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AUTOMATIC DETECTION OF EPILEPTIC SEIZURES 
USING ELECTROENCEPHALOGRAPHIC SIGNALS 

Many epileptic patients require prolonged monitoring by electroencephalography while waiting for sei­
zures or seizure discharges to occur. Interpretation of the massive record generated by one patient would 
place an unreasonable demand on the neurologist; moreover, neurologists often provide different interpreta­
tions. For these and other reasons, the development of a reliable automatic seizure detection algorithm has 
been a goal of researchers for years. One factor that makes formulating an algorithm difficult is that data 
from an electroencephalogram do not form a stationary time series. By exploring a variety of techniques, 
such as autoregressive modeling, discriminant analysis, clustering, and artificial neural networks, promis­
ing algorithms have been developed. 

INTRODUCTION 

The Problem 
About 1 % of the U.S. population has epilepsy, and 

250,000 to 500,000 of these epileptics have seizures that 
are not controlled by standard medications. For these pa­
tients , an electroencephalogram (EEG) recorded from up 
to sixty-four locations on the scalp is essential to the 
clinical determination of an appropriate drug therapy or 
surgical procedure. Many patients require inpatient EEG 
recordings, for it is often impossible to obtain sufficient 
EEG data using routine outpatient testing methods. Inpa­
tient EEG monitoring must often be conducted until sei­
zure discharges occur. Since a megabyte of EEG data is 
collected for each patient in a one-minute period and 
monitoring continues for days or weeks, data recognition 
and reduction algorithms are of great importance. 

A 24-hour-per-day Epilepsy Monitoring Unit with 
four beds is currently operating at the Johns Hopkins 
Hospital (JHH) . The unit brings with it the need to de­
velop and implement automatic real-time spike and sei­
zure detection algorithms for the facility's computers and 
affords an opportunity to develop and test methods for 
selectively recording and assessing seizure disorders. 

The Objective 
Our objective is to use multivariate time series (up to 

sixty-four correlated time series or data channels) gener­
ated by differencing EEG measurements at various loca­
tions on the head to detect seizures automatically. This 
has been the goal of researchers for many years. I-5 Nor­
mally, only seizure data are desired for investigation; 
false detections can reasonably be screened out by hu­
man analysis, but missed seizures are lost. The interest, 
therefore, is in detecting seizures with high statistical 
power even at the expense of higher-than-usual false 
alarm rates , which are also known as type I errors. 
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The Literature and the Approach 

Several authors have summarized the considerable 
work on the automated analysis of EEG signals.5

-
8 An im­

portant part of developing a seizure detection algorithm 
is to translate the complex and subjective methods of EEG 
analysis currently used into mathematical terms. Some 
attempts to mimic subjective analysis methods using a 
computer have met with limited success.9 A stationary 
series is assumed in most time series techniques (spectral 
analysis and autoregressive-moving-average [ARMA] 

modeling, for example), and some analysts have made 
the same supposition about EEG data. 10 Although this as­
sumption is incorrect,II-13 the time series techniques 
nevertheless suggest modeling and analysis approaches 
useful for reducing EEG data. 

The approach used here will be to fit the parameters 
of an autoregressive (AR) model to a short segment ofEEG 
data from selected scalar time series or data channels and 
to combine the model parameters with other signal fea­
tures to obtain a feature vector (a vector representing the 
model parameters and signal characteristics). The ele­
ments of this vector can be used to classify time series 
segments. (Similar techniques have been applied to EEG 
data by others6,14-17 for different purposes.) The feature 
vector is used as a descriptor of the electrical state of the 
patient 's brain. The neurologist will read the EEG and will 
identify the patient 's brain electrical state or EEG signa­
ture, which in turn will be associated with a range of fea­
ture vector values. Values of the feature vector associated 
with benign (normal) and seizure states are of interest. 

