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PSEUDOSPECTRAL ELEMENT METHOD FOR
COMPUTATIONAL FLUID DYNAMICS AND ITS
PARALLEL IMPLEMENTATION

The basic equations of fluid mechanics have been known since early in the nineteenth century, but their
nonlinear character has made it very difficult both to understand their general features and to predict flow
evolution in specific cases. The possibility of using computers to attack such problems numerically was one
of the original motivations for the development of stored-program digital computers and has remained in
the forefront of large-scale computing ever since. We review here the basic ideas and report on some recent

work done at the Applied Physics Laboratory.

INTRODUCTION

Classical fluid mechanics is an approximate descrip-
tion of nature of very wide applicability. A few drops of
pond water on a microscope slide is an example, as is
the universe as a whole, to a first approximation. Even
though the basic equations have been known since early
in the nineteenth century, their nonlinearity has so far
prevented an adequate understanding of their conse-
quences. We are often unable to predict accurately the
flow evolution in very simple situations, let alone predict
the weather. We do not even know if a unique continuous
flow field exists at all times for each smooth initial three-
dimensional flow field. Furthermore, even if an exis-
tence and uniqueness theorem is eventually established.
we expect that (for most ranges of fluid parameters) two
flow fields that are initially almost identical will eventu-
ally differ significantly. (It is known that the trajectories
of fluid particles can be chaotic even though the velocity
fields are simply time periodic at each point.) This kind
of behavior poses interesting challenges to our under-
standing of what it means to compare theory and experi-
ment, or even to compare ostensibly identical experi-
ments with each other.

This article concentrates on incompressible flows—
those for which the fluid density may be considered con-
stant in space and time. The complexity of geometrically
similar incompressible flows increases with the Rey-
nolds number, Re = UL/v. where U is a typical velocity,
L is a typical length scale, and » is the kinematic molecu-
lar viscosity. Typical values of » are 10° m?/s for water
and 15 x 10 m?/s for air, both at 20°C. The following
gives some typical Reynolds numbers for a few process-
es: swimming water mold spore, 107* blood flow in
dog’s aorta, 5 x 10°; Nolan Ryan’s fast ball, 2 x 10%; car
on interstate highway, 3 x 10% and hurricane, 3 x 10",

Flows with high Reynolds numbers typically have
motion on scales ranging from L down to small scales of
the order (L»*/ U*)"", for which viscous effects quickly
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damp the motion. Thus. on the order of Re”* significant

degrees of freedom exist per unit volume, L*. The inter-
actions among all these degrees of freedom, caused by
the nonlinearity of the equations of motion, make the
study of fluid flow difficult. A direct numerical attack on
the equations of motion requires a minimum of 8 bytes
(B) of memory per degree of freedom. Even with memo-
ry costing as little as $100/MB, memory costs limit di-
rect numerical attack to quite modest Reynolds numbers
for the foreseeable future. One often, especially in en-
gineering applications, tries to treat some or all of the
degrees of freedom approximately—for example, statisti-
cally. Although such methods can be very useful, their
validity and scope are very hard to judge. Techniques
that appear to work well on one class of problems can
fail on another, for obscure reasons. We concentrate in
this article on methods of accurately solving the exact
equations of motion. Methodological improvements here
tend to get incorporated eventually into more approxi-
mate computations.

The desired features of numerical computations are
the same, whether they are being used as an engineering
tool to reduce the reliance on costly and difficult mea-
surements, or as an aid to probing the fundamental phys-
ics of fluid flow—for example, by studying the sensitivi-
ty to small variations in the initial conditions. Because
one is always interested in extending the computable
range to higher Reynolds numbers, there are advantages
to methods that are efficient in the amount of storage re-
quired per degree of freedom. This is true of both the
storage needed to describe the flow field and any aux-
iliary storage needed to compute flow evolution. Since
the accuracy required to distinguish physical from nu-
merical instability increases with Reynolds number, one
seeks techniques that are intrinsically accurate. As we
will see in the next section, evolving the flow requires a
large number of floating-point operations per time step
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per degree of freedom. The running time of a computa-
tion is, therefore, a serious issue. For really large compu-
tations, the only way to keep the running time down to a
reasonable level is to have multiple processors work-
ing on the problem simultaneously. Hence, one wants
methods that are effective in such parallel environments.
Particularly, for engineering applications, one needs
methods that are able to deal with the variety of geomet-
ric shapes that occur in practice. In this article, we dis-
cuss some methods that address these goals.

