A. NORMAN JETTE and C. BRENT BARGERON

THEORY OF ELECTRON CURRENT IMAGE
DIFFRACTION FROM CRYSTAL SURFACES

AT LOW ENERGIES

Images obtained by rastering an electron beam across the surface of a single crystal while measuring the
current absorbed by the specimen and displaying it synchronously as a function of beam azimuthal and po-
lar angles on a cathode-ray tube reveal diffraction patterns characteristic of the symmetry of atomic posi-
tions on and near the crystal surface. Information about crystal structure and electron-surface interactions
can be obtained by comparing these images with theoretical computations.

INTRODUCTION

Current-image diffraction (CIp) was discovered in
1982 in ApC’s Milton S. Eisenhower Research Center.'
This phenomenon has been described in previous articles
in the Technical Digest.>* Briefly, an electron beam is
rastered across the surface of a meticulously polished
and cleaned single crystal of a metal or semiconductor in
an ultrahigh vacuum (~107° to 107'° torr). The current
absorbed by this crystal is synchronously measured as a
function of beam azimuthal and polar angles and dis-
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played on a cathode-ray tube. Changes in contrast reveal
diffraction patterns caused by variations in total reflec-
tivity of the crystal surface with the angle of incidence of
the electron beam (Fig. 1). Conservation of electron flux
results in the initial electron beam current equaling the
sum of the current absorbed by the crystal plus that
reflected or emitted from the surface. This article ad-
dresses calculation of the reflectivity as a function of
electron beam energy and angle of incidence.

Figure 1. Experimental current image
diffraction pattern. The planar Miller
(hkl) indices for these surfaces are il-
lustrated in Ref. 2. A. The (001) sur-
face of aluminum taken at a primary
beam energy of E, = 21 eV with re-
spect to the vacuum. B. The (001)
surface of aluminum with £, = 162 eV.
C. The (111) surface of aluminum with
E, = 21 eV. D. The basal plane of
titanium at £, = 20 eV.
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The theory of cID images is closely allied with that of
low-energy electron diffraction (LEED), a theory that was
developed in the late 1960s and early 1970s.* With LEED,
the important quantity is the intensity of individual
beams that are elastically backscattered (diffracted) from
the crystal and often displayed as spots on a hemispheri-
cal fluorescent screen,” with inelastically scattered elec-
trons prevented from reaching the screen by retarding
grids. Comparing the intensity of LEED beams as a func-
tion of primary beam energy with the experimental
results allows the extraction of useful structural informa-
tion about the crystal surface. With cIp, on the other
hand, the total elastically diffracted component is of in-
terest; that is, the sum of all the LEED beams that can
backscatter from the crystal at a particular energy and an-
gle of incidence determines the total elastic component
of surface reflectivity. Structural information on sym-
metry and atomic position is derived from CID images by
comparison with theoretical calculations of the elastic
component of reflectivity.

ION-CORE SCATTERING

A characteristic length of the incident electron beam,
termed the coherence length. is the distance on the crys-
tal surface within which all atoms will experience radia-
tion of equal amplitude and phase. The coherence length
at LEED energies (10 to 1000 eV) is on the order of
500 A.*a distance that encompasses about 200 surface
unit cells, depending on the crystal; thus, the incident

electron beam can be taken as an infinitely wide beam on
the microscopic scale, described by a plane wave.
Mathematically, the incident beam of amplitude A and
position r can be written as A exp(ik, - r) with energy
E = h’k o|*/2m,. where £ is Planck’s constant divided by
27, m, is the electron mass, and |K| is 27/A, with A the
electron wavelength outside the crystal. A schematic of
an electron beam taken as a plane wave incident in the
normal direction on a crystal surface is shown in Figure
2. Localized ion cores strongly elastically scatter the
electrons, whereas delocalized conduction or valence
electrons are primarily responsible for the inelastic pro-
cesses that diminish the amplitude of the incident beam
penetrating into the bulk crystal, where it eventually de-
cays. The crystal is therefore modeled as a periodic array
of spherically symmetric potentials located at atomic po-
sitions that describe the tightly bound core electrons of
the crystal atoms. These potentials are immersed in a
complex potential termed the inner, or optical, potential.
The real part of the inner potential is taken as a constant
and accounts for the contribution of the delocalized elec-
trons to the elastic scattering of the electron probe; this
interaction is weak. The imaginary part is dependent on
the incident electron’s energy and takes into account the
inelastic scattering processes that attenuate the amplitude
of the electron beam.

