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DETECTION AND CLASSIFICATION OF TRANSIENT 
SIGNALS: SORTING NEURAL WAVEFORMS 

The study of biological neural networks requires reliable extracellular recordings that provide data on the 
collective behavior of neurons. Extracellular recordings contain the transient waveforms generated by 
several neurons located at the tip of the electrode. These neural spike waveforms have to be detected and 
classified to determine the firing times of different neurons. Many recording conditions result in high noise 
levels that increase the difficulty of neural spike sorting. This article describes the generation of the neural 
waveforms that are recorded, presents a brief survey of methods available for spike sorting, and describes 
the two methods found to be best. Development of an optimal spike sorting system to provide a valuable 
tool for neuroscience is in progress at the Applied Physics Laboratory. 

INTRODUCTION 
The expanding applicability of neural networks to di­

verse engineering problems has increased the sig­
nificance of neurophysiological investigations that study 
the collective behavior of neuronal assemblies. It seems 
clear that significant advances in areas such as pattern 
recognition, fault tolerance, memory storage and retriev­
al , speech processing, computer vision, and control will 
be possible by a better understanding of biological neural 
systems. This promise has been recognized in the con­
gressional resolution designating the 1990s as the "de­
cade of the brain" and in the subsequent presidential 
proclamation encouraging appropriate programs. Fur­
thermore, the National Academy of Sciences indicated 
that neuroscience, considered now a mature discipline, 
stands at the threshold of a significant expansion because 
of the clarity of propitious avenues and the availability of 
adequate approaches . Indeed, guiding concepts, ex­
perimental techniques, and analytical tools are available 
for progress in many fields ranging from ion channels to 
neural systems studies. As neuroscientists at the National 
Institutes of Health, the National Science Foundation, 
the Johns Hopkins Medical School, and other leading 
universities agree, one of the prerequisites is instrumen­
tation for obtaining reliable recordings of the physiologi­
cal activity of neuronal assemblies. The Applied Physics 
Laboratory, in collaboration with the Neuroscience 
Department of the Johns Hopkins Medical School, is de­
veloping an automated system for optimal recognition of 
neural waveforms, funded by a grant from the National 
Institutes of Health. 

In neurophysiological experiments, the concurrent ac­
tivity of neurons is recorded with an extracellular elec­
trode that collects data from several neurons in the vicin­
ity of the tip. The main advantage over an intracellular 
electrode is the ability to record from more than one neu­
ron at the same time, but the extracellular electrode also 
allows recording without damaging the neurons and en-
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abIes longer recording periods. The cost of these benefits 
is the requirement for sorting the interleaved neural spike 
trains to determine the firing instants of individual neu­
rons. Because of differences in their geometry and the 
impedances connecting them to the electrode, the 
depolarization of different neurons is manifested with 
different transient waveforms in the recording. Typically, 
the waveform of a given neuron preserves its general 
shape during a recording period; therefore, the activity of 
individual neurons can be determined by sorting the 
different types of neural waveforms. An additional chal­
lenge in extracellular recordings is the relatively low sig­
nal-to-noise ratios (SIN) that can often occur. The back­
ground noise arises mainly from the activity of a large 
number of distant neurons, resulting in a considerable 
overlap between the spectra of waveforms of interest and 
noise. The problem of neural waveform recognition typi­
fies the problem of detection and classification of tran­
sient patterns embedded in colored noise. 

On-line neural spike sorting is preferable because im­
mediate feedback on the recording allows better control 
of experimental conditions and recording quality, reduc­
ing the time requirement for the neuroscientist and the 
animal subject. On-line sorting implies a relatively high 
computational power, especially for implementations of 
robust algorithms. Further increase in the data collection 
capacity can be obtained with multiple electrodes such as 
the Hopkins probe recently developed at APL I using stan­
dard integrated circuit techniques. The large amount of 
data that must be analyzed on-line precludes the use of 
common sorting techniques that require human supervi­
sion. Available integrated circuits for digital signal pro­
cessing now allow the implementation of an automated 
system based on effective but computationally intensive 
algorithms that were not considered feasible a decade 
ago. This article describes the neural data to be analyzed, 
presents a brief survey of various methods that have been 
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suggested, and elaborates on two promlsmg methods: 
principal components and template matching. 