The seizure detection algorithm is to be used for pro­
cessing time series data from a single EEG channel (the 
potential difference between two electrodes) and iden­
tifying the patient 's condition as represented by EEG sig­
natures. States of interest include normal/awake, normal! 
asleep, and seizure. If multiple channels were analyzed 
simultaneously, far more complicated processing tech­
niques would be required,1 8,19 making real-time analysis 
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difficult. If each channel were analyzed independently, 
however, the patient state could be determined by using 
either a voting technique or by combining features from 
different channels. 

An AR time series model is briefly described in the 
discussion that follows . The model is applied to the data 
to form a feature vector of the parameters used to charac­
terize the time series, and the feature vector can thus be 
used to identify the patient state. Empirically derived 
statistical models (discriminant analysis) are used to 
classify the time-varying characterizations and are ulti­
mately used to identify the state of the patient. A neural 
network approach is also being used as an alternative to 
the statistical methods. Both of the algorithms have been 
developed and tested using data provided by Ronald P. 
Lesser at IHH. The results of the testing and the treatment 
of the differences between patients are described. 

DATA REDUCTION 

Time Series Model 
The EEG data are viewed as coming from an AR time 

series model in the form 

(t = 11, 12, . . . , m) , (1) 

where Zt is the value of the selected channel of EEG data 
at time t, 8 j denotes the parameters used to characterize 
the series, and Et is the model prediction error and is nor­
mally distributed with mean 0 and variance 0-

2
; the E/S 

are independent. L~ast-squares techniques are used to 
generate estimates 8 j and a of 8 j and 0- (standard devia­
tion). This model will be fitted to a short segment of data 
to create a feature vector of parameters used to character­
ize that segment. Ten parameters (AR[lO]) were used be­
cause this number of parameters provided the smallest 
feature vector that could reliably detect seizures for the 
data sets first considered. The 8 j parameters contain fre­
quency information. 

Other parameters can also be computed and added to 
the feature vector. These other parameters have been 
shown to be important in distinguishing between sei­
zures and other states. They include the skewness (third 
moment about the mean) and kurtosis (fourth moment 
about the mean) of the data. These parameters were not 
used initially, however. 

Feature Vectors 
The parameter estimates 8 and a2 are used to charac­

terize a segment of data from a scalar time series or chan­
nel. The process can be repeated for a series of segments 
so that the data from a channel are characterized by a se­
ries of parameter estimates. Let 8i and a~ be represented 
as 
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( i 1 , 2, ... , n) , (2) 

where n is the number of time segments related to one 
patient state or signature category. The vectors Xi are the 
feature vectors and are used to generate the analysis 
results described in the next section. The feature vectors 
can be used in discriminant analysis20

,2 1 or in a neural 
network22

, 23 to determine the patient's state. 

DISCRIMINANT ANALYSIS APPROACH 

After obtaining a collection of feature vectors from a 
patient in a given state, a statistical model for the patient 
is found by calculating the mean and variance of the fea­
ture vectors. Figure 1 is a plot of artificial two-dimen­
sional feature vectors sampled from two normal distribu­
tions (one marked with circles and the other with 
squares) and illustrates the discrimination procedure. Al­
though the circles and the squares cannot be discriminat­
ed using a single feature, using the joint probability dis­
tribution (both features) makes separating the two popu­
lations relatively simple. For example, if Feature 1 has a 
value of 1.2, it is not possible to determine the popula­
tion from which the feature was sampled using this infor­
mation alone. If, in addition, it is known that Feature 2 
has a value of 1, then it is likely that the features were 
sampled from the population denoted by circles. To 
make the modeling easy, a normal distribution of the data 
is assumed in statistical discriminant analysis. 

Sometimes the distribution of 8i can reasonably be 
modeled using a normal distribution; however, the distri­
bution of 0-

2 is highly skewed. A transformation of this 
parameter is needed to make it approximate a normal dis­
tribution. The transformation is given by log(log a). The 
empirical distribution of the transformed parameters is 
more nearly normal. Values of 0-

2 have always been larg­
er than 1 for the data used so that the transformation has 
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Figure 1. Sample plot of feature vectors. 
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always been well defined. Let ¢ be the transformed value 
of (J 2 and let the feature vector be defined instead as 

X I' = [~/.iJ 'P (i = 1, 2, ... , n) . (3) 

Then let 

,., 1 n 

fl = - E Xi 
n i=1 

(4a) 

and 

where E is the variance-covariance matrix and the super­
script t is the vector transpose operator. 

