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SPEECH PROCESSING BY REAL AND SILICON EARS 

To demonstrate a new approach to sensory information processing, a model of the human auditory 
periphery is being implemented in silicon. The model uses analog processing methods to produce a real­
time parallel output from speech that closely resembles the averaged auditory nerve outputs from the co­
chlea. In this article, the current understanding of the processing in the ear is reviewed, and a snapshot is 
given of the ongoing attempt to implement this processing in a very large scale integrated chip. 

INTRODUCTION 
Why should the ear be of engineering interest? What 

characteristics of the ear would be valuable in a signal 
processor? How would such a processor be realized, and 
where would it be of use? The intent of this article is to 
address these questions. Specifically, it surveys an ongo­
ing project in which the physiology of the ear is used in 
designing a hardware speech processor. The project, 
known as HEEAR (Hopkins Electronic Ear), involves en­
gineers and researchers from the Electrical and Com­
puter Engineering Department of the School of En­
gineering and the Applied Physics Laboratory of The 
Johns Hopkins University. 

The acoustic signal of speech is the principal medium 
for human communication. The invention of the tele­
phone by Alexander Graham Bell was an outgrowth of 
his intense interest in speech. I Today we see intense aca­
demic and industrial activity aimed at speech recognition 
by computer, which has the potential of making type­
writers or keyboards "hands off' devices. An area of spe­
cial interest to us is aiding the deaf in speech communi­
cation. Tactile aids and cochlear implants make speech 
accessible to deaf persons who get no benefit from hear­
ing aids. These applications work best when the speech 
signal is not easily corrupted by noise and when strong 
amplitude compression occurs without distortion. (Dy­
namic range is the ratio, in decibels, between the weakest 
and strongest signals in the operating range of a system. 
Amplitude compression occurs when the output dynamic 
range is smaller than the input dynamic range.) The hu­
man ear has these characteristics, and a speech processor 
that emulates the ear could improve the performance of 
these devices. 

In this article, the telm "ear" signifies the pinna and 
ear canal (outer ear), the middle ear, the cochlea, and the 
bundle of nerve fibers called the auditory nerve connect­
ing the cochlea to the brain. Within the cochlea, sound 
vibrations are converted to neurological signals carried 
to the brain by the auditory nerve fibers. Another term 
for this entire system is auditory periphery. We begin 
with a brief description of the structure and physiology 
of the mammalian ear, followed by an outline of the cod­
ing of some speech sounds by the ear and a model for 
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those processes. We then focus on the realization in sili­
con of a speech processor having some of the charac­
teristics of the auditory periphery. 

THE AUDITORY PERIPHERY (EAR) 

Figure 1 shows the gross anatomy of the human audi­
tory periphery2,3 The main parts of the auditory periph­
ery are the pinna, ear canal, middle ear, cochlea, and au­
ditory nerve bundle. The ear canal allows the inner ear to 
be deep within the temporal bone, the hardest bone we 
have. It also has a broad resonance of about 2000 Hz, in 
the middle of the speech spectrum. The eardrum (tympa­
num) and three middle ear bones (malleus, incus, and 
stapes) allow efficient coupling of airborne sound at the 
tympanum to the fluids of the cochlea. The cochlea is a 
coiled, fluid-filled tube divided lengthwise by the basilar 
membrane into two large chambers, the scala vestibuli 
and the scala tympani. It also contains a small chamber 
called the scala media (see Fig. 2A). The basilar mem­
brane moves in response to acoustic waves in the co­
chlear fluid excited by the eardrum. 

Figure 2B shows the central portion of the cochlea in 
a cross-sectional view, including the nerve fibers leaving 
the receptor cells of the cochlea that are part of the audi­
tory nerve shown in Figure 2A. The receptor cells of au­
dition are called hair cells (so named because of the cilia 
at the apex of the cells; see Fig. 2C). (Analogously, the 
receptor cells of vision are called rods and cones.) The 
hair cells transduce the vibrational motion of the basilar 
membrane into nerve impulses in the fibers of the audito­
ry nerve. The stiffness of the basilar membrane decreases 
by a factor of 100 from the base to the apex of the co­
chlea, and this is a major determinant in the tuning prop­
erties of the ear. The inside of the cochlea along the basi­
lar membrane contains one row of about 3000 inner hair 
cells and three rows of outer hair cells totaling about 
20,000. Nerve impulses induced by vibration of the basi­
lar membrane travel through about 30,000 auditory nerve 
fibers into the brain. Over 95% of the auditory nerve 
fibers running from the cochlea to the brain are stimulat­
ed by chemical connections called synapses on the inner 
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Figure 1. Gross anatomy of the auditory periphery. 

hair cells (see Fig. 2C). Each inner hair cell has about ten 
synapses, and each synapse provides the sole excitation 
for one auditory nerve fiber. 