NEURAL DATA 
Sensory or motor information is processed by the ner­

vous system in the form of a distributed representation 
supported by a large number of nerve cells that are inter­
connected with excitatory and inhibitory synapses. The 
functional activity of an individual neuron depends on 
the strength of the synapses that provide excitation or in­
hibition from other neurons, and on the activity of those 
neurons. The fundamental unit of activity is the action 
potential. 

In a nerve cell at rest, the distribution of anions and 
cations is in a steady state that maintains a resting poten­
tial of about -40 to -75 m Von the intracellular suIface 
of the cell membrane, referred to the extracellular ur­
face. This potential difference (polarization) results from 
a constant diffusion proce dictated by the unequal 
permeability of the cell membrane to Na+ and K+ ions, by 
the higher concentration of K+ inside and Na+ outside the 
cell , and by an active Na+-K+ pump that retrieve Na+ 
from the cell while' injecting K+ (Fig. 1). When the over­
all synaptic effect of the other neurons is excitatory, 
positive charges are injected into the neuron, and if the 
membrane potential at the trigger zone (decision-making 
component of the neuron) exceeds a critical threshold, 
the permeability of the cell membrane in the trigger zone 
changes momentarily as a re ult of an active process ( ee 
the boxed insert). This pelmeability change causes a fast 
depolarization followed by a fast repolarization; the in­
tracellular membrane potential rapidly rises to about 50 
m V and returns to its resting level , producing the action 
potential across the membrane of the trigger zone (Fig. 
2). The duration of this potential spike across the cell 
membrane is on the order of 1 ms. Under constant excita­
tion , a neuron can fire repeated action potentials at a rate 
that does not exceed about 500 impulses per econd 
(ip ); typical rates are in the range of 10 to 100 ips. 

A neuron processes and transmits information to other 
neurons by generating and conducting action potentials. 
The action potential, generated at the trigger zone, is 
conducted along the axon both passively and actively. 
During the depolarization , the Na+ ions that rush into the 
trigger zone passively travel a small distance through the 
conductive intracellular material and excite the mem­
brane of a region adjacent to the trigger zone. The result­
ing depolarization , in turn , excites a further part of the 
membrane, causing an active propagation of depolariza­
tion that ensures 10 sIess conduction of the action poten­
tial. This process generates a current flow away from the 
synapse, through the axon, and toward the synapse out­
side the cell (Fig. 3). The current flow outside the cell 
generates small, transient potential differences across the 
extracellular fluid in the vicinity of the cell. These poten­
tial spikes, typically in the range of 1 to 400 p, V, can be 
recorded with an extracellular electrode. 

The shape of the waveform recorded depends on the 
po ition of the electrode relative to the neuron; an elec­
trode near the trigger zone (current sink) records a nega­
tive deflection that peaks and decays to zero rapidly with 
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Figure 1. When the nerve cell is at rest, the Na+ ions diffuse in­
to the cell and K+ ions diffuse out, as the result of the elec­
trochemical gradients. These passive fluxes are balanced with an 
active transport of Na+ and K+ ions in opposite directions by the 
Na+-K+ pump. 
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Figure 2. The action potential (Vm) waveform. 

a possible overshoot, whereas an electrode placed at a 
site sufficiently away from the trigger zone but close to 
the axon (current source) records a positive peak that 
subsequently decays to zero with a poss ible undershoot 
(Fig. 3). Recording sites close to the dendritic tree pro­
duce more complex spike waveforms. Figure 4 shows 
some examples of extracellularly recorded neural spikes. 
The voltage level of neural spikes is inversely propor­
tional to a power of the distance from the neuron. There­
fore, the recorded data are produced primarily by nearby 
neurons and, to a lesser extent, by more di tant ones. 
Ideally, the electrode would be placed at a location that 
provides high-amplitude spikes from several neurons in 
the vicinity and low-amplitude inteIference from other 
neurons. In practice, such adjustments are difficult and 
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Figure 3. Current flow (IEPSP) in and around a nerve cell. The 
extracellular electrode at the top is near the current sink and the 
extracellular electrode below is near the current source. The 
recorded waveforms are shown in the inset circles. 
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Figure 4. Examples of extracellularly recorded neural spike 
waveforms. 

time-consuming, and recordings frequently have very 
poor signal-to-noise ratios. 