It is assumed that when the patient is again in the 
same state, the new feature vectors will also be N (p" E)­
distributed (normal distribution). Correlations between 
data segments are ignored, since the correlations do not 
cause a problem in a large sample of feature vectors and 
because it is not apparent how to treat them reasonably. 

Determining the Electrical State of the 
Patient 's Brain 

If the patient is in state j (j = 1, 2, ... , J) , it is ex­
pected that a new feature vector Xi will be distributed Xi 
- N(Jij , E) for some j (where the subscript j has been 
added to distinguish different patient states). For each Xi' 
the patient state is determined by finding which of the J 
possible states is most likely to have produced the ob­
served feature vector. This selection is accomplished by 
evaluating the J values of - 2 log likelihood (normality is 
assumed) using 

and then choosing the smallest (most likely) value. Since 
one value is always smallest, a patient state is always 
selected. 

Clustering for Normality 
The techniques just described can be used to separate 

seizure and normal data for time segments where the pa­
tient's normal state is stable. Since the patient 's normal 
state varies widely, however, the feature vectors are not 
necessarily multivariate normal (Gaussian) . Nonpara-
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metric discriminant approaches such as the one described 
by Rauch24 should be investigated. The approach used 
here divides the feature vectors into subsets that have a 
more nearly normal distribution, thus enabling improved 
discrimination. 

A series of software system cluster procedures,25 
which are procedures for grouping common data types, 
were used to see if they could separate the data into nor­
mal and seizure subsets. The normal and seizure feature 
vectors were first combined into a single data set and 
then clustered to see if any of the algorithms would sepa­
rate the vectors into normal and seizure subsets without 
training. Most of the procedures combined seizure and 
normal data and did not produce useful clusters. This re­
sult is not surprising, since many of the elements of the 
feature vector provide little help in discrimination but 
contribute to the clustering. Ward's technique l6 separated 
seizure and normal data, for the most part, and plots re­
vealed that the transformed residual variance ¢ and the 
first autoregressive parameter ARI (8 1) are the most im­
portant in discrimination. Since this method separated 
seizure and normal data, it was selected as the method of 
clustering. Some editing was used to form subgroups of 
normal feature vectors. 

The discrimination procedures then were asked to 
identify which of several populations most likely 
produced the feature vector. For data sets with a suffi­
ciently large collection of seizure data, the seizure fea­
ture vectors were divided into two clusters; the normal 
sets were divided into three or four clusters. The dis­
crimination procedures were usually able to identify the 
cluster group as well as the state of the patient correctly. 

Figure 2 is a plot of the first autoregressive parameter 
ARJ (8 1) versus the transformed residual variance ¢ in 
which the parameters have been clustered into three nor­
mal data groups and three seizure groups. The clustering 
is based on more than the two parameters shown. A simi­
lar plot with additional time points would show seizure 
and normal points scattered over much more area. Dis­
crimination would require more parameters. 

Agreement Probabilities 

A particular feature vector could be from any of 
several models ( Jij, E), or it could be an unlikely out­
come of any of the models. To quantify how well the 
classification procedure "likes" the choice of state, a x2 

probability provides the likelihood that the observation is 
farther away from the mean given that the sample is from 
the jth model. The probability is computed using 

(6) 

where X~II ) is a random variable with 11 degrees of free­
dom (Xi has eleven elements), Pr is the probability oper­
ator, and the superscript t is the vector transpose opera­
tor. If the probability Pij is more than 0.05 , then the vec­
tor resembles the model; values farther from zero indi­
cate even more consistency between the model 
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prediction and the observed feature vector. If the prob­
ability for the jth model is less than 0.001 , then it is con­
cluded that the feature vector i different for the jth mod­
el. The x2 probabilities will be refeITed to here as agree­
ment probabilities. 