The calculation first proceeds by considering the scat-
tering of an incident electron by an isolated spherically
symmetric ion core:* that is, the Schrodinger equation

Ikg Y Incident beam

L]
o V Bulk crystal

Figure 2. Schematic of an electron
beam of energy E taken as a plane
wave incident in the normal direction to
the crystal surface. The dashed lines
indicate the wavelength of the electron
beam in the crystal “inner” potential
Vo(\ = 27 \2E - 2V{) One scattering
event is drawn where scattered waves
radiate from the ion core (scattering
center), with amplitudes dependent on
the scattering angle fs.
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must be solved for the many-electron system that con-
sists of the tightly bound core states, ¥, (r;, s;) for elec-
tron / in quantum state n, and the wave function of the in-
cident and scattered electrons, ¢(r;, s;), where r; is an
electron- posmon coordinate and s; 1s the spin coordmate
of electron j. This many-electron functlon satisfies

H®=E®, (1)
where

®(ry, s, ... Iygp, Sya) = E (_1)P¢(rl9 Sy)
P

XY(ry, s,) . .

- YN (TNt She)

(2a)

is the many-electron wave function for the N core elec-
trons plus the incident or scattered electron, and

|l'| r/+1|rf_rj

N+1 ﬁ7 v _ ZF N+l €2
e E { 2m ¥ V) + L Ir =1
(2b)

is the many-electron Hamiltonian. Here m and e are the
electron mass and charge, respectively. E, is the total
energy of the system, including all the core levels and in-
cident electron probe. The sum in Equation 2a is over all
permutations P of electron coordinates, where an order
derived from the initial order by an even permutation of
two electrons results in a positive sign, and an odd ex-
change contributes negatively. This wave function satis-
fies the condition that a many-electron wave function
must be antisymmetric with respect to the exchange of
any two particles. The Hamiltonian (Eq. 2b) is a sum
over the single-particle kinetic energy operators and the
electrostatic potentials describing the interaction of an
electron with the nucleus of charge Z and the electrostat-
ic repulsion between electrons. In this equation, V(r)) is
the potential due to screening by the delocalized elec-
trons and is constructed so as to make the ion-core region
electrically neutral. Thus, when the electron probe is ex-
ternal to the ion core, it is in a field-free region except for
the constant term of the inner potential.

At first sight, the solution of Equation 1 seems formi-
dable, but there is much information about the system
that can be used to advantage. The total energy E, is the
sum of the incident electron energy and the total energy
of the core states E,.. Because the energy (20 to 1000
eV) of the incident electron is much higher than the con-
duction or valence electrons (3 to 5 eV), the screening
charge has relatively less effect on the LEED or CID elec-
tron than on the conduction electrons. Thus, the main ef-
fect of the screening electrons is to ensure charge neutral-
ity, and most reasonable approximations of the screening
potential in the ion-core region will yield satisfactory
results.* The core electrons are also tightly bound and not
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easily polarized by the incident electron. Thus, we can
take for the core states the known solutions for the free
atom, and the functions ¥, (r;, s;) are elements of a com-
plete orthonormal set, which can be exploited to obtain
an equation for ¢(r, s) alone. The cCID electron wave
function can be decomposed into partial waves centered
on the ion core

E a[.masd)/ (I r |)Yl.m(0’ ¢) s (3)

ILm

o(r, s) =

where Y, (0, ¢) is a spherical harmonic, g, ,, is the am-
plitude of the partial wave /,m, and o, is a spin function.
Because the ion core is spherically symmetric, it cannot
absorb angular momentum, and each partial wave com-
ponent / and m is consequently conserved. The partial
waves ¢, behave independently and satisfy

e 5 de (1) 1(1+1)
_ﬂ{r dr [ dr } ¢ )}

2 ’ 2
e’ 2 [T’ s)l
= | b p Al

;\ J Ir—r’|

+ f Vee (r, ) (1)1 dr’ = E (1) (4a)
0

- [K(r) = d 3r} b, (1)

inside the ion core and

B 71_2 1d (I.z dd’/j /(/+ 1)
2m | r?dr dr

¢ (1 )} =E¢(n)
(4b)

outside this sphere. In Equation 4a, V. is a nonlocal
operator called the exchange potential and is a direct
consequence of the antisymmetric property of the many-
electron wave function (Eq. 2a).