The article is organized as follows: The following (se-
cond) section states the equations of motion for incom-
pressible flow, outlines the main difficulties in under-
standing them, and gives a brief overview of our tech-
niques for solving them numerically. The third section
provides more details on the pseudospectral methods of
representing the flow field that we employ. The fourth
section explains how to break a (relatively) complicated
geometry into elements with a pseudospectral expansion
within each element. The fifth and sixth sections give ap-
plications to flow in bifurcating pipes and to flow over
an object in a stratified fluid, respectively. The former
has some relevance to blood flow.

DYNAMICAL EQUATIONS

The basic equations of fluid mechanics are the equa-
tion of mass conservation and Newton’s second law ap-
plied to a lump of fluid that is macroscopically small and
microscopically large. Mass conservation gives

dp _
24V (w)=0. (1)

Here, p, where p = p(r, ), is the fluid density at a point
in an inertial reference frame, and u = u(r, 1) is the fluid
velocity at point r. In the important approximation in
which p can be considered constant in space and time,
this equation reduces to the condition for incompressible
flow (the continuity equation):

V-u=0. (2)

Equation 2 is often applicable to liquids because they
have such small compressibility that even large pressure
variations produce only small density variations. It is of-
ten applicable to gas flow for speeds that are small com-
pared with the speed of sound, because pressure varia-
tions are so small that density variations are small even
though the compressibility is not.

Newton’s second law applied to a lump of incom-
pressible fluid gives the Navier—Stokes equation:

%_l;+u.Vu:—Vp+VV2u+S. (3)

The second term on the left side of the equation arises
because we are referring the velocity field to a point in
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space rather than to the changing position of the lump of
fluid. Here p is the pressure divided by the density, » is
the kinematic viscosity, and S is the external forces, if
any. The viscous term expresses the fact that relative mo-
tion between neighboring lumps of fluid causes them to
exert frictional forces on one another. (The simple form
of this term depends on the assumption that the stress is
linearly related to the rate of strain [a Newtonian fluid],
that the flow is incompressible, and that » is constant.)
Using some typical velocity U and length scale L to
make the equation dimensionless, it can be written as

du _ 1 s
E+u-Vu——Vp+R—€Vu+S, 4)

where u has been nondimensionalized by the reference
velocity, U.

Equations 2 and 3 form a system of coupled partial-
differential equations that must be completed by the
specification of initial and boundary conditions. Notice
that there are four equations for the four variables (pres-
sure and the three components of velocity), but that there
is no evolution equation for the pressure. Thus, it is not
possible to march all four variables in a uniform fashion.
The pressure is effectively a constraint linking the in-
compressibility condition to the evolution equations. The
nonlinearity of the second term on the left of the Navier—
Stokes equation and the indirectness of the pressure—ve-
locity link are the primary factors making the conse-
quences of the equations hard to predict. An additional
subtle factor is that while the viscosity is often small, the
term that it multiplies has the highest-order derivative in
the equation.

After this quick look at the equations in general, we
turn to methods for solving them numerically. (Two
good general references are Peyret and Taylor' and
Canuto et al.”) The first step is to decide on the represen-
tation of the pressure and velocity fields. Even if one
knew the exact values, it would, in general, be impossi-
ble to represent them in a computer. One might approxi-
mate them, for example, by laying a Cartesian grid over
space and representing the fields by their values at grid
points. The next step is to define, for the approximate
fields, the analog of the arithmetic operations and dif-
ferentiation at a point. For example, if the fields are rep-
resented by their values at grid points, differentiation
could be approximated by difference quotients of values
at grid points. The final step is to decide on methods of
solving the equations that result from using the approxi-
mate representation of the fields and operations in the
Navier-Stokes and continuity equations.

