun-icane, 3 x lO". 
Flow with high Reynold number t pically ha e 

motion on cale ranging from L down to mall cale of 
the order (L v31 U3

) 1/4, for which i cou effect quickl 
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damp th motion. Thu . on th order of Re9
/
4 significant 

degree of freedom e i t P r unit olume, L3. The inter­
action among all th e d gr of freedom, cau ed by 
the nonlinearit of the equation of motion make the 
tud of fluid flo difficult. A direct numerical attack on 

the equation of motion r uir a minimum of 8 byte 
(B ) of memor per degree of fr dom. E en with memo­
ry co ting a little a 100 B. memor co ts limit di­
rect numerical attack to quite mode t Re noids numbers 
for th fore eeabl futur. On often. e pecially in en­
gine ring application. tri to treat orne or all of the 
degree of freedom appro imat I -for e ample, tati ti­
cally. Ithough uch method an be ery u eful, the ir 
validit and cop are ery hard to judge. Techniques 
that appear to \ ork \ II on on cla of problem can 
fail on another. for ob cur r a on . We concentrate in 
thi article on m thod of a uratel olving the exact 
equation of motion. Methodological improvement here 
tend to get incorporated ntuall into more approxi­
mate computation. 

The d ired feature of numerical computation are 
the arne. hether the are bing u ed a an engineering 
tool to reduce the relianc on co tl and difficult mea-
urement . or a an aid to probing the fundamental phy -

ic of fluid flow- for e ample, b tud ing the en iti vi ­
t to mall ariation in th initial condition . Becau e 
one i alwa intere ted in e tending the computable 
rang to higher R nold number, there ar ad antage 
to method that are efficient in the amount of to rag re­
quired per degree of freedom . This i true of both the 
torage needed to de cribe the flow field and an au­

iliar torage needed to compute flow e olution. Since 
the accuracy required to di tinguish ph ical from nu­
merical in tabilit increa e with Re nold number. on 
eek techniqu that are intrin icall a curate. A e 
ill ee in the next ection. e 01 ing the flo requir a 

large number of floating-point operation per tim tep 

JohllS HopJ..ills APL TechlliCtJI Di~es{ , \ olilme 12. ,vllmber 3 (1991) 



per degree of freedom. The running time of a computa­
tion is, therefore, a serious issue. For really large compu­
tations, the only way to keep the running time down to a 
reasonable level is to have multiple processors work­
ing on the problem simultaneously. Hence, one wants 
methods that are effective in such parallel environments. 
Particularly, for engineering applications, one needs 
methods that are able to deal with the variety of geomet­
ric hapes that occur in practice. In this article, we dis-
cu ome methods that address these goals. 

The article is organized as follows: The following (se­
cond) section states the equations of motion for incom­
pre sible flow, outlines the main difficulties in under­
standing them, and gives a brief overview of our tech­
niques for solving them numerically. The third section 
provides more details on the pseudo spectral methods of 
representing the flow field that we employ. The fourth 
section explains how to break a (relatively) complicated 
geometry into elements with a pseudospectral expansion 
within each element. The fifth and sixth sections give ap­
plications to flow in bifurcating pipes and to flow over 
an object in a stratified fluid , respectively. The former 
has some relevance to blood flow. 

DYNAMICAL EQUATIONS 

The basic equations of fluid mechanics are the equa­
tion of mass conservation and Newton's second law ap­
plied to a lump of fluid that is macroscopically small and 
microscopically large. Mass conservation gives 

ap 
at + V . (pu) = 0 . (1) 

Here, p, where p = per, t), is the fluid density at a point 
in an inertial reference frame, and u = uCr, t) is the fluid 
velocity at point r. In the important approximation in 
which p can be considered constant in space and time, 
this equation reduces to the condition for incompressible 
flow (the continuity equation): 

V· u = o. (2) 

Equation 2 is often applicable to liquids because they 
have such small compressibility that even large pressure 
variations produce only small density variations. It is of­
ten applicable to gas flow for speeds that are small com­
pared with the speed of sound, because pressure varia­
tions are so small that density variations are small even 
though the compressibility is not. 

Newton's second law applied to a lump of incom­
pressible fluid gives the Navier- Stokes equation: 

au 2 at+u·Vu=-VP+1IVu+S . (3) 

The second term on the left side of the equation arises 
because we are referring the velocity field to a point in 
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space rather than to the changing position of the lump of 
fluid. Here p is the pressure divided by the density, 11 is 
the kinematic viscosity, and S is the external forces, if 
any. The viscous term expresses the fact that relative mo­
tion between neighboring lumps of fluid causes them to 
exert frictional forces on one another. (The simple form 
of this term depends on the assumption that the stress is 
linearly related to the rate of strain [a Newtonian fluid], 
that the flow is incompressible, and that 11 is constant.) 
Using some typical velocity U and length scale L to 
make the equation dimensionless, it can be written as 

au 1 2 at + u . Vu = -Vp + Re V u + S , (4) 

where u has been nondimensionalized by the reference 
velocity, U. 