Solutions to Equation 4b in the region exterior to the
ion core can be written in terms of unscattered, q&}o), and
scattered, ¢|*, constituents, namely,

&= () + e (1, (5a)
where
& = BiLh" + 1 = 2B,j, , (5b)
and
¢ = Blexp(2id) — 1] AP . (5¢)
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In these equations, /" and 4 are spherical Hankel func-

tions of the first and second kind of order /.

In the limit of large argument r, 4" behaves as an out-
going wave, whereas /4{* acts as an incoming wave. The
term j; is the spherical Bessel function of order /, 3, is the
amplitude of the incoming wave, and §, is a phase shift
for angular momentum /. The incoming plane wave can
be resolved into spherical components using the identity

= /)

expik - r) =Y Y 4xi (k) Y, [QK)]Y,, [Qr)] .
1=0 m=-l
(6)

where Q denotes both polar and azimuthal angles of its
vector argument and the asterisk (¥) indicates complex
conjugation. Direct comparison of Equation 6 with the
solution to the Schrodinger equation in the region exter-
nal to the ion cores (Eq. 5) establishes the amplitudes £3,.
The total scattered component of Equation 3 is con-
sequently

o¥(r) = Y i' Slexp(2i8) — 114" (k|

1
x (21 + 1)P;(cos 6%) , (7)

where 6 is the angle between r and k, or the scattering
angle, and P, is a Legendre polynomial.

The phase shifts are determined by solving for the
logarithmic derivative

é, (R)

LR =3 ®

(8)

where ¢,(R) and qb,'(R) are determined numerically from
Equation 4a. Because the solutions exterior to the ion
core must match at the core boundary R, this condition
results in

(2) (2)4
L, k" — h

exp(2i§)) = e
p(2i0) WY — L, "

(9)

for the phase shifts, where a prime denotes differentia-
tion with respect to 7. Although the sum in Equation 7 is
over all values of / in practice, only a finite number, in-
creasing with primary beam energy. are required to ob-
tain convergence. For example, at E = 50 eV, only values
of [ up to 4 are significant.* Once accurate solutions of
the scattered wave (Eq. 7) are obtained for an ion-core
potential, the ion cores are assembled into periodic struc-
tures that are representative of the crystal and immersed
in the complex optical potential.
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MUFFIN-TIN POTENTIAL

The real part of the inner potential, V|, in Figure 3, is
roughly the sum of the work function (energy required to
remove an electron from the crystal) and the Fermi ener-
gy (energy of the highest occupied conduction-band
electron at temperature 7 = 0K). The imaginary part of
the inner potential is dependent on the energy of the pri-
mary beam and represents the losses suffered by the
beam due to inelastic processes. The imaginary part of
this potential makes elastic, low-energy electron scatter-
ing surface-specific, because the beam attenuates as it
penetrates into the bulk crystal; consequently, the elasti-
cally backscattered electrons sample only the first few
layers of atoms. In Figure 3A the crystal surface is at
z = 0, and the transition from vacuum to crystal surface
is along the negative z-axis. The potential in this region
is referred to as the surface barrier, which can be thought
of as being caused by an image charge and is potentially
observed as fine structure in the current-image diffrac-
tion (CID) images near the evanescent condition for the
emergence of a new electron beam.? The resemblance of
the potential to a muffin tin. accounting for its name, is
evident in Figure 3B.

To the right of the origin in Figure 3A is the potential
inside the crystal where the symmetrically arranged ion-
core potentials are coulomb-like, with regions of con-
stant potential between them, the so-called muffin-tin
potential depicted three-dimensionally in Figure 3B. Un-
like X rays, where scattering per collision is weak, elec-
tron scattering is strong, and multiple scattering events
must be taken into account to obtain accurate intensities
of the backscattered electrons; this feature makes low-
energy electron scattering computationally intensive.
Indeed, the calculation is made tractable only by the peri-
odicity of the ion-core scattering centers. The wave func-

A V(2)

Vacuum

Figure 3. Muffin-tin potential for a single crystal. A. The surface
is at z = 0, and the approach to the vacuum is along z < 0. B.
Three-dimensional perspective where the surface unit cell is giv-
en by a and b. (V,, = real part of inner potential.)
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tions at the various scattering centers have distinct phase
relationships because of this periodicity.