Since the values of the membrane capacitance and the 
axoplasmic resistance do not change considerably from 
neuron to neuron, the time constant of the depolarization 
is of the same order of magnitude in most neurons. 
Therefore, the spectral content of neural spike wave­
forms is similar in most neurons, and the spectra of sig­
nal and noise in recordings overlap to a large extent. Fur­
ther, since the noise process is primarily made of the ac­
cumulation of low-amplitude spikes, the autocorrelation 
function of noise has significantly high coefficients at 
lags as large as the average duration of a neural spike 
(about I ms). 
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NEURAL SPIKE SORTING METHODS 

Sorting neural spikes requires the detection of spikes 
in the record by discriminating spikes from noise. Then, 
spikes that have sufficiently similar shapes have to be 
identified and classified to indicate the firing times of the 
corresponding neuron. Frequently, two neurons fire at 
very closely spaced times and their spikes overlap; the 
resulting waveform may have a shape that is very differ­
ent from individual spikes. Such spike superpositions 
need to be resolved to avoid loss of data, especially when 
many neurons are of interest and when they are firing at 
high rates. 

Window discriminators, the first instruments for sort­
ing neural spikes, are based on specialized hardware that 
separate different spike types by using their peak ampli­
tudes. The availability of computers to neurophysiolo­
gists introduced a large number of algorithms for neural 
spike sorting. 

Two pioneering interactive computerized systems2,3 
operating off-line on tape-recorded data allowed the user 
to form a template for each spike type by averaging 
several spikes of the same type. Classification was based 
on the mean-square difference between a candidate spike 
and the templates. An attempt was made in Ref. 3 to de­
termine whether unclassified spikes were linear superpo­
sitions of two or more known spike types. In the follow­
ing decades , several variants of the template matching 
system were built4- 13 using (1) different similarity mea­
sures such as cross-correlation, Euclidean distance, and 
city block distance; (2) different sampling rates ranging 
from 4 to 50 kHz; and (3) different numbers of samples 
(ranging from 5 to 69) to represent a spike. 

Other methods were based on extracting a small num­
ber of features from the spike waveforms, such as peak 
amplitude, peak-to-peak amplitude, various duration 
measures, spike area, and root-mean-square value. 14-19 
Such approaches may be satisfactory only when little 
noise is present in the data. 

Feature extraction has also been applied using the 
principal-components method based on a set of basis 
functions derived from the data. An early implementa­
tion of the principal-components method used tapped de­
lay line filters for computing the projection of the signal 
on the first three principal components;20 further reports 
emphasized both the theoretical and practical aspects of 
principal components.21-26 

Other methods of neural spike sorting that have been 
studied include the first eight Fourier coefficients of the 
spike,27 regression coefficients in fitting a curve to the 
spike,28 and estimation of the conduction velocity with 
multiple electrodes.29-31 

Comparison of the performance of the suggested neu­
ral spike sorting methods has been difficult because 
different data were used by different investigators; a nor­
mative standard annotated database for neural spikes is 
not available as it is in electrocardiography. An "appar­
ent separation matrix" was proposed for evaluating the 
quality of neural spike sorting techniques.32 The classifi­
cation power of a set of parameters was determined by 
computing a measure of separation (dissimilarity) among 
all spike types. The measure of separation, computed for 
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CHANGES IN CELL MEMBRANE PERMEABILITY 

Besides the passive ion channels, the nerve cell mem­
brane has voltage-sensitive Na+ and K+ channels that can 
be either on or off (the density of Na+ channels is 35 to 
500 channels per square micrometer). When open, each 
channel passes a pulse of current with a variable duration 
but a constant amplitude. The voltage-sensitive properties 
of these channels cause highly nonlinear and different 
membrane conductances, gK and g a' for K+ and Na+ ions, 
respectively. Both gK and gNa respond to a depolarizing 
potential, and both have a greater response to larger 
depolarizations; however, they differ in their rate of onset 
and offset as well as in their inactivation. Experiments 
done by clamping the voltage across the membrane to a 
fixed level for a brief period show the time course of the 
response of gK and g a to a voltage pulse that simulates 
depolarization (Fig. I). The rise and fall times of g a are 
shorter than those of gK. Furthermore, if the voltage pulse 
is short, both gK and g a return to their original (rest) val­
ue when the pulse ends (corresponding to repolarization 
of the neuron); if the pulse is longer, g a returns to a base-