We now give a quick overview of the methods we use
to perform these steps. Space is divided into several
regions. These domains do not have to be rectangular
and will, in general, overlap. Each of these three-dimen-
sional regions with curved geometry is then mapped onto
a cube. The fields in the cubes are then expanded in finite
sums of products of Chebyshev polynomials in each of
the three coordinates. The expansion coefficients are
determined so that the approximation is as accurate as
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possible at selected points called the collocation points.
We choose the boundaries of the physical space regions
so that they may be assigned parameters by polynomials
of the same order as those used to describe the fields
in the cubes. Although this representation procedure is
rather elaborate, it offers some significant advantages.
Dividing space into multiple curvilinear regions gives
both flexibility in tracking boundaries and the ability to
use higher resolution in sensitive regions of the flow.
Using polynomials rather than just linear functions
gives higher accuracy for a given number of grid points.
We usually use sixth- or eighth-order polynomials.
Chebyshev polynomials have the particular advantage
that the kth coefficient in the expansion of any smooth
function decreases faster than any inverse power of &.
Fourier expansions also have this property, but they re-
quire unrealistic periodic boundary conditions. The use
of significantly higher-order polynomials (as would be
necessary if we had not used multiple spatial regions) is
possible, but it brings its own special set of stability
problems. More details on the representation of the fields
and their derivatives in terms of Chebyshev polynomials
will be found in the following section, entitled Pseu-
dospectral Methods. The section titled Isoparametric
Pseudospectral Element explains the mapping between
physical and computational space. In particular, it dis-
cusses some of the critical details of the way in which the
fields on contiguous domains are matched.

The best approach to date for computing the time evo-
lution of the Navier-Stokes equations is Chorin’s® time-
step splitting technique. To simplify the notation while
explaining the basic ideas, we write the equations as if
we could compute exact spatial derivatives and ignore
questions connected with multiple domains. In Chorin’s
approach, explicit techniques are used to advance the ve-
locity one time step while the new pressure is found by
solving a linear partial-differential equation. The first
step is to predict the solution u to Equation 3 at the nth
time step that would result if the pressure term were
neglected for that time step and assuming that the exact
value at the beginning of the time step is known. Replac-
ing the time derivative by ( u"*' — u”)/Ar gives

ﬁnﬂ ="+ A[(VVZU +S—-u- Vu)” - (5)

where the superscript n denotes the nth time step. The
size of a stable time step can be increased by using an
adaptation of Runge-Kutta techniques.” The second step
is to develop the pressure and corrected velocity fields
that satisfy the continuity equation by using the relation-
ships

u =u"" - ArVp (6a)
V-u™ =0, (6b)

An equation for the pressure can be obtained by taking
the divergence of Equation 6a. In view of Equation 6b,
one sees that
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v l—]n°]

Vi =
P At

(7

If p satisfies Equation 7. then u™' does indeed satisfy
Equation 6b. The solution of the pressure Poisson equa-
tion (Equation 7) is the most computationally expensive
step. For some simple geometries it can be directly
solved numerically by separation of variables. In general,
there is no simple method for direct solution, and one
must resort to iterative techniques. The quality of a solu-
tion is directly related to the accuracy with which the in-
compressibility condition is satisfied. Equation 7 is of
the general form

Lp=S (8)

for some linear operator L on some finite dimensional
vector space. The properties of the operator L depend on
the methods chosen to represent the fields and their
derivatives. Very effective techniques are known in the
event that L is positive definite symmetric. The problem
can then be reduced to minimizing the real-valued func-
tion J defined by

J(p)=(p.Lp)— (p.S) . 9)

where ( , ) denotes the inner product. The efficiency de-
rives from two key ideas. One is that in the basic itera-
tion relating the £ + 1th approximation to the & th,

pPl=pt+ o it (10)

steepest-descent methods are improved by imposing or-
thogonality conditions on the successive directions, A.
For the conjugate residual method.” the condition is that

(Lh*', Lh*y=0, (11)

whereas a is chosen so that p**' minimizes the Euclide-
an norm of the residual

r‘zS—Lp‘. (12)

It can be shown that the number of iterations required for
convergence is proportional to the square root of «, the
spectral condition number, where « is the ratio of the
maximum to the minimum eigenvalues. The other key
idea is to actually solve a related problem with a smaller
condition number whose solution can be easily related to
that of the original problem. This technique is called
preconditioning. In general, the operators L arising in our
work are not positive definite symmetric. There is little
general theory for operators that are not positive definite
symmetric, but it has nonetheless often proved possible®
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to use preconditioned conjugate residual methods. We
have adapted them to our work as follows: Instead of
Equation 8, we solve

Lo lp= L8, (13)

where L,, is an approximate operator with nice proper-
ties.” The iterative procedure then reads as follows:

s 0 0 _ 0 0_7r-1.0 ;0_.0

Given p°, compute 1° =S — Lp", z —~Lapl hi=z.