MULTIPLE SCATTERING

Multiple scattering effects can be calculated in many
ways, but only two approaches are described here. Both
approaches proceed by dividing the crystal into planes or
layers of atoms parallel to the crystal surface, with the di-
vision dependent on the complexity of the structure. The
transmission and reflectivity of a plane or layer of atoms
are calculated for incident and scattered beams exterior
to the plane or layer. The number of diffracted beams is
determined by the primary beam energy, and their direc-
tion is fixed by crystal symmetry. The multiple scattering
of the ion cores is treated self-consistently. For example,
the scattering of an ion core centered at the origin of the
surface unit cell is calculated for the incident plane wave,
thereby determining the scattering of all other ion cores
in other unit cells in equivalent positions, as they are
related to each other only by differences in phase. The
scattered waves from all the other ion cores are then
treated as incident waves on the original core at the ori-
gin; that is, the scattering of the incident plane wave is
corrected for multiple scattering effects by adding to the
incident wave all the waves scattered from other ion
cores. The summation over other ion cores usually con-
verges rapidly owing to absorption.

The layers can be complicated entities involving
several planes of atoms in which each plane of atoms has
its ion cores in the same plane. For simplicity, we shall
consider a single plane of atoms to constitute a structural
unit, termed the surface unit cell, that replicates the plane
by translations of lattice vectors, R/

R, =na + mb , (10)

where 1 and m are integers, and a and b are basis vectors
in the plane for the basic structural unit (Fig. 3B). Both a
and b are determined by the symmetry of the positions of
the atoms that make up the plane. The kth atom in the jth
unit is denoted

Ri=R;+r, (11)

where r; is a vector from the origin of the unit cell to the
kth atom within it. To calculate scattering by this plane,
consider the incident plane waves from the left of the
plane (superscript plus signs) of the expression

Y Ugexp(i K1),
g

where the sum is over vectors of the reciprocal lattice g,
which satisfy

g-a=2xi

g-b=2xj, (12)
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where 7 and j are 1ntegers The term U, T is the amplitude
of the gth beam, and Kg is the complex wave vector or
momentum of the beam g incident from the left of the
plane (positive superscript) or right of the plane (nega-
tive superscript). Here, atomic units are being used for
notational convenience (%> = m, = ¢* = 1). In these atom-
ic units, the unit of energy is the Rydberg (27.2 eV), and
the unit of distance is the Bohr radius (0.529 A) The
imaginary component of K attenuates the beam until it
diminishes. The absolute values of these wave vectors
are

o = QE-2Vp)'"?, (13)

where V/ is the real component of the complex optical
potential. The plane waves can be reexpressed in terms
of spherical waves centered on the kth atom in the unit
cell at the origin, using the identity of Equation 6.
Proceeding in much the same way as for a single ion core
(Eq. 7), the scattered flux for many beams can be found
by

YO =Y AP 3{exp[2id, (k)] — 1} A" (kir — Ry)

Imjk

x explikoy - (Rj — Rop) 1Y, [Q(r — Ry)]

(14)

where Q(r — Ry) stands for the angular coordinates of
the vector (r — R) and Ky is the component of the inci-
dent wave vector parallel to the crystal surface. In deriv-
ing Equation 14, use was made of the identity

A (jth cell) = A (Oth cell) exp [ikoy - R;] . (15)

or the wave function at Ry, is identical to the wave func-
tion at Ry, except for a phase factor.

As it stands, ¥\” includes scattering events of the in-
cident beams to atoms in the plane and does not include
waves scattered from other ion cores incident on atoms
within the plane. The total amplitude, including scatter-
ing from other ion cores on the kth ion core in the unit
cell at the origin, is

Alml\ Alml\ + A;:H)A ’ (16)

where A} is the amplitude scattered from other ion
cores in the plane. The term A}) depends on A, and
consequently must be determined self-consistently. The
amplitude of the wave at the kth atom in the jth unit cell
is related to that of the kth atom in the Oth unit cell by
just a phase factor (Eq. 15). By using this property and
an expansion theorem for the product of spherical
Hankel functions and spherical harmonics, an equation
can be derived for the total scattered wave by the plane
of atoms, including multiple scattering from all ion cores
in addition to the incident beams.*
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Because these equations are rather complex, only the
results will be repeated here, and the interested reader is
referred to Pendry for the details.* The total amplitudes
V: , including waves that scattered and waves that passed
through the plane without scattering, can be written as

Ve= X (g + MpdUz + My, Uy (17a)
g
and
Ve=Y Mg Ug + (lgg + MgU, (17b)
g

where /., are elements of the identity matrix and U, the
amplitudes of the incident plane waves of wave vector
K, incident from the left of the plane (positive super-
script) and from the right of the plane (negative super-
script). To grasp the complexity of the solution, elements
of the scattering matrix are explicitly