Patient Differences 

Because of individual vanatIOns, the statistical 
characteristics of EEG 'S were expected to vary greatly be­
tween patients. The models developed for one patient 
were used to classify the data from different patients 
partly to verify the expected differences. Although the 
agreement probabi lities indicated that the data were 
different, the algorithms often correctly classified the da­
ta. In most cases, seizures were correctly indicated. Ap­
parently, the patients cho en had disorders that manifest 
themselves in similar ways. 

Calibration Using Discriminant Analysis 

Models can be generated for two patients in similar 
states, and the relationship between these models can be 
determined. If a large library of models exists for the first 
patient, the relationship can be used to calibrate the li­
brary for use in analyzing new data from the second pa­
tient. This procedure could be used to identify the first 
seizure recorded in a new patient. 

Suppose P- Ii' Eli rewesents the model for the first pa­
tient in state j and P-2i' E2i represents the model of the sec­
ond patient in a similar state. State j could be defined a a 
relaxed/awake state in the Epilepsy Monitoring Unit 
shortly after the patient enters the unit. A feature vector 
from the first patient having a distribution 

(7) 

can be transformed into X2 i so that 

(8) 

using 
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Figure 2. Plot of the first autoregres­
sive parameter ARI (8 1) versus the 
transformed residual variance 4>. The 
parameters have been clustered into 
three normal data groups (N = normal , 
M = muscle artifacts, R = relaxed state) 
and three seizure groups (E = early sei­
zure, S = seizure, P = postseizure) . 

x - f; 112 ~ -112 eX A ) A 
2i - 2i ~ Ii I i - p,li + p,2j . (9) 

In a similar way the entire library for the first patient 
can be calibrated to create a library for the second pa­
tient. The kth modeling elements would be transformed 
using 

(lOa) 

and 

~ ~ 1I2 ~ -1I2 ~ - 1 /2 ~1 /2 
~2k = ~2i ~Ii Elk ~Ii ~2i (lOb) 

The library of mean vectors P-I k is transformed in the 
same way feature vectors would be transformed. 

Limited testing of the calibration procedure shows 
that it has promise, and further refinements are expected. 
Perhaps the calibrating transformations should be built 
on the basis of more than one set of matching model . 
Methods of matching patient states with library states 
must be tested. An extensive library of both normal 
states and seizure states (seizure states vary with pa­
tients) will be needed. 

NEURAL NETWORK APPROACH 

An artificial neural network also uses feature vectors 
but provides a very different approach for separating sei­
zure and normal data. Neural networks resemble their bi­
ological counterpart only slightly, but they are similar in 
that information is stored and processed in a distributed 
manner. 

The neural network we used is referred to in the litera­
ture as a feed-forward network with backward propaga­
tion of errors. Such networks are many times called 
"back-prop" nets.22 In this type of network, information 
(the feature vectors) is processed as it propagates 
through the network to produce a number between 0 and 
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1. During training, errors are determined by comparing 
the network output with a scalar target value used to 
characterize the patient state (0 = normal, 1 = seizure 
[see Fig. 3]). The accumulated error over all of the out­
put vectors is then propagated backward through the net­
work, and adjustments in the connection strengths be­
tween the network nodes are made. By iterative presenta­
tion of input and output vector pairs followed by adjust­
ments of the associated connection weights, a system of 
connections is derived that models the input/output vec­
tor relationships. According to Lippman,23 the model de­
rived from this process is nonparametric, and it makes 
weak assumptions about the shapes of underlying para­
metric distributions. 

Feed -Forward /B ack -Propagation 
Network Description 

The artificial neural network nodes used have 
predetermined connections as shown in Figure 3. The 
strengths of these connections were changed as the net­
work was trained using a gradient search. The input fea­
ture vector is presented to the network by feeding one 
component of the vector into each input node in parallel. 
The input nodes in this network implementation pass the 
input value upward unchanged. The data values are then 
amplified or inhibited by the connection weights as­
sociated with each input-layer to hidden-layer connec­
tion. The input to a hidden node j is thus given by 