Equations 2 and 3 form a system of coupled partial­
differential equations that must be completed by the 
specification of initial and boundary conditions. Notice 
that there are four equations for the four variables (pres­
sure and the three components of velocity), but that there 
is no evolution equation for the pressure. Thus, it is not 
possible to march all four variables in a uniform fashion. 
The pressure is effectively a constraint linking the in­
compressibility condition to the evolution equations. The 
nonlinearity of the second term on the left of the Navier­
Stokes equation and the indirectness of the pressure- ve­
locity link are the primary factors making the conse­
quences of the equations hard to predict. An additional 
subtle factor is that while the viscosity is often small, the 
term that it multiplies has the highest-order derivative in 
the equation. 

After this quick look at the equations in general, we 
turn to methods for solving them numerically. (Two 
good general references are Peyret and Taylor! and 
Canuto et al.2

) The first step is to decide on the represen­
tation of the pressure and velocity fields. Even if one 
knew the exact values, it would, in general, be impossi­
ble to represent them in a computer. One might approxi­
mate them, for example, by laying a Ca11esian grid over 
space and representing the fields by their values at grid 
points. The next step is to define, for the approximate 
fields , the analog of the arithmetic operations and dif­
ferentiation at a point. For example, if the fields are rep­
resented by their values at grid points, differentiation 
could be approximated by difference quotients of values 
at grid points. The final step is to decide on methods of 
solving the equations that result from using the approxi­
mate representation of the fields and operations in the 
Navier-Stokes and continuity equations. 

We now give a quick overview of the methods we use 
to perform these steps. Space is divided into several 
regions. These domains do not have to be rectangular 
and will, in general, overlap. Each of these three-dimen­
sional regions with curved geometry is then mapped onto 
a cube. The fields in the cubes are then expanded in finite 
sums of products of Chebyshev polynomials in each of 
the three coordinates. The expansion coefficients are 
determined so that the approximation is as accurate as 
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possible at elected point called the collocation points. 
We choo e the boundarie of the physical pace region 
so that they may be a igned parameter by polynomials 
of the arne order a tho e u ed to describe the fields 
in the cube . Although thi repre entation procedure i 
rather elaborate, it offer orne ignificant ad antage . 
Dividing pace into multiple curvilinear region give 
both flexibility in tracking boundaries and the ability to 
use higher re olution in en itive region of the flow. 
Using polynomial rather than ju t linear function 
gives higher accuracy for a given number of grid point. 
We usually u e ixth- or eighth-order pol nomial . 
Chebyshev polynomial have the particular ad antage 
that the kth coefficient in the expan ion of an mooth 
function decrea e fa ter than any inver e power of k. 
Fourier expansions al 0 have thi property, but they re­
quire unreali tic periodic boundary condition . The u e 
of significantly higher-order polynomial (a would be 
necessary if we had not u ed multiple patial region ) i 
possible, but it bring it own pecial set of tability 
problems. More detail on the repre entation of the field 
and their derivative in term of Cheby he polynomial 
will be found in the following ection, entitled P eu­
dospectral Method. The ection titled I oparametric 
Pseudo pectJal Element explain the mapping between 
physical and computational pace. In particular, it di -
cusses some of the critical detail of the way in which the 
fields on contiguou domain are matched. 

The best approach to date for computing the time evo­
lution of the avier-Stoke equations is Chorin ' 3 time­
step splitting technique. To implify the notation while 
explaining the ba ic idea we write the equation a if 
we could compute exact patial derivative and ignore 
question connected ith multiple domain. In Chorin' 
approach explicit technique are u ed to ad ance the ve­
locity one time step while the new pre sure i found by 
solving a linear partial-differential equation. The fir t 
step is to predict the olution ii to Equation 3 at the nth 
time step that would re ult if the pre ure term were 
neglected for that time tep and a uming that the exact 
value at the beginning of the time step i known. Replac-
ing the time derivative by ( iill+1 

- u ll )/!1t give 

(5) 

where the uperscript n denote the nth time tep. The 
size of a table time tep can be increa ed b u ing an 
adaptation of Runge-Kutta techniques.~ The econd tep 
is to develop the pre ure and corrected velocity field 
that sati fy the continuity equation b u ing the relation­
ships 