87’ -
MEE= T ¥V expKE-
2g + 2
|Kg| AK;’_: I'm’k’
Imk

r}\ i iKé" r’\’)

X L)Y L [QEDTIL = X i ymr
X {i_[lyl'm'[Q(Kg')]}
x exp[ié; (k")]sin[6,(k")] , (18)

where A is the area of a surface unit cell, and X is a ma-
trix with elements given by

X/mk./"m = — €Xp [161 (l‘)] sin [61 (,‘)]

X E 47rK—l(_1)(l”—I—[') 2(__1)m"

I'm’

XJ YIm(Q)YI’m'(Q)l"—m”(g) dQ

Kiam '0610
8 V4T

+Dl'm'(ks):|. (19)

Note that in these equations §; is the traditional nota-
tion for a phase shift: ¢, ; is the Kronecker delta function
(6;;=1if i =jand 6; ;=0 for i # j). In Equation 19,
D, (ks) involves a sum over all the unit cells j, namely,
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Dy (ks) = K_I— 8,70 00 — ik(=1)""
e

x Y " h? (kR — RiY /o, [Q(Ros — Ry)]
J

X exp(lk(” N R,) . (20)

where the prime on the sum denotes the exclusion of the
Oth unit cell from the sum. The total scattered wave func-
tion in terms of the amplitudes (Eq. 17) is

v =Y Viexp(iK;. - r)
e

to the left and right sides of the plane.

Although in our sketch of the theory just described we
have restricted ourselves for simplicity to a single plane
of atoms, Equation 18 is more general; that is, r; may al-
so have a z component, and the single plane can, in fact,
be a layer of atoms. This should usually be avoided, be-
cause the dimensions of X depend on the number of ion
cores in the unit cell, which results in computer ineffi-
ciencies for many different ion cores in assembling X and
determining the inverse of (1 — X). For a single plane of
atoms of spherical symmetry, the scattering matrix is in-
dependent of the side of the plane on which the plane
waves are incident, that is, ™" =M " "and M™* =M.
The complexity of a low-energy electron diffraction
(LEED) or a current-image diffraction (CID) calculation is
caused in part by the profusion of beams that results
from a plane wave striking a plane or layer of atoms,
much akin to plucking a clamped string and analyzing
the resulting motion in terms of the string’s normal
modes. The number of these beams is limited only by the
energy because, for large g. the waves become evanes-
cent and die away. For the cIp calculations, once the
scattering matrix for the plane or layer of atoms is deter-
mined, the layer-doubling or renormalized forward-
scattering theory is used to complete the calculation for
the total elastic component of the reflectivity.

The layer-doubling scheme for calculation proceeds
by taking the single layer or plane and doubling it at the
crystal layer separation. The transmission and reflectivi-
ty computations are then repeated for the transmitted and
reflected beams external to the doubled layer. This com-
posite layer is again doubled, and the process is repeated.
Eight identical layers or planes are usually sufficient to
approximate the semi-infinite crystal. This is the method
of choice for low primary-beam energies such as those
used to probe surface potential effects.**

Another method used to obtain CID images is the
renormalized forward-scattering perturbation method.*
Perturbation theories in general fail for electron scat-
tering at low energies, primarily because of the strong
electron—ion-core scattering at these energies. Pendry”
developed a perturbation approach that does succeed,
however, and achieves more computer economy than

Johns Hopkins APL Technical Digest, Volume 12, Number 3 (1991)



other methods. This method exploits the fact that only
the forward-scattering events are strong, 6, < 90°. Con-
sequently, forward scattering is treated to all orders of
scattering. This method proceeds by considering all scat-
tering events between layers 0 and j. That is, in zero
order, no scattering of the incident beam occurs as it
passes through all the intervening layers and emerges
from layer j; in first order, only one scattering event oc-
curs between the surface and the beams emerging from
layer j. This single-scattering event must be summed
over all the layers, however. After the zero-order and
first-order terms are found, the second-order, third-order,
and so on, are considered until, finally, forward-scatter-
ing occurs from every intervening layer, including the
layer j. This sequence can be summed to give an exact
expression for the forward-scattering amplitude; thus,
the strong forward scattering is treated exactly. Backscat-
tering is dealt with by using the perturbation theory, a
method that greatly reduces the computational time and
is the method of choice for higher primary-beam ener-
gies (E, > 20eV).