Time 
1------1 

0.5 ms 

Figure I. When the depolarization pulse is short (a) , both 
gK and gNa (blue curves) return to the initial levels at the end 
of the pulse (repolarization). When the pulse is longer (b), 
gNa decays to its initial value during the pulse, whereas gK 
reaches a plateau ; gK decays to its initial level when the 
pulse is over. Vm is the action potential , gNa is the mem­
brane conductance for Na+ ions, and gK is the membrane 
conductance for K+ ions. 

each pair of spike types, was the rms value of the differ­
ence between the cluster centers of the two types, in pa­
rameter space. Using this evaluation approach , the clas­
sification performances of peak amplitude, the first prin­
cipal component, and the conduction latency were com­
pared.33 In a comprehensive evaluation,34 the classi­
fication performances of peak amplitude, conduction 
latency, a combination of peak amplitude and conduction 
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line value when the voltage pulse is on (during depolari­
zation), whereas gK reaches a plateau and remains at the 
level for the duration of the pulse. These voltage-sensitive 
nonlinear dynamic properties of the membrane dictate the 
waveform of the action potential during depolarization. 

The initial depolarization of the membrane caused by 
synaptic excitation first increases g a and causes an in­
ward Na+ current. The current increases the depolarization 
(Fig. II ), which results in additional inward Na+ flow. 
This positive feedback generates the rise of the action 
potential. The avalanching depolarization is rapidly com­
pensated by two factors: (1) after about 0.5 ms, gNa starts 
to decrease, which reduces the inward Na+ current, and 
(2) the increase in gK results in an outward K+ flow that 
reduces the depolarization. The decreasing depolarization 
lowers gK and g a further, and the action potential gradu­
ally decreases (Fig. II ). After about 1 ms, the membrane 
potential returns to its resting value. A hyperpolarization 
follows the action potential in most neurons because gK 
decays to its initial value gradually after the depolarizing 
potential is removed. The sustained outward K+ flow is 
higher than the resting value; this condition increases the 
negativity of the cell, and the hyperpolarization under­
shoot occurs (Fig. II ). The number of voltage-sensitive 
K+ channels that remain open decays to zero in the next 
few milliseconds, and the neuron returns to its resting 
state. 

o 2 
Time (ms) 

3 4 

Figure II. Time course of gK and gNa , and the resulting ac­
tion potential Vm during depolarization. gK is the membrane 
conductance for K+ ions, and gNa is the membrane conduc­
tance for Na+ ions. 

latency, 32-sample template matching, and principal 
components were compared. The evaluation concluded 
that, in recordings with high values of SIN, peak ampli­
tude and conduction latency were adequate, but robust 
classification with minimal noise sensitivity required 
principal components or template matching. 

The general approach, which is common to most 
methods mentioned, consists of the following: ( 1) form-
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ing a vector of parameters that represents each spike, 
(2) characterizing the different clusters formed by differ­
ent spike types, and (3) setting decision boundaries used 
for classification of subsequent spikes. 

In the principal-components method, the representa­
tive parameters are the projections of the data on a few 
optimal, orthogonal basis vectors, whereas in the tem­
plate-matching method, the representative parameters 
are the consecutive samples digitized on a spike. 

Characterization of the clusters in parameter space 
can be achieved by analyzing an initial segment of the 
data with a ~ imultaneous unsupervised clustering meth­
od. 35

,36 Thi~ approach provides reliable clusters, but it in­
troduces a delay in the pattern-recognition process. The 
duration of this delay depends on the rate of arrival of 
patterns, the clustering algorithm, and the computer 
speed. If classification has to start with the first pattern, a 
sequential unsupervised clustering algorithm can be used 
to circumvent the learning delay. Under relatively high 
SIN conditions, and when the pattern types are not very 
similar, this algorithm generates the same clusters as the 
simultaneous-clustering method. 