In the 1950s, the functional properties of the cochlea 
were thought to be well understood, mainly because of 
the research of Georg von Bekesy.4 He was awarded the 
Nobel Prize in physiology in 1961 on the basis of his 
definitive studies of the mechanical properties of the ear. 
Figure 3 summarizes von Bekesy's results on the vibra­
tion of the basilar membrane derived from experiments 
with preparations of excised temporal bone. He demon­
strated that sinusoidal (or "pure tone") stimulation 
caused the traveling wave in the cochlea to move from 
base to apex (Fig. 3A). The maximum height of the 
wave appeared closer to the basal end of the cochlea for 
higher frequencies. In Figure 3B, the relative amplitude 
of vibration is plotted as a function of pure-tone frequen­
cy at several locations along the basilar membrane. The 
curves exhibit a broad resonance, and for locations closer 
to the stapes, the resonance occurs at higher frequencies. 

Between 1960 and 1990, experimental results led to 
the extension and revision of concepts of the physiology 
and anatomy of the cochlea and the auditory nerve. To 
the surprise of most who studied audition, Spoendlin5 

showed that nearly all the fibers of the auditory nerve 
connect only to inner hair cells . One wondered what the 
function might be of the 20,000 outer hair cells. At least 
a partial answer was to come. 

Another surprising finding concerned the vibration of 
the basilar membrane. The optical microscope and strobe 
used by von Bekesy to measure the motion of the basilar 
membrane required high sound intensities, so high that 
continued stimulation at those levels would cause hear­
ing loss in humans. In addition, virtually all von Beke-
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sy 's preparations were postmortem specimens. From his 
research, he had concluded that the system function 
relating vibration of a given location on the basilar mem­
brane to acoustic input was linear. William Rhode6 was 
able to repeat the experiments using the Mossbauer ef­
fect, a more sensitive technique than the optical method 
used by von Bekesy and one that allows in situ experi­
ments on live animals. For the lower intensities he was 
able to use, Rhode found that a given location on the 
basilar membrane exhibited a sharp resonance, and his 
results indicated an interesting nonlinearity in the re­
sponse, as shown in Figure 4. 

Recent work by Browne1l7 has shown that the outer 
hair cells change length and shape in response to electric 
fields such as those observed in the cochlea. The present 
view holds that these hair cells are involved in an active 
feedback process that affects the vibration of the basilar 
membrane and is also responsible for the sharp tuning at 
resonance and for the nonlinear characteristics. Our un­
derstanding of the effect of the active process (and thus 
our ability to model it) is developing as research con­
tinues. When metabolism in the cochlea is greatly 
reduced (e.g. , by making the animal anoxic or by using a 
postmortem specimen) , the sharp tuning and nonlineari­
ties are no longer present, and the mechanical properties 
are those observed by von Bekesy. Since von Bekesy 
used excised, isolated temporal bones, the differences 
between his and more recent results are not surprising. 

Another important feature of the auditory periphery is 
the effect of inner hair cells on the transduction process 
by which the vibrations of the basilar membrane result in 
neural signals. The cilia of the inner hair cells of the 
mammalian cochlea are like stiff, miniature fork prongs. 
We have known for some time that these hair cells are 
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Figure 2. The cochlea. A. Anatomy showing the cochlea in cross section . B. Enlarged view of the scala media showing the basilar 
membrane, hair cells, and supporting cells . C. Enlarged view of an inner hair cell. 

morphologically polarized;8 that is, shear stress on the 
cilia of a hair cell in one direction causes excitation of 
the auditory fibers that synapse on the cell, whereas 
stress in the opposite direction causes suppression. The 
transformation relating the temporal pattern of nerve im­
pulse activity in an auditory fiber to the basilar mem­
brane motion that leads to excitation of that fiber is 
strongly nonlinear, but rea onable models exist. 

CODING OF SPEECH 
IN THE AUDITORY NERVE 

The 30,000 fibers of the auditory nerve provide a par­
allel, di stributed coding of the auditory input. Each fiber 
sends a train of nerve impulses to the cochlear nucleus, 
the first brain structure to receive information from the 
cochlea. Thus, the cochlea transform s the acoustic signal 
to a spatiotemporal pattern of neural activity in the audi­
tory nerve. 
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By using hyperfine pipette electrodes, researchers 
have been able to isolate single nerve fibers of the audi­
tory nerve and observe their impulse trains. Most of 
these fibers exhibit random "spontaneous" activity, that 
is, one records impulse (also called neural spikes) in the 
absence of acoustic stimulation. Virtually all of the fibers 
respond to some sound by a corresponding increase in 
the rate of impulses. 

Information is carried in the nerve fibers by a "pulse 
modulation code," that i , the information is in average 
timing of neural impulses. In the fibers of the auditory 
nerve, the temporal pattern of impulses is highly random 
for both responding and spontaneous conditions. One 
may envisage the nature of such random time series by 
means of an analogy: If each impulse from a fiber made a 
"pop" sound, the activity of a group of fibers would have 
the sound of popcorn in the making. 