12 
I j = E Wji 0i , 

i=1 

(11) 

where Wji is the weight associated with the connection 
from input i to hidden node j, 0i is the output value of in­
put node i, and, by definition, 0 12 = 1 (learnable bias). 
Each hidden node then computes an activation function 
or output between 0 and 1 given by 

Network output (0) 

t 

t t 
Parameter 1 Parameter 2 

t 

Output layer 
(1 node) 

Hidden layer 
(3 nodes) 

Input layer 
(11 nodes) 

Parameter 13 

Figure 3. Neural network structure (W = connection weight). 
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1 
f(I) =-1 -I · ' + e ) 

(12) 

These activation values are then broadcast to the output 
layer nodes. (In this application only one output node 
was used.) The value received by the output node is giv­
en by 

4 

1= E Wj Oj , 
j=1 

(13) 

where Wj is the weight associated with the connection 
from hidden node j to the output node, OJ is the output 
value of hidden node j, and, by defInition, 0 4 = 1 (learn­
able bias). The output node then computes its activation 
function, which is the output of the network, 

1 
f(I) =-1 -I' +e 

(14) 

During training, the output value is compared with the 
desired output or target vector. For this application, a sei­
zure feature vector has a scalar target value of 1, imd a 
nonseizure feature vector has a scalar target value of O. 
Errors are corrected by adjusting the connection weights 
so that each weight will be proportional to the gradient of 
the error with respect to that weight. This technique is 
known as gradient descent error minimization. 

TESTING THE ALGORITHMS 

Discriminant Analysis Performance Evaluation 
The initial testing of the discriminant analysis method 

was conducted in two phases. Both phases used only the 
autoregressive (AR) parameters and the residual standard 
deviation as feature vector elements. 

Phase I- Classifying Patient Status. A series of tests 
used data from four different patients who were awake 
and active. The data contained normal/awake brain ac­
tivity, muscle motion, and other artifacts, each of which 
made seizure detection more difficult. For each patient, 
the data contained a pre seizure period of about 400 sec­
onds, a seizure lasting thirty or more seconds, and a post­
seizure period (see Fig. 4). For each patient, a first model 
(p-!> 1;1) was developed using about 300 seconds of nor­
mal/awake data, and a second model (P-2' 1; 2) was de­
veloped using most of the available seizure data. This 
procedure is called training the algorithm. Only these 
two models were then used to classify all of the data for a 
given patient. Neither clustering nor postseizure data 
were used. 

Results for all four patients were similar. When the 
training data were used to classify the state of the patient, 
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Figure 4. Data format for al­
gorithm evaluation. 
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correct decisions were always made. (Correct classifica­
tion, even for the training data, does not occur with some 
algorithms.) The data from the patients in normal states 
were classified as normal data, and the data from the pa­
tients in seizure states were classified as seizure data. 
The agreement probabilities were usually more than 
0.05. Although all of the data were correctly classified, a 
few epochs had small agreement probabilities (see the 
earlier discussion of agreement probabilities). Different 
channels for each of the patients were also analyzed, and 
the results were consistently similar. This finding sug­
gests that when a seizure is detected, it should be detect­
ed in several channels. 

Typically, a 100-second data interval existed between 
the normal/awake state and the seizure state. These data 
were not used in training or in estimating fi.j , Ej . For these 
data, also, the patient states were correctly classified. Al­
though the neurologist often classified more data at the 
beginning of the seizure as seizure data, this judgment 
was based on having seen the data that follow and then 
backtracking. The sequential algorithm developed here 
detected the seizures as soon as they were clearly appar­
ent. The agreement probabilities were normally more 
than 0.05. On occasion, however, the probabilities were 
smaller. 

The first part of the postseizure data was classified as 
seizure data; the next part was followed by a period of 
mixed classification; the final part was classified as nor­
mal data. The agreement probabilities were usually less 
than 0.001, indicating that the postseizure period had 
different statistical characteristics than the two training 
periods. This result suggests a need for more training 
classes. 