The symmetry of a crystal surface is immediately ap-
parent by reference to the CID or LEED patterns. The pre-
cise structural determinations proceed by judiciously
choosing, according to solid-state chemical principles,
the atomic positions. The LEED intensities of the emer-
gent beams are calculated as a function of primary-beam
energy and compared with the experimental results. Ad-
justments to the atomic positions are then made, and the
process is repeated. Thus, a structural determination can
involve considerable computer time, making computa-
tional efficiency highly desirable.

RESULTS

The calculations of the following CID images were
made using the Laboratory’s mainframe computer and a
Cray-1 computer located at Kirtland Air Force Base in
New Mexico. Most of the source programs used in these
computations are the LEED programs of Van Hove and
Tong.”

Figure 4 shows the results of intensity calculations of
the elastically backscattered electrons using the renor-
malized forward-scattering (RFS) perturbation theory
along the three directions, as indicated in the inset. The
inset also shows the position of the atoms in “real” space,
along with the directions in the reciprocal lattice. To
facilitate comparison of theory and experimental results,
the total reflectivity was calculated as a function of the
angle of incidence of the primary beam at 130 points,
forming a grid in one octant of the (100) face of alumi-
num (Al). These calculations were done for a primary-
beam energy of 6.55 hartrees (1 hartree = 27.2 eV) rela-
tive to the muffin-tin potential. The points in this octant
were interpolated using cubic spline functions to a total
of 1250 points for the octant. The theoretical CID image
(Fig. 5) was created by assuming a linear-response func-
tion and using computer imaging methods. The contrast
in this generated image has been reversed so that bright
areas correspond to low reflectivities (i.e., they cor-
respond to the experimental measurements). This image
resembles the experimental CID image of Figure 1B taken
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Figure 4. Theoretical elastically backscattered electron current
for AI(100) as a function of angle of incidence along the (1, 1)
direction of the reciprocal lattice (circles), the (1, 0) direction (cir-
cles and triangles), and midway between (squares). The primary-
beam energy is 6.55 hartrees relative to the muffin-tin potential.

at 5.96 hartrees, suggesting, in turn, that the real part of
the inner potential is 16 eV ([6.55 — 5.96] x 27.2). The
largest discrepancy between theory and the experimental
image is the large experimental reflectivity at the center
(6 = 0°), which theory predicts should be smaller and
weaker. This difference can be attributed to the neglect of
temperature effects in the theory and the energy-broa-
dened primary electron beam, which would also explain
the features in the experimental pattern being less sharp
than expected from the theoretical image.

Figure 6 shows theoretical CID patterns as a function
of the distance between the top two planes of atoms for
the (111) surface of aluminum. These images exhibit the
symmetry of the (111) surface” and indicate the sensitiv-
ity of the CID images to layer displacement. Temperature
effects are included in the theoretical images. Close
correlation seems to exist between the image at an inter-
layer spacing of 2.512 A and the experimental image
measured at 21 eV with respect to the vacuum (Fig. 1C).
Theory and LEED experiments predict a slight relaxation
outward of the first two layers 1:0r the AI(111) surface
from the bulk spacing of 2.338 A.
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Figure 5. Theoretical image on the (100) aluminum surface for
a primary-beam energy of 6.55 hartrees relative to the muffin-tin
potential. High reflectivity is indicated by dark areas.

™. A!‘f_f

-

Figure 6. Theoretical current-image diffraction (CID) patterns of
the (111) surface of aluminum calculated for an electron beam
energy of 30 eV with respect to the vacuum for the indicated dis-
tances (in A) between the surface layer and the second layer of
atoms compared with an experimental CID image. The layer
spacing of the bulk crystal is 2.338 A. The relative intensity of
reflected electrons is indicated by the color table at the bottom of
the figure. The experimental image for this surface was mea-
sured at E = 21 eV with respect to the vacuum.

CONCLUSION

In this article, we have briefly outlined the calcula-
tions required to obtain theoretical CID images. Both the
cID and LEED methods immediately give symmetry infor-
mation about the particular surface under investigation;
to obtain more detailed information requires extensive
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computations. The advantage of the cID method over that
of LEED may be in the investigation of surface potential
effects where the surface potential is responsible for the
fine structure that appears in the CID images near the
emergence condition for a new LEED beam.® When a
diffracted beam starts to exit the crystal at near grazing
angle, a portion of the beam is reflected from the surface
barrier, is rediffracted from the first atomic layer back in-
to the undiffracted or specular beam, and then exits the
crystal. This phenomenon is manifested by sharp lines in
the cID images.”
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