(6a) 

v . U "+ I = 0 . (6b) 

An equation for the pre ure can be obtained b taking 
the divergence of Equation 6a. In iew of Equation 6b, 
one ee that 
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(7) 

If p ati fie Equati n 7 . then U"+
I doe indeed satisfy 

Equation 6b. Th olution of the pre ure Poisson equa­
tion Equation 7) i the mo t computationally expensive 
tep. For orne imple geometrie it can be directly 

sol ed numericall b eparation of variable. In general, 
there i no imple method for direct olution, and one 
mu t re ort to iterati e technique. The quality of a solu­
tion i directl related to the accuracy with which the in­
compre ibilit condition atisfied. Equation 7 is of 
the general form 

Lp = 5 (8) 

for orne linear op rator L on orne finite dimensional 
vector pace. The prop rti of the operator L depend on 
the method cho en to repr ent the field and their 
deri ati e . Ver effe ti e technique ar known in the 
e ent that L i po iti e definite ymmetric. The problem 
can then be reduc d to minimizing the real-valued func­
tion J defined b 

J( p ) = (p. Lp ) - (p, 5) . (9) 

where ( , ) denote the inner product. Th efficiency de­
ri e from toke id a . On i that in the ba ic itera­
tion relating the k + I th approximation to the kth 

(10) 

teepe t-de cent m thod ar impro ed b imposing or­
thogonalit condition on th uc e i e directions h. 
For the conjugate re idual m thod.: the condition is that 

(Lh "+I, L h") = 0 . (11 ) 

wherea (x" i cho n 0 that p"-I minimize the Euclide­
an norm of the re idual 

r" = 5 - Lp" . (12) 

It can b ho n that th numb r of iteration required for 
con ergence i proportional to the quare root of K. the 
pectral condition number, where K i the ratio of the 

maximum to the minimum eigen alue . The other ke 
idea i to actually 01 e a related problem with a maIler 
condition number ho e olution can be a il related to 
that of the original problem. Thi technique i called 
preconditioning. In general. the operator L ari ing in our 

ork are not po iti e definite mmetric. There i littl 
general theor for operator that are not po iti e definite 
ymmetric . but it ha nonethele often proved po ibl 6 
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to use preconditioned conjugate residual methods. We 
have adapted them to our work as follows: Instead of 
Equation 8, we solve 

L~~ Lp = L~~ S , (13) 

where L ap is an approximate operator with nice proper­
tie .7 The iterative procedure then reads as follows: 

Given pO compute,..o = S - Lpo zO = L - I 1'0 hO = zO , , ap' . 

Then, for k = 0, 1,2, . .. , until II rkll < E, do 

where 

Zk+ 1 = L -I r k+1 
ap , 

k a = 
(rk, Lhk ) 

(Lh k, Lhk) , 

{3k = (LZ
k
+

l
, Lhk) 

(Lhk, Lhk) . 

(14a) 

(14b) 

(14c) 

(14d) 

(15) 

Here ( , ) denotes the inner product. Let Zk in Equation 
14c, k:2 I, be expanded in a series of eigenfunctions such 
that 

(16a) 

and similarly let the residual r k be expanded such that 

(16b) 

Then the three-dimensional preconditioner can be re­
duced to the simple algebraic equation 

( (3 ) A k Ak 
ai + j + 'Yk Z i ,j ,k = ri ,j ,k' (17) 

where ai' (3j, and 'Yk are the eigenvalues with respect to 
separable derivative operators of the preconditioner, and 
Et KJ], and Et are the corresponding eigenvectors as­
sociated with each eigenvalue. If there are N degrees of 
freedom in each direction, the overall memory required 
for finding the solution to the pressure Poisson equation 
in three dimensions is D(N 3

) . This is the same type of 
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Pseudospectral Element Method 

maximally storage-efficient scaling that we have for the 
velocity field. 

We have so far glossed over the problems of solving 
for the pressure on multiple overlapping domains. The 
difficult problem here is that if one has solved for the 
pressure in one domain, the interior values in it have to 
be used to get the boundary values for a contiguous do­
main while trying to ensure that the continuity equation 
is satisfied as nearly as possible at points that are com­
mon to the interior of both domains. We have discussed 
the problems of solving for the pressure on multiple 
overlapping domains for Cartesian coordinates in Refs. 4 
and 8. 