For one of the patients, five data sets were analyzed. 
These sets included one taken when the patient was in 
light sleep, another when he was in deep sleep, a third 
when he was awake while making scalp movements (to 
introduce artifacts into the data), and two with seizures. 
The sleep states were clearly distinguished from each 
other and from other states. The artifactual data resem­
bled other normal/awake data and were not identified as 
seizures. 

These results show that the discriminant approach 
employed with AR parameters is valuable and can be 
used to characterize short periods of data well enough to 
identify patient states properly. The results do not, how­
ever, demonstrate the algorithm's ability to characterize 
the data the next day or from different patients. 

Phase 2-Testing Using Independent Data Sets. To 
validate the algorithm, two ten-minute data sets from 
each of three patients were analyzed. Each set contained 
at least one seizure lasting from fifty to ninety seconds 
and a range of other patient states. The first data set from 
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each patient was used for training and the second to de­
termine if discriminant analysis can be used to classify 
an independent data set. The paired data sets were gener­
ated at different times of the day or on different days. 

The clustering methods described previously used the 
first three autoregressive parameters ARI, AR2, and AR3 

(81) 8 2, and 8 3) and log (log a ) to separate the feature 
vectors into three normal groups and one seizure group. 
When the resulting discriminants were used to classify 
the training data sets, classification of the seizure and 
normal data for all three patients was 100% reliable, and 
the particular cluster could be identified with 99% reli­
ability. 

Neural Network Performance Evaluation 
As stated earlier, the neural network, which used only 

the AR parameters and the residual standard deviation as 
feature vector elements, attempted to classify each fea­
ture vector as seizure (1) or non seizure (0). The actual 
values from the network ranged continuously from 0 to 
1.0. For our purposes, the following classifications of 
network outputs were made: an output value greater than 
or equal to 0.5 implies seizure; an output value less than 
0.5 implies nonseizure. Most network values were great­
er than 0.9 or less than 0.1, indicating little ambiguity in 
the classification. During the transitions in and out of sei­
zure states, however, the network output took on several 
intermediate values. 

Intercomparing Seizure Identification Method 
Results 

An intercomparison of seizure identification method 
results is presented in Table 1. The numbers in the table 
under each heading indicate which of the 204 epochs 
were classified as seizures by discriminant analysIs, by 
the neural network, and by an interpretation of the EEG 

tracing. 
The classification of actual seizure patterns is subject 

to interpretation. Some seizures seem to fade away, 
whereas others have clear ends. Some of the clear ends 
fall in the middle of the epoch used to estimate a feature 
vector, so the feature vector could be classified correctly 
either way. The early part of a seizure EEG tracing most 
often looks very different than it does ten or fifteen sec­
onds later; thus, an algorithm trained on an entire seizure 
record may not classify the early part of a seizure as be­
ing typical. (Sufficient data do not exist to form an early 
seizure cluster.) 

For the first patient, the training seizure provided 
limited examples of seizure feature vectors. As a result, 
not all of the test seizure vectors were properly identi­
fied, although the seizure was clearly detected. Surpris­
ingly, when the discriminant from the second patient was 

187 



D. E. Olsen , 1. A. Cristion, and C. W. Spaur 

Table 1. Intercomparison of seizure identification method results. 

Epochs of Epochs of 
discriminant- neural-network- Epochs of 

identified seizure identified actual seizure 
Patient patterns seizure patterns pattern 

19-21 18-22 17-19 early seizure 
25 20-32 ~ seizure 
31-33 

18-31 17-19 early seizure 

160 20-32 ~ seizure 

2 50-53 early seizure 

54-64 58,61,62 54-64 seizure 

66, 67,69 65 - seizure fades 

88-122 92-94, 101-122 88-118 seizure 
126, 127, 129-131, 136 119 - seizure fades 

3 17 preseizure alanns 

119-137 120-140 

117-119 early seizure 

120-139 eizure 

140-142 seizure fades 

3 trailing alanns 

apatient 1 classified using patient 2 discriminants. 

used to classify data from the first, classification was re­
liable (see Table 1). 

The test data set for the second patient contained two 
seizures, and both were accurately identified. The train­
ing data apparently provided a richer variety of feature 
vectors than did the training data from the first patient. 