Then, for k=0, 1,2, ..., until I7*I < e, do
pAt=ph + o, (14a)
r* =k — ofLh*, (14b)
:/H-[ = L;; I./H-l . (140)
hk+l = :/\’+l _ Bkhk , (l4d)
where
[ (’.k5 th\)
(LK*, Lh*)’
(15)
ge = L L
(Lh*, LK"Y -~

Here ( , ) denotes the inner product. Let z* in Equation
l4c, k2 1, be expanded in a series of eigenfunctions such
that

z* = E¢2'Eq"E¢T (16a)

and similarly let the residual r* be expanded such that

r‘ = E&*Eq"E¢T . (16b)

Then the three-dimensional preconditioner can be re-
duced to the simple algebraic equation

(a; + B+ v0) 3:'k.j.k = ’A.il\.:i.k , (17)

where «;, 8;, and v, are the eigenvalues with respect to
separable derivative operators of the preconditioner, and
E¢, En, and E¢{ are the corresponding eigenvectors as-
sociated with each eigenvalue. If there are N degrees of
freedom in each direction, the overall memory required
for finding the solution to the pressure Poisson equation
in three dimensions is O(N?). This is the same type of
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maximally storage-efficient scaling that we have for the
velocity field.

We have so far glossed over the problems of solving
for the pressure on multiple overlapping domains. The
difficult problem here is that if one has solved for the
pressure in one domain, the interior values in it have to
be used to get the boundary values for a contiguous do-
main while trying to ensure that the continuity equation
is satisfied as nearly as possible at points that are com-
mon to the interior of both domains. We have discussed
the problems of solving for the pressure on multiple
overlapping domains for Cartesian coordinates in Refs. 4
and 8.

Most of our work has been done on a computer with
four processors, but we believe that, for large computa-
tions, the future belongs to machines that have on the or-
der of a hundred to a million processors. Although we
have not yet had the opportunity to try our techniques on
such machines, we think that they can be implemented
nicely on such machines. Despite the inevitably messy
details connected with the use of multiple curvilinear
domains, the bulk of our programs can be concisely
described in terms of dot products and matrix multiplica-
tion between subsets of arrays. Although cumbersome to
write in older Fortran, they are specified simply in the
draft international standard for the newest version of the
language. Our programs, in fact, completely conform to
the new standard. Thus, they will run without source
code changes on any machine having a compiler im-
plementing the newest version of the language. Once the
standard is adopted (which is likely to occur within the
next few months), they will run essentially on any com-
mercially available machine intended for general-pur-
pose scientific processing. Our programs will not neces-
sarily run efficiently on any particular machine; how-
ever, given the centrality of the essential operations to
the new version of the language, we think they will be
reasonably efficient on most machines.

PSEUDOSPECTRAL METHODS

We now want to give some of the details of the way in
which we represent the pressure and velocity fields.
Spectral methods, which are the extension of the tech-
nique of separation of variables, have long been advocat-
ed by Orszag’ for the solution of partial differential
equations. In these methods, the partial derivatives of de-
pendent variables are calculated from truncated series
expansions of the variable in terms of smooth (usually
orthogonal) functions. In pseudospectral methods, the
expansions of the dependent variables in terms of
smooth functions are carried out according to the method
of selected points (collocation). The choice of colloca-
tion points, although not crucial, can be made in ways
that make the calculation convenient and accurate. Spec-
tral methods are also the simplest weighted-residual
methods; in other words, the residual (the difference be-
tween the approximate and the real solutions) is zero at
the specified points. A natural expansion for a periodic
function is its Fourier series. The convergence of a trun-
cated Fourier series depends on the smoothness of the
function as well as its behavior at the boundaries. Non-
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periodic functions are approximated by truncated Cheb-
yshev polynomial expansions. Thus, a nonperiodic func-
tion f, whose interval of definition can be mapped onto
[=1, 1] —the set of values of x between —1 and +1—is
expanded by a finite series of Chebyshev polynomials,
T(x), as

N
)= ¥ qTikx). (18)
k=0

If the function is evaluated at the collocation points,
x; = cos wj/N (the extrema of Chebyshev polynomi-

J
als), j =0, ..., N, then the expansion in Equation 18, in

view of the property
Ti(cos 6) = cos k@ , (19)

reduces to the Fourier series expansion
S wkj
f)= Y a cos—, (20)
k=0 N

where the expansion coefficient, a;, is given by

2 N
= _C“ E C'Ti(x)f(x)) (21)

Co=Cy=2,andC,=1for 1 <k <N — 1. The conver-
gence of the Chebyshev expansion depends only on the
smoothness of the function in the interior irrespective of
its boundary behavior. The derivatives of f{x) are calcu-
lated from the relations

N
fap= XY a[“TA(.\'j) (22a)
k=0

N
Fixy= E a®Tx),
k=0

|
where a}" and a”
recursive relation

are expanded in terms of a; by the

(q) _ ,(q) _
Co1 Gy — Gy =

__(g-1)
=2kaf" ,

where ¢y =2, and ¢, = 1 for k > 1.