A "tuning curve" may be obtained for a given fiber by 
plotting its threshold of response to pure tone acoustic 
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Figure 3. Vibration of the basilar membrane from von Bekesy's 
studies of cadaver specimens. A. Displacement pattern of sever­
al sequential , discrete times within a 200-Hz cycle. The envelope 
is shown by blue lines. B. Envelope of excitation for sinusoidal 
excitation at five frequencies. Black parts of the curves are based 
on experimental observation , blue parts on extrapolation. The 
curves are normalized to have the same peak amplitudes. The 
horizontal axis for each curve is distance along the basilar mem­
brane from the stapes (i.e. , the basal end of the cochlea). The hu­
man cochlea is about 35 mm in length. The vertical scale is great­
ly magnified , since even for the high levels von Bekesy used 
(about 140 dB relative to a reference level of 0.0002 dyn/cm2, 

which is about human threshold at 1000 Hz) , the maximum am­
plitude of vibration was only about 3 x 10-3 mm. 

stimulation as a function of the frequency of the tones. 
At each frequency, the intensity is slowly increased until 
a discernible increase occurs in the spontaneous firing 
activity. Typical tuning curves are V-shaped, with a clear 
minimum point at some frequency. This minimum point 
is called the characteristic frequency (CF) of the fiber and 
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Figure 4. Ratio of amplitude of vibration of a place on the basi­
lar membrane to cochlear drive as measured by the motion of the 
malleus. Each curve represents a different sound pressure level 
(SPL) in decibels relative to a reference level of 0.0002 dyn/cm2. 

The Mossbauer technique was used to measure vibration ampli­
tudes. For a linear relationship, the curves would coincide. Non­
linearity is seen at the location of greatest sensitivity, where the 
sharpest peak in the curve occurs for the lowest SPL. Experi­
ments were performed using live squirrel monkeys. (Data 
reproduced , with permission , from Ref. 6, p. 1223: © 1971 by the 
Acoustical Society of America.) 

is determined by the position along the basilar membrane 
of the inner hair cell that drives that fiber. Therefore, the 
spatial dimension of the spatiotemporal pattern is along 
the basilar membrane and can be calibrated in terms of 
frequency (i.e. , CF). 2 

The coding of speech stimuli by the auditory nerve 
fibers is of great interest in human communication; how­
ever, until the late 1970s, virtually all studies of auditory 
nerve activity dealt with responses to pure tones, clicks, 
or combinations of tones, but not with speech signals. 
Considering the strongly nonlinear nature of the auditory 
periphery, it was difficult to predict speech coding on the 
basis of responses to these simpler stimuli. 

Steady-State Vowels 
In two papers published in 1979,9, 10 Murray B. Sachs 

and Eric D. Young of The Johns Hopkins University 
School of Medicine reported experimental findings of 
the coding of sustained steady-state vowels by the audi­
tory nerve fibers. A key feature of their work was that 
they recorded from several hundred individual auditory 
nerve fibers in each experiment. Thus, they obtained a 
representative sample of the spatiotemporal pattern of 
neural activity for the stimuli used. Upon isolation of a 
fiber, the spontaneous firing rate and the CF were deter­
mined. Then impulse train responses to the synthesized 
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vowels IE! (as in bet) and lexl (as in father) were obtained 
for a range of sound intensities. The use of synthetic 
rather than real speech signals is part of the quantitative 
methodology in the physiological studies. (See Refs. 9 
and 10 for details.) 

The waveform at the top of Figure 5 is one period of 
the synthesized lexl. The steady-state vowel signal is peri­
odic, a string of many repetitions of this waveform. The 
fundamental frequency of the signal is about 120 Hz. 
Auditory fibers (in fact , nearly all nerve fibers) do not 
sustain average firing rates over about 250 per second. 
Thus, observation of the impulse train of a particular fi­
ber would show that each period of the sustained vowel 
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Figure 5. Period histograms (left) and their power spectral 
densities (right) for four fibers; characteristic frequencies (CF'S) 

shown in the center are applicable to both columns. The stimulus 
was a synthesized steady-state vowel M. One pitch period of the 
vowel is shown at the top of the left column; the time scale is the 
same as that for the period histograms. (Data reproduced, with 
permission , from Ref. 10, p. 1383: © 1979 by the Acoustical Soci­
ety of America.) 
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stimulus would have, at most, one or two impulses. The 
observer could estimate the fiber's average firing rate, 
but could hardly discern the temporal structure of the 
periodic waveform. Fine structure is, however, evident in 
period histograms obtained as follows: One period of the 
stimulus is divided into several intervals. The time of 
each impulse is recorded according to the interval of the 
period in which it falls. This measurement is made for 
numerous periods of the stimulus, and a histogram is 
constructed that gives an estimate of the average instan­
taneous firing rate of the fiber during a period of the 
stimulus. 