Most of our work has been done on a computer with 
four processors, but we believe that, for large computa­
tions, the future belongs to machines that have on the or­
der of a hundred to a million processors. Although we 
have not yet had the opportunity to try our techniques on 
such machines, we think that they can be implemented 
nicely on such machines. Despite the inevitably messy 
details connected with the use of multiple curvilinear 
domains, the bulk of our programs can be concisely 
described in terms of dot products and matrix multiplica­
tion between subsets of arrays. Although cumbersome to 
write in older Fortran, they are specified simply in the 
draft international standard for the newest version of the 
language. Our programs, in fact, completely conform to 
the new standard. Thus, they will run without source 
code changes on any machine having a compiler im­
plementing the newest version of the language. Once the 
standard is adopted (which is likely to occur within the 
next few months) , they will run essentially on any com­
mercially available machine intended for general-pur­
pose scientific processing. Our programs will not neces­
sarily run efficiently on any particular machine; how­
ever, given the centrality of the essential operations to 
the new version of the language, we think they will be 
reasonably efficient on most machines. 

PSEUDOSPECTRAL METHODS 

We now want to give some of the details of the way in 
which we represent the pressure and velocity fields. 
Spectral methods, which are the extension of the tech­
nique of separation of variables, have long been advocat­
ed by Orszag9 for the solution of partial differential 
equations. In these methods, the partial derivatives of de­
pendent variables are calculated from truncated series 
expansions of the variable in terms of smooth (usually 
orthogonal) functions. In pseudospectral methods, the 
expansions of the dependent variables in terms of 
smooth functions are carried out according to the method 
of selected points (collocation). The choice of colloca­
tion points, although not crucial, can be made in ways 
that make the calculation convenient and accurate. Spec­
tral methods are also the simplest weighted-residual 
methods; in other words, the residual (the difference be­
tween the approximate and the real solutions) is zero at 
the specified points. A natural expansion for a periodic 
function is its Fourier series. The convergence of a trun­
cated Fourier series depends on the smoothness of the 
function as well as its behavior at the boundaries. Non-
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periodic functions are approximated by truncated Cheb­
yshev polynomial ex pan ion. Thu . a nonperiodic func­
tion f, who e interval of definition can be mapped onto 
[-1 , 1] -the et of value of x between -1 and +1-i 
expanded by a finite erie of Cheb hev polynomial. 
Tk(x), as 

f(x) = E akTk(X) ' 
k=O 

( 18) 

If the function i evaluated at the co llocation point , 
Xj = cos 'Ir}/N (the extrema of Cheby hev polynomi­
als),} = 0, .. . , then the expan ion in Equation 18 , in 
view of the property 

reduces to the Fourier erie ex pan ion 

'Irk} 
f(x) = E ak co - , 

k=O 

where the expan ion coefficient at;, i given b 

( 19) 

(20) 

(21 ) 

Co = C = 2, and Ck = 1 for 1 ::; k ::; - 1. The con er­
gence of the Cheby he expan ion depend onion the 
smoothnes of the function in the interior irre pecti e of 
its boundary behavior. The derivative of f (x) are calcu­
lated from the relation 

f'ex) = E a? lTk(x) (22a) 
k=O 

f"(X) = E aF) Tk(x) , (22b) 
k=O 

where ai l) and afl are expanded in term of a" b the 

recursive relation 

Ck-I ai~~ - aiZl = 2kaIq- 'l, k > 1 q = 1 2 (23) 

where Co = 2, and Ck = 1 for k ~ 1. 
Alternatively, the derivati ve of f(x) at the point _\j 

can be expre sed in term of a field variable, f(x) = ij, 
evaluated at the same points, that i approximated by 

"" A ( I ) f'ex) = ~ Gj .1I /' , (24a) 
11=0 
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"" A ( 2 ) f "(X) = ~ Gj .11 f ll . (24b) 
11=0 

Here G (q) = TG(q)t. q = 1. 2. and G (2) = G ( l l G ( I ) , 

where T and G( I) ar ( + 1 x ( + I) matrices with 
element 

T".j = co 
'Irk} 

(2Sa) 

G(I) 
kJ {

Ok ~ } or k + } i e en 

2j1C" other i Co = 2, Ct.. = 1 for k ~ 1) , 
(2Sb) 

and tithe in er e Fourier co ine n 

(2Sc) 

(Co = C ' = 2, and Ct.. = 1 for I ::; k::; - 1) . 
The ad antage of th p eudo pectral method are 

ummarized a follo w : 
I. Wherea re olution of a problem ith a boundary 

la er of thickn E require O( l IE) uniforml paced 
point _ u ing finite difference m thod . it require onl 
O( 11 E) term of the Cheb h e pan ion in the p eu-
do pectral method. 