Alternatively, the derivatives of f{x) at the points x;
can be expressed in terms of a field variable, fix) = f.
evaluated at the same points, that is approximated by

)= E GIDE (24a)

n=0

(24b)

N
fey= E G,

Here G =TGYT, ¢g=1,2, and G® = GVGY,
where T and G'" are (N + 1) x (N + 1) matrices with
elements

T, ;= cos %\j (25a)
k>jork +jis even
G‘ﬁ,’ =
" 2j/C, otherwise (C;=2,C, = 1fork > 1),
(25b)
and T is the inverse Fourier cosine series
. 2
—— cos i) (25¢)

TA._/ N C(C N

Co=Cy=2,andC,=1for1 <k<N-1).

The advantages of the pseudospectral method are
summarized as follows:

1. Whereas resolution of a problem with a boundary
layer of thickness e requires O(1/e) uniformly spaced
points using finite difference methods, it requires only
O(1//e) terms of the Chebyshev expansion in the pseu-
dospectral method.

2. Terms involving nonconstant coefficients and non-
linearities are calculated in whichever representation—
physical or spectral space—is most convenient.

3. The programming effort for the calculation of par-
tial derivatives, fast Fourier transform, or matrix multi-
ply is as simple as finite difference methods:; however,
the accuracy attained by the high-order Chebyshev poly-
nomials is much higher than that of low-order finite dif-
ference methods.

Using a global Chebyshev expansion for the entire
physical domain leads to both a small time step and an
increased sensitivity to oscillating overshoot (Gibbs
phenomenon). These Gibbs oscillations cannot be
smoothed out by filtering techniques; instead, they can
be alleviated by dividing the domain into a small number
of elements (subdomains or pseudospectral elements)
where a piecewise Chebyshev expansion with continuity
of the function and satisfaction of the equation of motion
at the element-element interface® is used to calculate the
derivatives. The use of multiple elements also allows a
larger time step. It can be increased still further by the
use of a higher-order time integration scheme. We now
elaborate on decomposing space into multiple domains.

ISOPARAMETRIC PSEUDOSPECTRAL
ELEMENT

Let us first define the existence of a mapping function
between the physical space (x, y, z) and the computation-
al space (&, 7. ¢) (a transformed space with Cartesian
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coordinates). Once such coordinate relationships are
known, shape functions defining geometry can be speci-
fied in local coordinates, and a one-to-one correspon-
dence between Cartesian and curvilinear coordinates can
be established. An isoparametric mapping, as defined
earlier, is applied to map a three-dimensional curved ge-
ometry (physical space) onto a cube (computational
space). The main objective of the present development is
to provide the three-dimensional computational grids
around complex geometries in a structured fashion. The
pseudospectral element grid-generation scheme present-
ed here uses a multiple block structure; the global com-
putational domain based on the geometrical configura-
tion is divided into a few blocks, and each block is then
arbitrarily partitioned by the pseudospectral elements.
The grid generation is performed in two levels. First,
each block is defined as a parent element, of which the
shape can be defined by a curved isoparametric pseu-
dospectral element. Next, appropriate family elements
linearly (or higher-order) interpolating the shape func-
tion of their parent elements are allocated within each of
these blocks. In other words, a cubic element that con-
tains N + 1, Ny + 1, and N{+ 1 collocation points
[&; = cos(mi/N§), n; = cos(mj/Nn), § = cos(mk/N{)], in
the transformed space, —-1<¢&<1, —-1<9<1,
—1 < ¢ <1 (Fig. 1), corresponds to an irregular or regu-
lar six-faced (hexahedral) element in the physical space.
For an isoparametric mapping, once the collocation
points (x, y, z) along the curving boundaries of each par-
ent element are known, the interior points (including the
boundaries of family elements) are interpolated by
deforming the (&, 5, {) mesh into its (x, y, z) image using
the “trilinear blending function™'? that is, the grid points
(x, y, z);; in the physical space are mapped onto (£ = £,
n =1, {= {) in the transformed space. Figure 1 sum-
marizes the technique of an isoparametric mapping for
grid generation:

If we let ¢ be any value of (x, y, z), the interpolation
translates the Boolean sum'" into the form