Since, at most, a few periods of a vowel are adequate 
for recognition by a listener, what meaning can we attrib­
ute to averages of such sparse activity taken over hun­
dreds of periods? One appealing interpretation is that the 
random firings within the auditory nerve bundle exhibit 
an ergodic-like property. We may thus assume that the 
period histogram of a single fiber averaged over time is 
the same as the instantaneous average of a group of 
fibers. Therefore, if a sample of a few hundred fibers is 
used to represent about 30,000 fibers , each recorded fiber 
represents 100 or more fibers that are driven by the same 
or nearby hair cells. If the spike trains in these fibers are 
assumed to be statistically independent, and if the 
responses of the recorded fiber to the repeated presenta­
tions of the vowel are assumed to be statistically inde­
pendent, then the period histograms such as those shown 
in Figure 5 (left) may be considered to be an ensemble 
average. Since these records are based on time averages 
for many stimulus periods, they may be considered equal 
to the average activity of the 100 or more fibers repre­
sented by the recorded fiber for one stimulus period. The 
assumptions of independence are reasonable and are sup­
ported by data. A more difficult question is whether such 
group activity is used in the neural processing of vowels 
and other speech signals at higher levels than the audito­
ry nerve. 

In voiced speech, the configuration of the vocal tract 
is important in determining the envelope shape of the 
speech signal's power spectrum. That configuration is 
usually well represented by the vocal tract resonances 
called formants, which are seen as peaks in the spectrum 
of the speech signal. In steady-state vowels, the frequen­
cies of the formants, especially the first (F 1) and second 
(F2), largely determine a listener's judgment of which 
vowel is presented. 

Sachs and Young set out to determine from their data 
how well the formants were represented in the activity of 
the auditory nerve fiber population. The first candidate 
code they considered was average firing rate as a func­
tion of CF. 9 Results for the vowel IE! are shown in Figure 
6A. At very low sound levels, we see fairly good repre­
sentation of F1 and F2 by peaks in the plot of the normal­
ized average rate versus CF. But at higher intensities, 
these peaks are lost because of the small dynamic range 
of the fibers , which causes them to saturate. Since nor­
mal conversational levels are in the range of 55 to 65 dB, 
rate coding appears to be a poor coding candidate. 

An alternate coding scheme for the vowels takes ac­
count of the fine temporal structure seen in period 
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histograms. 10 The period histograms shown on the left of 
Figure 5 are dissimilar for the different fibers; the right 
column of the figure displays the discrete Fourier power 
spectral densities of the period histograms for each fiber. 
Thus, the graph displays the magnitude of each fiber's 
response at each harmonic of the fundamental frequency 
(FO) of the steady-state, periodic vowel. Sachs and 
Young devised an algorithm, called the ALSR (average 
localized synchronous response), to show the representa­
tion of the vowel 's spectrum in the population of audito­
ry nerve fibers. The algorithm computes a global re­
sponse to each harmonic by averaging the power spectral 
densities over fibers. The averages, however, are weight­
ed for each harmonic to include only those fibers with 
CF'S within 1/2 octave of that harmonic. Thus, the aver­
ages are "local" for each harmonic, that is , they only in­
clude those fibers with a CF close to the harmonic. 

Stated more concisely, for each harmonic, an average 
is taken for fibers with CF'S local (by 1/2 octave) to the 
harmonic 's frequency of activity synchronized to the har­
monic-thus, the name of the algorithm. The powerful 
insight of Sachs and Young in divising the ALSR is appar­
ent in Figure 7 A, which shows the ALSR records for the 
vowel IE! for an intensity range of 28 to 78 dB. Note the 
vertical displacement of the curves; otherwise, they 
would overlap extensively. Clearly, the ALSR record for 
steady-state vowels provides an accurate and precise rep­
resentation of F1 , F2, and F3 , and exhibits very strong 
amplitude compression without distortion. This coding 
scheme was also shown to represent vowels well under 
conditions of noise contamination. 12 
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Figure 6. Rate coding of the steady-state vowel lEI for various 
input intensities in dB SPL (see Fig. 4 capiton). A. Normalized, 
measured average firing rate response plotted as a function of 
characteristic frequency. The arrows indicate the first three for­
mants, F1 , F2, and F3 of the vowel. B. Simulation results. (Data 
reproduced , with permission , from Ref. 11 , p. 151: © 1988 by the 
Acoustical Society of America.) 
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The ALSR computation may seem complex and partic­
ular to steady-state vowels. In terms of the coding of 
speech signals by the population of auditory nerve fibers, 
however, it suggests that, in addition to ergodicity, (1) 
meaningful collective temporal behavior within groups 
of fibers exists, and (2) the temporal behavior provides 
an excellent representation of the formant structure of 
synthesized, steady-state vowels. As we discuss in the 
following section, localized synchrony can be computed 
by means other than the digital Fourier transform, and 
the role of temporal coding in representing the power 
spectrum of speech is not restricted to synthesized, 
steady-state vowels. 

Syllables 

Steady-state vowels are the simplest speech sounds. 
In further experiments by Miller and Sachs,13 the tem­
poral coding of the consonant-vowel syllables Idal and 
/bal was recorded. Again, they used a large population of 
individual fibers in each experiment and recorded many 
responses from repeated stimuli to allow averaging. Fig­
ure 8 shows the time course of formants FI, F2, and F3 
for the two synthesized syllables. The consonants are 
differentiated by the slopes of F2 and F3 in the first part 
of the syllables. 