2. Term in 01 ing noncon tant co fficient and non­
linearitie are calculated in hiche er repre entation­
ph ical or pectral pace-i mo t con enient. 

3. Th programming ffort for the calculation of par­
tial den ati e . fa t Fourier tran form. or matrix multi­
pI i a imple a finite di ffi rence method ; however, 
the accurac attained b th high-order Cheby hev poly­
nomials i much higher than that of low-order finite dif­
ference method . 

ing a global Cheb he e pan ion for the entire 
ph ical domain lead to both a mall time step and an 
increa ed en It I It to 0 cillating 0 ershoot (Gibbs 
phenomenon). The e Gibb 0 cillation cannot be 
moothed out b filtering t chnique : in tead they can 

b aIle iat db di iding the domain into a mall number 
of lement ubdomain or p eudo pectral elements) 
where a piece i e Cheb he e pan ion with continuity 
of the function and ati fa tion of the equation of motion 
at the element-element int rface i u ed to calculate th 
derivati e . The u e of multiple element al 0 allo a 
larger time tep. It can b increa ed till further b th 
u e of a higher-order time integration cherne. We no 
elaborate on d compo ing pace into multiple domain . 

ISOPARAMETRIC PSEUDOSPECTRAL 
ELEME T 

Let u fi r t define the e i tence of a mapping function 
between the ph ical pace (x, y , :) and the computation­
al pace (t 'Y/, n (a tran formed pace with Carte ian 
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coordinates). Once such coordinate relationships are 
known, shape functions defining geometry can be speci­
fied in local coordinates, and a one-to-one correspon­
dence between Cartesian and curvilinear coordinates can 
be established. An isoparametric mapping, as defined 
earlier, is applied to map a three-dimensional curved ge­
ometry (physical space) onto a cube (computational 
pace). The main objective of the present development is 

to provide the three-dimensional computational grids 
around complex geometries in a structured fashion. The 
p eudospectral element grid-generation scheme present­
ed here uses a multiple block structure; the global com­
putational domain based on the geometrical configura­
tion is divided into a few blocks, and each block is then 
arbitrarily partitioned by the pseudospectral elements. 
The grid generation is performed in two levels. First, 
each block is defined as a parent element, of which the 
shape can be defined by a curved isoparametric pseu­
dospectral element. Next, appropriate family elements 
linearl y ( or higher-order) interpolating the shape func­
tion of their parent elements are allocated within each of 
these blocks. In other words, a cubic element that con­
tains N~ + 1,. NYJ + 1, and Nr + 1 collocation points 
[~i = cos(7rilN~), YJj = cos(7rjINYJ), rk = cos(7rkINr)], in 
the transformed space, -1:::; ~ :::; 1, -1:::; YJ :::; 1, 
-1 :::; r :::; 1 (Fig . 1), corresponds to an irregular or regu-
1ar six-faced (hexahedral) element in the physical space. 
For an isoparametric mapping, once the collocation 
points (x, y, z) along the curving boundaries of each par­
ent element are known, the interior points (including the 
boundaries of family elements) are interpolated by 
deforming the (t YJ , f) mesh into its (x, y, z) image using 
the "trilinear blending function,,:l0 that is , the grid points 
(x, y, Z)ijk in the physical space are mapped onto (~ = t , 
YJ = YJj' r = rk) in the transformed space. Figure 1 sum­
marizes the technique of an isoparametric mapping for 
grid generation: 

If we let ¢ be any value of (x, y, z), the interpolation 
translates the Boolean sum II into the form 

y 

"-------~ x 

(26) 

~ =-1 -+--~ 

s= 
-1 

Pseudospectral Element Method 

where the "projectors," P~, P'T/' and P!' interpolate ¢ be­
tween two opposing faces of the six-sided region; the 
double-product projector, P~ PTJ ' interpolates ¢ in two 
directions from the four edges along which ~ and YJ are 
constant; and the triple-product projector, P~ PTJP! ,inter­
polates ¢ from the eight corners. With linear interpola­
tion functions defined as 

the explicit expressions for the face projectors are 

P~¢ = N (I)(O¢(l, YJ , r) + N(2)(~)¢(-I, YJ , r) 

PTJ¢ = N(l )(YJ)¢(t 1, r) + N (2)(YJ)¢(t -1, r) 

(27) 

P!¢ = N( I )(f)¢(~, YJ , 1) + N (2)(r)¢(t YJ , -1) , (28) 

and the edge projectors are 

P~PTJ¢ = N ( I ) (~)N (l ) (YJ)¢(I, 1, f) 