¢ = Py + P, + P — PP, — P P; — P, P

+ PP,Pi ¢, (26)
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where the “projectors,” Py, . and P, interpolate ¢ be-
tween two opposing faces of the six-sided region; the
double-product projector, P;P,, interpolates ¢ in two
directions from the four edges along which £ and 5 are
constant; and the triple-product projector, P P, P , inter-
polates ¢ from the eight corners. With linear interpola-
tion functions defined as

ney= LHE  yog o 128
N = EE N = 15

Dy — L1 Dy L=
NOm)= ——, NOm) = —
N = 5 veg = 25 @

the explicit expressions for the face projectors are
Pip = NOE(L, 0, ) + NP (E)o(-1, 9, {)
P = NYmeE, 1, 9+ NPme(E, -1, §)
Py = NOOBE 1. 1) + NO(OdE, 7. 1), (28)
and the edge projectors are
PP, = NOENDm(L, 1, §)
+ NDENP(o(l, -1, )
+ NOENDme(-1, 1, §)
+ NP(EHNP(pe(-1, -1, )
PP =NDEND(OS(1, 0, 1)
+ NOEONP(He(1, 1, -1)
+ NOEND(B(-1, 9, 1)

+ NPEND(DHS(-1, 7, -1)

Figure 1. Three-dimensional isopara-
metric mapping of family elements.
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P,P:¢ =N (N (O)e(E, 1, 1)
+ NONI(De(E, 1, -1)
+ NN D(OS(E, -1, 1)
+ NN (e, -1, -1), (29)
and the corner projector is
PiP,Prd = NUENVN(©(1, 1. 1)
+ NOEN N ((1. 1. =1)
+ NOEND@NI(©e(1, -1, -1)
+ NOENIN (1, -1, 1)
+ NOENN (-1, 1, 1)
+ NPEONNI(O(-1, 1, -1)
+ NOEN N1, -1, 1)
+ NOENINI(Od(-1, -1 , =1), (30)

where the surface function ¢(&. n. 1) can be adequately
represented by an isoparametric tensor product such that

N N
o 0. )=Y X NENmoE.n. 1),

(31)
i=0 j=0
and similarly for the edge function ¢(£. 1. 1).
N
¢¢ L= X N(®aE: 1. 1), (32)
i=0

Here N;(&) and N;(7), the shape functions of each parent
element derived from the Chebyshev polynomials, read

N

Ni(£)= E Tm(S)Tm(SI)

m=0

(33a)

N
Nm= X T,mT, ). (33b)

n=0

where the matrices 7,,(£) and T,(£) have been defined
by Equation 19 and Equation 25, respectively. The shape
functions N;(£) and N;(n) satisfy the Kronecker-delta
proper[Y* that iS, Ni(gm) = 6im~ N[ (nn) = 6_[;1‘

In an analogous manner, other undefined surface and
edge functions can be derived without any difficulty. It is
obvious that Equation 26 interpolates the surface bound-
ary functions exactly.

BIFURCATION BLOOD FLOW

Flows in branching tubes occur in many situations. In
particular, they appear in the human carotid artery and
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aorta. Fluid dynamics helps us to understand the charac-
teristics of such flows and their possible physiological
consequences.

It is typical in such flows that there will be regions
near the branch points where the flow circulates around a
stagnant region. Examples are shown in Figures 2 and 3.
The location of the flow recirculation zone (low shear re-
gion) plays a significant role in the early stages of
atherosclerotic lesions. Two-dimensional flow models
only provide a simple view of this problem, and many of
the important effects cannot be adequately described by
them.

Figure 4 roughly represents the three-dimensional hu-
man carotid bifurcation configuration. A simplified bi-
furcation model (Fig. 5) is adopted here because of the
lack of actual representation of the carotid artery. A
steady flow instead of pulsatile flow at the entrance is as-
sumed for simplicity. For the two-dimensional bifurcat-
ing flow, the characteristic velocity and length defining
the Reynolds number, Re = UL/, are based on the max-
imum velocity U and half-width of the upstream channel
L. We have allocated 10 X 4 elements (six points per ele-
ment) in the streamwise and transverse directions along
each channel.

For Re = 500 with a branching angle of 90° (sym-
metry condition), the flow separates immediately from
the upper or lower wall of each branch, and the maxi-
mum stream function is ¢, = 1.3484 (Fig. 2). The
quantity ¢ is defined by u, = dy/dy and u, = —9y/dx,
where u is the horizontal velocity. For asymmetric bifur-
cation flow, if the flow rate is initially specified at each
branch, the total pressure drop from the entrance to the
exit along each channel is not the same.