The ALSR algorithm tracked the time course of the for­
mants reasonably well; however, for our purposes, a 
more direct picture of the neural firing rate data is nicely 
displayed by neurograms, a method used recently by 
Secker-Walker and Searle. 14 From the raw data collected 
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Figure 7. The average localized synchronized rate (ALSR) re­
sponse to the vowel lEI. A. Neural ALSR responses determined by 
using the same data as those used for Figure 6A. B. Simulation 
results. Arrows indicate the first three formants, F1, F2, and F3. 
Both plots are successively shifted one order of magnitude for 
clarity; otherwise, they would overlap extensively. Numbered 
scales refer only to the top curve. (Data reproduced, with permis­
sion, from Ref. 11, p. 153: © 1988 by the Acoustical Society of 
America.) 
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by Miller and Sachs,13 they computed an average instan­
taneous firing rate for each recorded fiber as a function 
of time since syllable onset. Unlike vowels, syllables are 
not steady-state signals; hence, period histograms are not 
appropriate. Instead, the averages were computed over 
hundreds of repeated presentations of the stimulus. 

Figure 9 shows the neurogram for /da/. Each trace of 
the neurogram is derived from the data for one fiber, the 
CF of which is given at the left margin. As we move 
down the vertical axis, we are sampling fibers excited by 
different hair cells along the cochlea from apex to base. 

Secker-Walker and Searle noted that the pattern of in­
stantaneous firing fell into groups that are labelled GO 
through G3. Within each group, the traces are quite simi­
lar, and the edges of the groups are quite distinct. In addi­
tion, they noted that the rate of vocal excitation (voice 
pitch, FO) was well represented by group GO, and the 
formants Fl, F2, and F3 by G 1, G2, and G3, respective­
ly. Clearly, the averaged instantaneous firing rate forms a 
high-resolution temporal encoding of the speech for-

Johns Hopkins APL Technical Digesl, Volume 12, Number 2 (199 1) 

Speech Processing by Real and Silicon Ears 

mants. These averages appear to be representative of the 
group-averaged activity of clusters of fibers with the 
same or close CF'S. 

A system with a single input and a single output 
obeys an "uncertainty principle" concerning time and 
frequency resolution, whereby very fine frequency reso­
lution is gained only with poor time resolution and vice 
versa. In the auditory nerve fibers, a representation ap­
pears to have excellent frequency and time resolution. 

What is responsible for this phenomenon? The first 
notable feature is the dense sampling of the cochlea by 
the auditory nerve fibers, so that a location on the basilar 
membrane (with its CF) is represented by many auditory 
nerve fibers. Secondly, there is the random (Poisson) 
code of impulses in the auditory nerve fibers. The com­
bined activity of groups of fibers produces a modulated 
random train, where the modulation is capable of time 
resolution considerably better than 1 ms. Finally, the fil­
ter characteristics of the basilar membrane are sufficient­
ly broad that input spectral properties dominate the tem­
poral pattern of response rather than filter charac­
teristics. IO

,14 By these mechanisms, the ear can encode 
the spectral content of signals accurately and respond to 
rapid changes. Interestingly, the pulse code in this sys­
tem that is the usual carrier of information by nerve 
fibers is actually converted by the collective behavior of 
the group to an analog code especially suited to the trans­
mission of speech information. 

COMPUTER MODEL OF THE EAR 

Before one considers building a processor incorporat­
ing the attractive characteristics of the ear, a model of the 
processing of sound by the ear must be achieved and 
neural and model results compared. This approach was 
the basis of recent dissertation research by Karen L. Pay­
ton in the Electrical and Computer Engineering Depart­
ment of The Johns Hopkins University. 11,15 In the forego­
ing discussion, the auditory periphery was described in 
sections: outer ear, middle ear, basilar membrane, and 
hair cell/synapse. Payton's model is modular (as are 
most models of the ear), incorporating these same sec­
tions, as shown in Figure 10. The design of each module 
was based on published data and models. 

Each module was designed to fit sinusoidal input-out­
put characteristics over a wide frequency and amplitude 
range. If the system as a whole were linear, the response 
to complex stimuli could be derived from a frequency 
representation of the stimulus and the system transfer 
function. The basilar membrane and the hair cell/synapse 
modules are nonlinear, however. Payton designed the 
tuning properties of the basilar membrane model to fit 
those obtained experimentally, but all nonlinearity of the 
simulation was in the hair cell/synapse module. 

Considering that the nature of the hair cell/synapse 
module is strongly nonlinear and that sinusoidal inputs 
were used to study and model the module, agreement be­
tween the simulation and neural results for the broad 
spectra, steady-state vowel stimuli was not certain. 
Results of the simulation are shown beside the neural 
results in Figures 6B and 7B. The correspondence is 
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close. The temporal code (Fig . 7 A) gives an excellent 
representation of fonnants Fl, F2, and F3 and of total am­
plitude compression. The rate code, like the experimen­
tal results (Fig . 6A), represents Fl and F2 well at low in­
tensities , but saturates quickly at higher intensities. 