The results from the third patient were not as good. 
Although the seizures were detected, some of the normal 
feature vectors in the test data set were incorrectly classi­
fied. As a further check, the test and training data sets 
were interchanged. For this second test, the normal data 
were correctly classified by the algorithm, but some of 
the seizure epochs were classified as normal. An exami­
nation of some feature vector element plots revealed that 
similar value were classified in one data set as signify­
ing a normal tate and in the other as indicating a seizure. 
This result calls into question both the algorithm and the 
classification of the training data. Since patients being 
treated in the Epilepsy Monitoring Unit often experience 
a series of seizures or seizure discharges, some of the da­
ta thought to indicate a normal state may in fact be sei­
zure data. Another possibility is that additional features 
are required, or perhaps a different discriminant analysis 
method is needed. It is clear, however, from looking at 
the EEG records that both seizure and normal data vary in 
appearance. Adequate training therefore requires more 
data than were used in these tests. The neural network 
approach yielded better results with this third patient. 

The network classified all of the test patterns correct-
1y for the first patient (see Table 1), performing better 
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than the discriminant analysis technique using the same 
data. The second patient presented the greatest difficulty, 
for the network failed to detect the early part of the sei­
zure, first announcing the seizure about twenty seconds 
(seven epochs) late. For the second seizure, the network 
identified the seizure state about twelve seconds late. 
The network then continued to identify the seizure state 
even though it was not clearly evident from the EEG trac­
ings. Thus, the di criminant analysis method performed 
better than the network for the second patient. 

The network performed quite well for the third pa­
tient, although it identified the seizure state about ten 
seconds late. Nevertheless, neural network analysis per­
formed much better than the discriminant approach. 
Plots of the feature vector elements ( ee Fig. 2) suggest 
that the parameters log(log a) and ARt (9 1) are most 
important for statistical discrimination. A look at the 
weights found by the neural network gradient search in­
dicates that AR6 (96) is particularly important for net­
work discrimination. This result may help explain why 
the neural network performed better than discriminant 
analysis for the third patient and less well for the second 
patient. 

IMPROVING THE ALGORITHMS 

Testing has established the validity of our basic fea­
ture vector approach but has also revealed that distin­
guishing a seizure from a wider variety of brain states is 
more difficult than if only one or two states are con sid-
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ered. This finding suggests that more extensive al­
gorithm training is required. Three fundamental prob­
lems remain: (1) collecting enough data to train and test 
the algorithms, (2) determining if the autoregressive 
(AR) parameters contain sufficient information for effec­
tive discrimination or if other parameters would be use­
ful, and (3) choosing the best discrimination method 
(discriminant analysis , neural networks , or logistic 
regression analysis). 

Collecting Data 
To solve the first problem partially, over thirty data 

sets were collected both day and night over four days 
from a single patient. Each data set represented 336 sec­
onds of data. Four nonseizure data sets were selected that 
contained data taken while the patient was watching tele­
vision, going to the bathroom, falling asleep, and sleep­
ing. Four additional data sets, each of which contained a 
seizure, were stripped of all nonseizure data. The data 
were then divided into three-second epochs. Randomly 
selected epochs were used for training, and the remain­
ing epochs were used for testing. 

Each three-second epoch of data from one channel 
provides 600 digitized EEG measurements. A ten-parame­
ter AR model was fitted to each epoch, providing the ten 
AR parameters and a string of 600 residuals. To see if oth­
er feature vector elements could provide useful informa­
tion, the second, third, and fourth moments (variance, 
skewness, and kurtosis) of the residuals were computed 
to yield three more parameters, and the skewness and 
kurtosis of the original EEG measurements were comput­
ed to complete the set of fifteen parameters composing 
the feature vectors. The 600 EEG measurements from 
each epoch were thus reduced to a fifteen-element fea­
ture vector. The new parameters can now be evaluated as 
discriminants in a more challenging and realistic setting. 