Figure 2. Streamline pattern for the symmetric bifurcation flow
at a Reynolds number of 500. The dimension L is the half-width of
the channel.

Johns Hopkins APL Technical Digest, Volume 12, Number 3 (1991)



Figure 3. Streamline pattern for the asymmetric bifurcation flow
at a Reynolds number of 500. A. The half flow rate is specified. B.
The flow rate is adjusted (compatible pressure drop) along each
branch. The dimension L is the half-width of the channel.

Figure 3A shows an asymmetric branch for Re = 500
and a branching angle of 71.5°, with each branch con-
taining half the flow rate of the upstream channel. The
resulting streamlines (Y.« = 1.3503 in the upper
branch) are very similar to those of Figure 2, except for a
strong downward current existing in front of the bifurca-
tion point; however, the total pressure variation in the
upper channel (0.06756) differs from that of the lower
one (—0.01398). Hence, the flow rate along each branch
needs to be adjusted so that the total pressure drop along
each channel is compatible. Since the relation between
the total pressure drop and the flow rate is quasi-linear,
following Newton’s method, the corrected flow rate

Johns Hopkins APL Technical Digest, Volume 12, Number 3 (1991)
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Common
carotid

Figure 4. Three-dimensional representation of human carotid
bifurcation.

Figure 5. Simplified three-dimensional bifurcation model and
coordinate system.

along each branch can be adequately determined by a
few iterations.

Figure 3B shows the modified streamlines (.,
= 1.3536 in the upper branch) by imposing the constraint
that the same total pressure drop (Ap = 0.0134) along
each channel can be reached. Figure 3B also indicates
that the separation along the upper branch has been de-
ferred to a further downstream position because of the
switching flow from the lower one. Similarly, the reat-
tachment length is slightly increased.

For the three-dimensional bifurcation flow, only the
symmetric_condition was examined. With a uniform
depth of y2 L in the spanwise direction, the multi-block
scheme is shown in Figure 6. In addition to having the
same number of elements in the streamwise (£) and
transverse ({) directions as in the two-dimensional flow,
three elements were used in the spanwise direction (7).
As expected, because of the finite domain in the span-
wise direction, the three-dimensional velocity profiles
deviate from the two-dimensional ones. This result is ap-
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Figure 6. Three-dimensional configuration of domain decom-
position (multiple blocks), showing the number and letter desig-
nations used for computational purposes.
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Figure 7. Velocity vectors for a Reynolds number of 500 in
three-dimensional flow along the central plane (n = 0.707,
where 7 is the spanwise direction). The arrow indicates the flow
separation zone where early atherosclerotic lesions tend to oc-
cur. The dimension L is the half-width of the channel.

parent in comparing the velocity vectors of the three-
dimensional flow (Fig. 7) along the central plane (n =
0.707) with those of the two-dimensional flow (Fig. 8).
The separation appearing in the two-dimensional flow
becomes weak in the three-dimensional flow. This
weakening occurs because the higher flow rate in the
central plane (7 = 0.707) of the three-dimensional flow
causes thinner boundary layers along the upper wall of
the branch.

INTERNAL WAVES

We now look at some examples that go beyond the
constant-density approximation. In many geophysical
situations, the density is approximately constant in the
horizontal but varies in the vertical. The Boussinesq ap-
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Figure 8. Velocity vectors for a Reynolds number of 500 in two-
dimensional flow. The dimension L is the half-width of the chan-
nel.

proximation is very useful in such situations, neglecting
such variations except in the term giving the gravitation-
al force. We use the approximation here to discuss the in-
ternal waves that arise when a density-stratified fluid is
disturbed. These waves generalize ordinary surface
waves that can be thought of as occurring in a fluid with
only two densities—those of air and water. Such waves
can be remotely sensed by synthetic aperture radar. Here
we focus on two types: internal waves generated by the
collapse of the wake left behind by a submerged body
moving in a stratified fluid. and those generated by the
moving submerged body itself. The latter case is more
complicated to analyze because surface and internal
waves interact with the primary flow field.