Payton's computer simulation was successful, but was 
tested for a very limited et of timuli , two steady-state 
vowels over a range of intensities. One approach to the 
direction of further work would be to test the simulation 
with more stimuli and possibly to expand the model to 
include nonlinearity in the vibration of the basilar mem­
brane. This path is not attractive, however, because simu­
lation of this complex system on a digital computer is 
slow, and although larger, faster computers would speed 
the work, real-time simulation is not in view. 

Andreas Andreou, a faculty member in the Electrical 
and Computer Engineering Department of JHU , was fa­
miliar with Payton 's dissertation research and had been 
working with a new technology, analog very large scale 
integration ( VLSI), with support and collaboration from 
Robert Jenkins and his APL group. Andreou suggested 
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fabricating a real-time, low-power speech processor us­
ing analog VLSI to implement the modeL The potential 
usefulness of the approach as a modeling tool was evi­
dent. With Payton's simulation and several other efforts 
to model the auditory periphery to guide us , we em­
barked on a project aimed at simulating the auditory 
periphery in silicon. The next ection describes the pro­
ject in progress. 

SILICON MODEL OF THE EAR 

Subthreshold Analog VLSI Approach 

In recent years , fabrication of VLSI circuits has be­
come widely accessible to universities through programs 
established by the Defense Advanced Research Projects 
Agency and the National Science Foundation. One ingre­
dient of the availability of VLSI is MOSIS (the metallic-ox­
ide-on-silicon implementation system) , established at 
the University of Southern California to serve as a sili­
con broker for fabricating integrated circuits quickly and 
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at low prices. Another ingredient is the availability of 
computer-aided design tools to facilitate the design of 
such complex circuits. 

Power dissipation is a chief limitation in any large­
scale implementation of neural architectures containing 
many neural units. The massive concurrence attainable 
in computing with large neural networks imposes serious 
limits on the amount of power that each circuit can dissi­
pate. In any practical scheme, the devices , like neurons, 
must operate with currents in the nanoampere range or 
smaller. Carver Mead 16 has suggested that silicon analog 
processing be performed by operating the circuits with 
the transistors essentially turned off (subthreshold opera­
tion). In this operating regime, transistors behave like 
nearly ideal transconductance devices with very small 
but highly controllable diffusion currents in the nanoam­
pere range. This technique offers the possibility of 
achieving ultra-low-power analog processing at the high 
integration density of silicon transistors with fully cus­
tomized, fast-turnaround chips. 

The arbitrary processing precision of digital systems 
is limited only by the analog-to-digital (AID) converters, 
and such systems are immune to device mismatch and 
fluctuation problems. The achievement of real-time 
simulation digitally for complex systems can be difficult 
and expensive, however. In contrast, analog systems do 
not require AID or D/A conversions and have the advan­
tages of efficient use of silicon area, ultra-low power 
consumption, and truly real-time concurrent operation. 
Thus, our computing paradigm aims to map biological 
computations onto silicon, where the physics of the un­
derlying circuits is intimately related to the computation­
al algorithm. 

An important circuit element of an analog cochlear 
processor is the continuous-time filter for repres~ntation 
of the middle ear and the basilar membrane. Contmuous­
time filter designs often require good control and match­
ing of transistor properties to achieve the desired charac­
teristics. Silicon transistors, although fabricated closely 
together on the same chip, may have significant paramet­
ric variations. A successful filter implementation re­
quires attention to the geometric mismatch compensation 
of the device and the proper tuning strategy. These fac­
tors represent a major technical challenge (see the boxed 
insert). 

Model Elements 
The middle ear model characterizes the displacement 

or velocity at the stapes in response to sound pressure at 
the eardrum and is usually modeled as a linear low-pass 
filter. A middle ear filter approximating the frequency re­
sponse of stapes displacement was implemented on sili­
con using low-pass filters built from transconductance 
amplifiers and capacitors. This design takes a small area 
(about 600 JLm x 60 JLm) on the chip and is stable in the 
hearing frequency range. Figure 11 shows the design of 
the filter and the measured frequency response from a 
test cell included on our first MOSTS test chip. The re­
sponse closely approximates experimental results. . 