Using New Features for Discrimination 
Because many brain states are represented by the set 

of normal feature vectors , clustering was used to divide 
the 672 nonseizure vectors into six different clusters au­
tomatically. The same procedure was used to divide the 
ISO seizure feature vectors into three different clusters. 
The means of the cluster elements are plotted in Figures 
SA , SB, and Sc. 

Figure SA illustrates how the residual standard devia­
tion (a) , skewness, and kurtosis of the residuals can be 
used to separate the four normal clusters, as represented 
by the green pyramids and needles, from the others. The 
values for all three of the parameters in Figure SA are 
smaller for these (green) normal clusters than for the re­
maining clusters. (For the purpose of illustration, the 
standard deviations of the clusters are ignored.) In addi­
tion, the pink seizure cluster can clearly be separated 
from the others because all of the plotted parameters are 
bigger for this seizure class. The problem remains to sep­
arate the gold and red seizure clusters from the blue and 
black nonseizure clusters. 

Figure SB provides a different view of the same clus­
ter means with the residual skewness and kurtosis 
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replaced by the skewness and kurtosis of the raw series. 
For the parameters shown here, the clusters are better 
separated, except for the red seizure group and the blue 
normal group. Using only these data, the algorithm could 
not reliably separate the clusters represented by red and 
blue pyramids, and some epochs of data would be mis­
classified. 

If we look at Figure SC , however, the red and blue 
clusters are clearly separated. The autoregressive para­
meters ARI , AR3, and AR6 (8" 8 3, and 8 6) can be used to 
separate these clusters. The use of fundamentally differ­
ent parameters makes the distinction possible. The addi­
tional feature vector elements will make discrimination 
easier. 

An algorithm based on these figures would first look 
at the feature vector and determine if the moments be­
long to the pink or one of the green clusters. (Each of the 
clusters has a small spread as compared with the spread 
of all of the seizure or all of the nonseizure data.) If so, 
the algorithm can accurately identify the patient state. If, 
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however, the moments do not provide for a clear judg­
ment, then the AR parameters would be used to reach a fi­
nal decision. 

Although the AR parameters capture much of the in­
formation necessary to separate seizure and normal 
epochs (using the data from only one channel) , it is clear 
that the addition of other parameters can enhance the dis­
crimination capabilities of both the discriminant analysis 
and neural network approaches. Thus , parameters of a 
significantly different nature can be used to aid in dis­
crimination. 

Choosing the Best Discrimination Method 
One of the promising algorithms under investigation 

uses an approach similar to the one just illustrated. Clas­
sical discriminant analysis is used to identify the most 
likely cluster. If the choice is clear, a decision is made. If 
not, a choice is made between the two most likely popu­
lations using principal component analysis to choose the 
linear combination of feature vectors that best distin­
guishes these two clusters. 

In addition to neural networks and statistical discrimi­
nation, logistic regression analysis 26

.
27 provides a prom­

ising method. Although this technique i primarily aimed 
at separating two groups, such as seizure and normal , it 
can be extended to work with more groups, such as the 
clusters. Logistic analysis will be used to determine 
which parameters are particularly useful in separating 
groups. 

Remarks on Algorithm Improvement 
The larger data sets collected for off-line algorithm 

development will be useful in an on-line algorithm. 
Much on-line testing will be required, however, before a 
reliable system is operational. The on-line algorithm will 
likely use both AR and other parameters to detect epochs 
containing seizures. The careful selection and evaluation 
of parameters are critical to the success of the algorithm. 
Limited experience with new data indicates that data 
from just two channels and two epochs and the para­
meters described in this article could be used to discri­
minate data epoch reliably for the patients considered. 

CONCLUSION 

Work is in progress at APL to develop algorithms for 
detecting seizures seconds after they begin using onl y a 
single channel of calp data. At the Epilepsy Monitoring 
Unit, up to sixty-four channels of EEG data are being 
recorded and temporarily stored. If seizures are detected 
sometime during their first minute, the recently collected 
data can be stored for analysis. The efforts at APL are 
aimed at developing a very reliable system that has 
potential for other seizure detection applications. The 
techniques developed may also be applied to detect other 
mental states, including, perhaps, those appropriate for 
crew readiness. 
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