Wake Collapse

Experiments conducted by Wu'’ have demonstrated
the collapse of a mixed region in a linearly density-strati-
fied fluid, and his experimental results adequately de-
scribe the visible and often spectacular effects of internal
gravity waves. He also described three stages by which
the perturbed fluid seeks its equilibrium density level. In
such phenomena, an oscillating flow of energy occurs
from potential to kinetic and back. To capture this effect
accurately, we use a fourth-order Runge-Kutta time-in-
tegration scheme.” which does a good job of conserving
energy in the following simple test problem. When an in-
viscid density-stratified fluid in a square box with each
side of length 6 is disturbed by a Gaussian density per-
turbation, p” = — (pg), (v — v.)exp[—0.693(r/r,)*]. where
r.=0.5, y.= 3, and (p,), = —0.003134, the division of
the total energy into potential energy (PE),

<

PE=~—

1 | ¥

(0o, JJ (o) dx dy . (34)
A

and Kinetic energy (KE ).,
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KE=3 f j (oo + ") +v?) dxdy . (35)

A

will vary with time. Figure 9 sketches the energy ver-
sus the Brunt—Viisdld period, Nt/2w (N = [(=g/po)
(8p,/dy)]1""?). The Brunt—Viisili or buoyancy frequency,
N. is the angular frequency with which a fluid particle
displaced vertically will oscillate about its original posi-
tion. The total energy is conserved with 0.28% error at
eight Brunt—Viisild periods.

We now apply this technique to a numerical simula-
tion similar to Wu’s experiment. A fluid with a linear
density gradient, (—=1/p%)(po), = 0.00025 cm™ (p* is a
reference density, 1 g/cm®), is confined within a rigid
tank about 440 cm long and 120 cm high. A uniformly
mixed circular region with a radius of 15.6 cm was
placed in the middle of the tank as an initial disturbance.
The top surface is assumed to be a stationary free surface
(no shear stress); that is, the fluid is allowed to develop
along the horizontal direction. Internal waves generated

Pseudospectral Element Method

by an initial collapse of the mixed region result in the
displacement of a fluid particle away from its equilibri-
um state (density change), and consequently causes an
oscillatory motion. Flow patterns can be represented by
moving rays connecting either crests or troughs. These
rays originate from the collapse center and decrease their
slopes when moving away from the core region. Such
phenomena can be clearly visualized by the evolution of
isopycnic (constant density) lines as shown in Figure 10
at the times Nt = 3, 6, 9, and 12.

Submerged Body Moving in a Thermocline

When the fluid is stratified, the wake patterns around
a moving obstacle significantly differ from those in a
homogeneous fluid. Two key parameters account for
most features of flow motion—the Reynolds number,
Re = UL/v, and the Froude number, Fr = U/NL, where
U is the body speed and L is the characteristic length. For
large values of Re and Fr, the effect of stratification is
expected to be relatively unimportant; however, if the
Brunt—Viisilid frequency, N, is dominant (small Fr), the

1.0 L — T
§ 0.8 - .
2 P Figure 9. Energy partiton versus
o 061 Brunt-Vaisala period, Nt/2x. The line,
& T, indicates the normalized total ener-
T 04 F gy, whereas the black line, P, and the
g K blue line, K, are the potential and kinet-
Z 02 1 ic energies, respectively.
0 ‘ ; ;
0 2 4 6 8
Nt/’27, dimensionless time
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Figure 10. Isopycnic lines at various times, Nt. A. Nt = 3.B. Nt = 6. C. Nt = 9. D. Nt = 12.
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strong stratification will distort the wake in front of and
behind a moving obstacle and will tend to suppress vor-
tex shedding behind an obstacle. When such conditions
exist, the transport of mass, momentum, and energy by
turbulent eddy mixing requires more work against the ef-
fective gravitational field by consuming the kinetic ener-
gy; hence, the vertical motion is inhibited. The effect of
lee waves on the wake of an obstacle is more pronounced
as the Reynolds number becomes smaller. In a realistic
environment, a moving obstacle will be situated in one of
three vertical regions: above (top mixing layer), below
(weak density gradient), or within a thermocline, and the
resulting flow fields will be different for each region.

A numerical experiment was conducted by horizon-
tally moving a cylinder in a linear density-stratified fluid
at Re = 100 (based on the diameter of a cylinder). The
gridding generated by the isoparametric pseudospectral
element method is plotted in Figure 11. The vortex shed-
ding behind a cylinder in a homogenous fluid (Fr = oo
in Fig. 12A) is compared with stratified fluids at
Fr=1.15 (Fig. 12B) and Fr =0.77 (Fig. 12C). The
vortex shedding. as expected, is gradually inhibited by
continuously increasing the Brunt—Viisili frequency.
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