Cochlear dynamics relates basilar membrane motlOn 
to the sound stimulus coupled into the cochlear fluids . 
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MONOLITHIC CONTINUOUS-TIME FILTERS 
Transistors and capacitors can be easily realized on 

metallic-oxide-on-silicon (MOS) chips. Passive resistors 
can also be implemented, but the designer has no control 
over the exact resistance. One approach to implementing 
continuous-time integrated filters is to achieve desired 
time constants with transconductances and capacitances. 
Filters of this type, called transconductance-C filters, do 
not require passive resistors and are built solely out of 
trans conductors and capacitors. One advantage of this ap­
proach is that time constants and other parameters of a 
fabricated filter can be electronically tuned by adjusting 
voltages that control the transconductances. A saturated, 
subthreshold MOS transistor itself is a transconductor. 
With several MOS transistors, we can design the operation­
al transconductor amplifier (OTA), which is an active-cir­
cuit building block that outputs a current proportional to 
the difference between the two input voltages. The output/ 
input ratio (i.e., the transconductance) is adjustable by 
means of a bias voltage. With fixed capacitances of on­
chip capacitors, all time constants in a monolithic trans­
conductance-C filter are determined by the transconduc­
tances. The transconductance of an OTA can be designed 
to have an exponential dependence on the bias voltage. 
This scheme provides a wide range of transconductances 
that result in a filter parameter range of several orders of 
magnitude. A monolithic filter using subthreshold trans­
conductances and easily obtained capacitances of 1 to 2 
pF can be tuned to any frequency in the hearing range of 
20 Hz to 20 kHz. 

We did not attempt to model cochlear fluid dynamics, 
but lumped the entire filtering properties of the cochlear 
mechanics into the transfer functions of the basilar mem­
brane module of our model. In our initial design, the 
basilar membrane module has linear characteristics, 
since such a representation worked reasonably well in 
several simulation studies. Nonlinearities, such as those 
seen in Figure 4, which are more difficult to implement, 
may be introduced as the work proceeds and as the role 
of basilar membrane nonlinearities becomes better un­
derstood. 

Although the basilar membrane (together with as­
sociated structures called the cochlear partition) is a dis­
tributed system, it can be represented by a discrete ap­
proximation in the form of a filter bank. Secker-Walker 
and Searle 14 suggested that the asymmetry of the co­
chlear filter characteristics- low slope (6 to 12 dB per 
octave) below the CF and steep slope (50 to 500 dB/oc­
tave) above the cF-is important in representing the for­
mant structure of voiced speech. The gentle roll-off on 
the low-frequency side results in a broad response 
characteristic, so that a group of fibers responds to each 
formant. The sharp cutoff on the high-frequency side 
prevents each fiber group representing a formant from 
responding to the next-higher formant. Hence, much ef­
fort went into obtaining these precise properties. 

To obtain the desired asymmetric frequency re­
sponses, we designed a basilar membrane filter using on-
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Figure 11. Middle ear circuit filter: design (top) and measured response from a test chip 
(bottom). 

ly first-order low-pass and second-order band-pass build­
ing blocks (see Fig. 12). The frequency response of the 
overall basilar membrane, the driving function of the hair 
cells, is obtained by a bank of second-order band-pass 
filters with varying center frequencies. The sharp high­
frequency cutoff is obtained by concatenation of low­
pass filters whose cutoff frequency is matched to the 
band-pass frequency. 

A basilar membrane filter bank of thirty stages was 
implemented in a small test chip. The whole bank was 
tuned through two uniform passive-resistive lines and 
four bias voltages to ensure a constant-ratio decrease of 
center frequencies from one stage to the next. The mea­
sured frequency response from the test chip is shown in 
Figure 13A, which has a shape similar to those seen in 
Figures 3B and 4. 

As discussed earlier, the hair cells and synapses play 
an important role in the functioning of the cochlea. Be­
sides their compressive nonlinearity in electromechani­
cal transduction, they also seem to have rapid and short­
term additive adaptation properties, as seen in the dis­
charge patterns of auditory nerve fibers. The realization 
of an inner hair cell/synapse model is not only challeng­
ing but also crucial to the performance of the speech pro­
cessor. A reservoir model, shown schematically in top 
view in Figure 14, was proposed by Smith and Brach­
man 17 to characterize the end-to-end functioning of inner 
hair cells, from input excitation by motion of the basilar 
membrane to instantaneous firing rates of the auditory 
nerve fibers they drive (see the boxed insert). 

A crucial nonlinear component in the model is the 
analog switch, which models the opening and closing of 
synaptic ionic channels. Hundreds of these switches are 
required to model a single hair cell in the reservoir mod-
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el. A simple and efficient way to implement an analog 
switch is to use a single MOS transistor, with i~s source 
and drain as the switch terminals and the gate as the 