+ N(l ) ( ~)N(2\ YJ)¢(l , -1, f) 

+ N (2)(ON(I)(YJ)¢(-I, 1, r) 

+ N(2) (~)N(2) ( YJ ) ¢( -1 , -1, r) 

p~p!¢ =N ( I)(~)N(I\f)¢(l, YJ , 1) 

+ N( I ) ( ~)N( 2 ) (f) ¢(l , YJ, -1) 

+ N (2)( ON(l )(f)¢( -1, YJ, 1) 

+ N (2)(ON(2)(f) ¢ (-I, YJ , -1 ) 

s= 
1 

---+~-~ 

~ = 1 

Figure 1. Three-dimensional isopara­
metric mapping of family elements. 

..,., = -1 
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P7I Pt¢ = N (I\Y'J ) ( I ) ( f)¢ (~ 1, 1) 

+ (1)(1]) (2) (f) ¢ ( t 1, -1) 

+ N ('2) (1] ) ( I ) (f)¢(~ -1 1) 

aorta. Fluid d namic help u to under tand the charac­
teri tic of uch flow and th ir po ible phy iological 
con equence .12 

It i t pical in uch flo that there will be regions 
near the branch point her the flo circ ulates around a 
tagnant region. E ample ar hown in Figures 2 and 3. 

+ (2)(1]) (2) (f )¢ (t -1 -1) , (29) The location of the flow recir ulation zone (low shear re­

and the corner projector i 

P~ P7IPt¢ = N (I)(n (I )(1]) (I)(f)¢(l , 1, 1) 

+ (I)(n (I )(1]) (2)(f)¢ ( 1, 1, -1) 

+N(I)(n (2)(1]) (2)(f)¢ (l, - 1, -1) 

+N(I (n (2) ( 1]) (I)(f)¢ (l , -1 1) 

+ N (2)(n (1)( 1]) (1)(f)¢ (-1 , 1, 1) 

+ N (2) (~ ) (1)( 1]) (2)( f )¢(-1, 1 -1) 

+ ( 2 ) ( ~ ) (-)( 1]) (l)( f )¢(-l -1 , 1) 

+ (2)(n (2)(1]) (2)(f )¢ (-1 , -1 , -1) (30) 

where the urface function ¢( ~. 1], 1) can be adequatel 
represented by an i oparametric ten or product uch that 

i=Oj=O 

and similarly for the edge function ¢ ( t 1, 1) . 

¢(t 1, 1) = ~ i (n¢(~ i ' 1, 1) (32) 
i = 0 

Here Ni(~) and j (1] ). the hape function of each parent 
element derived from the Cheby he polynomial , read 

i (n = ~ Tm (~)TII/ ( ~ ;) (33a) 
III = 0 

j (1] ) = ~ T I1 (1] )TI1(1]) (33b) 
11=0 

where the matrice TII/(n and Tm(n ha e been defined 
by Equation 19 and Equation 25, re pectively. The hape 
functions Ni(n and / 1]) ati f the Kronecker-delta 
property that i ,Ni ( ~ III) = Dim' j (1]/1) = OJ//" 

In an analogou manner, other undefined urface and 
edge function can be derived without an difficulty. It i 
obvious that Equation 26 interpolate the surface bound­
ary functions exactly. 

BIFURCATION BLOOD FLOW 
Flow in branching tube occur in man ituation. In 

particular they appear in the human carotid artery and 
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g ion) pia a ignificant role in the early stages of 
athero clerotic Ie ion. Two-dimen ional flow models 
onl pro ide a impl ie of thi problem, and many of 
the important effect cannot b adequately described by 
them. 

Figure 4 roughl repre ent the three-dimensional hu­
man carotid bifur ation onfiguration. A simplified bi­
furcation model Fig. 5 i adopted here because of the 
lack of actual repre entation of the carotid artery. A 
tead flo in tead of pul atile flo at the entrance is as­
umed for implicit . For th t\ o-dimen ional bifurcat­

ing flo , the characteri ti locity and length defi ning 
the Reynold number, Re = Llv, are ba ed on the max­
imum elocit and half-width of the up tream channel 
L. We ha e allocated 10 X 4 lements (six points per ele­
ment in th tream i e and tran ver e directions along 
each channel . 

For Re = 500 with a bran hing angle of 90° (sym­
metry condition). the flo parate immediately from 
the upper or 10 er all of a h branch . and the maxi­
mum tream function i t/;ma'( = 1.34 4 (Fig . 2) . The 
quantit t/; i d fined b U l = at/;Iay and Uy = -at/;Iax, 
where u i the horizontal I it . For a mmetric bifur­
cation flow, if the flo rate i initiall pe ified at each 
branch. the total pre ure drop from the ntrance to the 
exit along each channel i not the arne. 