RESERVOIR MODEL FOR THE FUNCTIONING OF 
THE HAIR CELL 

The reservoir model attempts to model the movement 
within hair cells of the store of ionic material that acts as 
the neurotransmitter for communication through the syn­
apses. Changes in hair cell receptor potential caused by 
the motion of the basilar membrane control the opening 
and closing of immediate-store output gates. The instanta­
neous firing rate of auditory nerve fibers is modeled to be 
proportional to the volumetric rate of neurotransmitter re­
lease from the immediate stores. The transmitter sub­
stance in the global store is maintained at a constant level, 
which results in a potential difference between it and the 
local store, so that a partially depleted local store can be 
refilled. The local store in turn tries to replenish the im­
mediate stores that have been discharged by the opening 
of output gates. The input gate into an immediate store is 
open only when the level of the local store is higher; it is 
closed otherwise, so that the immediate store will main­
tain its level when inactivated. This highly nonlinear mod­
el exhibits the desired additive, rapid, and short-term 
adaptation and depletion characteristics. The permeability 
of the gates and sizes of the stores determine the adapta­
tion time course of the model. The operation of the reser­
voir model can be described in detail by a set of differen­
tial equations for which there is an equivalent circuit, 
shown in Figure 15 . The instantaneous reservoir output of 
the model is the current labeled l out (t). 
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Figure 13. Results from a test chip for the basilar membrane 
model shown in Figure 12. A. Response of selected outputs 
along the bank. B. Observed center frequency as a function of 
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Figure 14. Top view of a reservoir model to simulate the hair 
cell/synapse (see boxed insert). The reservoir models the neu­
rotransmitter substance within hair cells that causes activation of 
attached auditory fibers.17 

I J 

Figure 15. Equivalent circuit for the hair cell reservoir model. 
The neurotransmitter is represented by electronic charge, and 
the reservoirs are now capacitors. Diodes and switches model 
the input and output gates of the immediate stores. 

switching control. Small transistors (usually 2 Jlm x 3 
Jlm ) are used to minimize the charge injection problem 
(a common difficulty in switching circuits, where some 
charge is coupled onto the circuit during switching 
through parasitic capacitances). The analog switches, 
each gating one immediate store, are controlled by com­
parators and a potential divider that simulates the effect 
of receptor potential on fiber firings. 

A monolithic hair cell/synapse circuit is shown in 
Figure 15; 128 immediate stores implemented with 2-Jlm 
complementary metallic-oxide-on-silicon technology oc­
cupied an area of about 1.4 mm2 on silicon. In testing the 
circuit, continuous tones of three different frequencies 
across a 50-dB amplitude range were used as input. The 
circuit output was compared with the response of audito­
ry nerve fibers in cats. Figure 16A shows the period 
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histograms of auditory nerve fibers in cats in response to 
sinusoidal stimuli of various intensity levels. 18 In com­
parison, Figure 16B shows the simulated instantaneous 
firing rates generated by the test circuit during each input 
period; very good agreement is seen. 

Neurogram Output by the Silicon Model 

Since the auditory periphery is a nonlinear system, its 
response to complex speech sounds cannot be predicted 
from responses to simple stimuli such as tones and 
clicks. Again, the neurogram displays the space-time 
pattern of cochlear nerve activities in response to speech. 
Neurograms are derived from experimental recordings of 
the fIring of individual fibers by averaging response ac­
tivity over repeated applications of speech stimuli. The 
desired output of our processor is a spatiotemporal pat­
tern similar to the neurogram. The parallel outputs of the 
bank of hair cell/synapse units, each representing an en­
semble average of instantaneous firing by a group of au­
ditory nerve fibers, provide this output. This parallel set 
of analog signals is derived in real time, without the 
averaging that would be required if individual nerve fiber 
firings were simulated in the silicon ear. 
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Figure 17 shows a neurogram generated in our first 
end-to-end test. The individual output traces were gener­
ated by reconnecting a single hair cell test circuit to thir­
ty basilar membrane modules one by one to simulate a 
parallel bank of cells. The input was the syllable /bCl./ 
generated by a Klatt synthesizer. 19 Enough similarity to 
the neurogram of a real ear exists to justify optimism that 
the HEEAR project is on track. 

CONCLUSION 

In this work we are attempting a computing paradigm 
whereby computations are mapped onto silicon so that 
the dynamics of the underlying circuits closely matches 
the computational algorithm. The approach is in stark 
contrast to the traditional approach of software modeling 
on digital machines. With such an approach, however, 
one can obtain truly mas ively parallel operation at cur­
rent levels close to those of biological processing. A suc­
ce sful silicon model of the auditory periphery, that is , 
one that accurately emulates its human counterpart, is the 
very beginning of an information processor approaching 
the incredible processing power of the human sensory 
system. 
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Figure 16. Period histograms of auditory nerve activity in cats in response to six different intensity levels at three different pure-tone 
frequencies. The three columns represent responses at 213, 1815, and 3409 Hz. As you move down each column, intensity increases 
10 dB per curve . A. Experimentally observed results. B. Hair cell test circuit output for the same input frequencies in A. (T = period of the 
tone.) 
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Figure 17. Neurogram output of the silicon hair cell in response to the synthesized syllable 
Ibexl (which lasts about 80 ms). The similarity to Figure 9 is striking and hence quite en­
courag ing. 

Much difficult engineering is required for success. As 
in a related Hopkins project involving a silicon retina, we 
are in the middle of the learning process . Future work 
will focu s on an improved inner hair cell design and in­
clude the effects of the outer hair cells. In addition to try­
ing a new approach to sensory information processing, 
the project is driven by the faith that such a chip will 
eventually find use as a preprocessor for a real-time 
speech recognition system or as an aid to the deaf. 
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