Figure 2. Streamline pattern for the symmetric bifurcation flow 
at a Reynolds number of 500 . The dimension L is the half-width of 
the channel. 
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Figure 3. Streamline pattern for the asymmetric bifurcation flow 
at a Reynolds number of 500. A. The half flow rate is specified. B. 
The flow rate is adjusted (compatible pressure drop) along each 
branch. The dimension L is the half-width of the channel. 

Figure 3A shows an asymmetric branch for Re = 500 
and a branching angle of 7l.5 0 , with each branch con­
taining half the flow rate of the upstream channel. The 
resulting streamlines (l/;max = 1.3503 in the upper 
branch) are very similar to those of Figure 2, except for a 
strong downward current existing in front of the bifurca­
tion point; however, the total pressure variation in the 
upper channel (0.06756) differs from that of the lower 
one (-0.01398). Hence, the flow rate along each branch 
needs to be adjusted so that the total pressure drop along 
each channel is compatible. Since the relation between 
the total pressure drop and the flow rate is quasi-linear, 
following Newton 's method, the corrected flow rate 
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Common 
carotid 
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Figure 4. Three-dimensional representation of human carotid 
bifurcation. 

Figure 5. Simplified three-dimensional bifurcation model and 
coordinate system. 

along each branch can be adequately determined by a 
few iterations. 

Figure 3B shows the modified streamlines (l/;max 
= 1.3536 in the upper branch) by imposing the constraint 
that the same total pressure drop (~p = 0.0134) along 
each channel can be reached. Figure 3B also indicates 
that the separation along the upper branch has been de­
ferred to a further downstream position because of the 
switching flow from the lower one. Similarly, the reat­
tachment length is slightly increased. 

For the three-dimensional bifurcation flow, only the 
symmetric condition was examined. With a uniform 
depth of.J2 L in the spanwise direction, the multi-block 
scheme is shown in Figure 6. In addition to having the 
same number of elements in the streamwise (0 and 
transverse (n directions as in the two-dimensional flow, 
three elements were used in the spanwise direction (YJ). 
As expected, because of the finite domain in the span­
wise direction, the three-dimensional velocity profiles 
deviate from the two-dimensional ones. This result is ap-
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Figure 6. Three-dimensional configuration of domain decom­
position (multiple blocks), showing the number and letter desig­
nations used for computational purposes. 
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Figure 7. Velocity vectors for a Reynolds number of 500 in 
three-dimensional flow along the central plane (7J = 0.707 
where 7J is the spanwise direction). The arrow indicates the flow 
separation zone where early atherosclerotic lesions tend to oc­
cur. The dimension L is the half-width of the channel. 

parent in comparing the velocity vectors of the three­
dimensional flow (Fig. 7) along the central plane (11 = 
0.707) with those of the two-dimensional flow (Fig . 8). 
The separation appearing in the two-dimen ional flow 
becomes weak in the three-dimen ional flow. Thi 
weakening occurs becau e the higher flow rate in the 
central plane (11 = 0.707) of the three-dim en ional flow 
causes thinner boundary layers along the upper wall of 
the branch. 

INTERNAL WAVES 

We now look at some example that go beyond the 
constant-density approximation. In many geoph sical 
situations, the density i approximately con tant in the 
horizontal but varies in the vertical. The Bou inesq ap-
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Figure 8. Velocity vectors for a Reynolds number of 500 in two­
dimensional flow. The dimension L is the half-width of the chan­
nel. 

proximation i ery u eful in uch ituations, neglecting 
uch ariation e cept in the term giving the gravitation­

al force. We u e the appro imation here to discuss the in­
ternal wa e that ari e hen a den ity- tratified fluid is 
di turbed. The e a e generalize ordinary surface 
wave that can be thought of a occurring in a fluid with 
onl two den itie -tho e of air and water. Such waves 
can be remotel en ed b nthetic aperture radar. Here 
we focu on two t pe : int rnal a generated by the 
collap e of the wake left b hind b a ubmerged body 
moving in a tratified fluid, and tho e generated by the 
mo ing ubmerged bod it elf. The latter ca e is more 
complicated to anal ze b cau e urface and internal 
wa e interact with the primar flow field. 

Wake Collap e 
Experiment conducted b Wu 13 ha e demonstrated 

the collap e of ami ed region in a linearly density-strati­
fied fluid, and hi experimental re ult adequately de­
cribe the i ible and often p ctacular effects of internal 

gra ity a e . He al 0 de cribed three tages by which 
the perturbed fluid eek it equilibrium den ity level. In 
uch phenomena. an 0 cillating flow of energy occurs 

from potential to kinetic and back. To capture this effect 
accurately. we u e a fourth -order Runge-Kutta time-in­
tegration cheme,4 hich do a good job of conserving 
energ in the following imple te t problem. When an in-

i cid den ity- tratified fluid in a quare bo ith each 
ide of length 6 i di turbed b a Gau ian den it p r­

turbation, p ' = - (Po ,. (y - Yc)exp[-0.693 "/"c):t here 
"c = 0.5, )'c = 3, and ' (Po)" = -0.003134, the di i ion of 
the total energ into poterHial energ (PE ), 

and kinetic energ (KE ), 
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KE = ~ f f (po + p' )(U
2 + V 2

) dx dy , (35) 
A 

will vary with time. Figure 9 sketches the energy ver­
us the Brunt-VaisaHi period , Nt/27r (N = [( - g/ Po) 

(apo/ay) ] 1/2). The Brunt-Vaisala or buoyancy frequency, 
. i the angular frequency with which a fluid particle 

di placed vertically will oscillate about its original posi­
tion. The total energy is conserved with 0.28% error at 
eight Brunt- Vcii sala periods. 

We now apply this technique to a numerical simula­
tion similar to Wu's experiment. A fluid with a linear 
density gradient, (-l!p*)(po)" = 0.00025 cm- I (p* is a 
reference density, 1 g/cm3

), IS confined within a rigid 
tank about 440 cm long and 120 cm high. A uniformly 
mixed circular region with a radius of 15.6 cm was 
placed in the middle of the tank as an initial disturbance. 
The top surface is assumed to be a stationary free surface 
(no shear stress); that is , the fluid is allowed to develop 
along the horizontal direction. Internal waves generated 

Pseudospectral Element Method 

by an initial collapse of the mixed region result in the 
displacement of a fluid particle away from its equilibri­
um state (density change) , and consequently causes an 
oscillatory motion. Flow patterns can be represented by 
moving rays connecting either crests or troughs. These 
rays originate from the collapse center and decrease their 
slopes when moving away from the core region. Such 
phenomena can be clearly visualized by the evolution of 
isopycnic (constant density) lines as shown in Figure 10 
at the times Nt = 3, 6, 9, and 12. 

Submerged Body Moving in a Thermocline 
When the fluid is stratified, the wake patterns around 

a moving obstacle significantly differ from those in a 
homogeneous fluid. Two key parameters account for 
most features of flow motion-the Reynolds number, 
Re = UL/1I , and the Froude number, Fr = UINL, where 
U is the body speed and L is the characteristic length. For 
large values of Re and Fr, the effect of stratification is 
expected to be relatively unimportant; however, if the 
Brunt-Vaisala frequency, N, is dominant (small Fr) , the 
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Figure 9. Energy partition versus 
Brunt-Vaisa.la period, NtI27r. The line, 
T, indicates the normalized total ener­
gy, whereas the black line, P, and the 
blue line, K, are the potential and kinet­
ic energies, respectively. 
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Figure 10. Isopycnic lines at various times, Nt. A. Nt = 3. B. Nt = 6. C. Nt = 9. D. Nt = 12. 
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strong stratification will di stort the wake in front of and 
behind a moving obstacle and will tend to suppre vor­
tex shedding behind an obstacle. When uch condition 
exist, the transport of mas , momentum, and energy by 
turbulent eddy mixing requires more work again t the ef­
fective gravitational field by con uming the kinetic ener­
gy; hence, the vertical motion i inhibited. The effect of 
lee waves on the wake of an obstacle i more pronounced 
as the Reynold number become maIler. In a reali tic 
environment, a moving obstacle will be ituated in one of 
three vertical regions: above (top mixing layer), below 
(weak den ity gradient), or within a thennocline, and the 
resulting flow fields will be different for each region. 

A numerical experiment wa conducted by horizon­
tally moving a cylinder in a linear density- tratified fluid 
at Re = 100 (ba ed on the diameter of a cylinder). The 
gridding generated by the i oparametric pseudospectral 
element method i plotted in Figure 11. The vortex hed­
ding behind a cylinder in a homogenous fluid (Fr = 00 

in Fig. 12A) i compared with tratified fluid at 
Fr = 1.15 (Fig. 12B) and Fr = 0.77 (Fig . 12C). The 
vortex shedding, as expected, is gradually inhibited by 
continuously increa ing the Brunt-Vai ala frequency. 
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