Decision boundaries either can be placed manually or 
can be implied by the use of a distance metric and an ap­
propriate acceptance threshold. The distance and its 
threshold depend on the probability density of the vari­
ous classes. 

Theoretically, optimal classification is achieved by 
using the digitized samples as the representative para­
meters , but the principal-components method allows 
operation in a much lower dimensional space. Some 
preprocessing of data is required, however, in the prin­
cipal-components method. 

Principal Components 
The principal-component method, also known as the 

Karhunen- Loeve Transform (KLT) in the signal-process­
ing field, uses the statistical properties of the data to de­
termine a set of orthonormal basis vectors that can be 
used for effective data reduction. If each waveform is 
represented by an N-dimensional column vector x, the 
covariance matrix of the waveform vectors, C, is defined 
as 

C = E{(x - m)(x - m)'} , (1) 

where 

m = E{x} (2) 

is the mean vector, E { } is the expected value operator, 
and the prime symbol (') denotes transposition. The 
transformation matrix T of the KLT is a square matrix 
whose rows are the eigenvectors of C. The KLT transform 
y of a vector x is obtained as follows: 
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y = T(x - m) , (3) 

and the covariance matrix of the transformed vectors 

L = TCT ' (4) 

is a diagonal matrix whose elements are the eigenvalues 
Ai of C. These eigenvalues are indexed in order of 
decreasing size, and each eigenvalue is the variance of 
the transformed data along the corresponding eigenvec­
tor. The inverse transform, used to reconstruct x from y, 
is equal to the transpose of T: 

x = T-1y + m = T 'y + m . (5) 

For an arbitrary set of data, the existence of the transfor­
mation matrix T is guaranteed because C is a real, sym­
metric matrix. 

The effective data-reduction property of the KLT, used 
also in image coding, results from the fact that most of 
the information is often concentrated in the components 
of y that are associated with the largest eigenvalues. If a 
reduced transformation matrix R is built with only the 
M principal eigenvectors with largest eigenvalues, the 
mean-square error between the original vector x and its 
approximation , 

a = R'y + m , (6) 

is given by 

e = E Ai , (7) 
i=M+ l 

which is the sum of the eigenvalues of the unused eigen­
vectors. Since this error is minimized by selecting the 
eigenvectors with largest eigenvalues, the KLT transform 
is optimal in the least-square-error sense. Although the 
matrix T (or R) is not separable, a fast KLT algorithm 
based on the fast Fourier transform has been devel­
oped.37 

The minimal number of eigenvectors required for an 
adequate representation of the signal with reduced 
dimensionality depends on the data set. In the neural 
spike sorting applications, waveforms initially composed 
of a large number of samples (20 to 40) have been repre­
sented successfully by two coefficients for purposes of 
detection and classification.25

.
26 In general, more than 

95 % of the pattern 's energy is contained in the first two 
KLT coefficients, so as to allow very fast processing, as 
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well as monitoring of the data and the decision bound­
aries on a two-dimensional di splay. 

Optimal Classification 
When the distribution of noise amplitude is Gauss ian 

(as it is in neural recordings), the optimal Bayesian clas­
sification can be achieved by computing the mean of 
each cluster and by setting a decision boundary around 
each mean with a distance metric that depends on the 
covariance matrix of noise. 

The probability density p( x) of a multivariate Gauss­
ian distribution is 

where x is the N-dimensional parameter vector, C is the 
covariance matrix of x, IC I is the detenninant of C , and 
m is the mean vector. The quantity 

d~ = (x - m)' C- l(x - m) (9) 

is called the squared Mahalanobis distance between x 
and m. In the multiclass problem, each class has it own 
probability density. 

Let the data have K different classes represented by 
Wi ' with i = 1, .. . , K. Multiclass Bayesian classification 
is performed with discriminant function s based on the 
class densities and a priori probabilities of the classe . A 
convenient choice of di scriminant function is 

g i ( X ) = 10g[p(xlwJ ] + log P(wJ , (10) 

where g i(X) is the discriminant function , P(XIWi) is the 
probability density of class i , and P(wJ is the a priori 
probability of class i. The class to which a candidate pat­
tern belongs is determined by computing the values of 
the discriminant function using the pattern 's vector x for 
each class. The pattern is assigned to the class with the 
highest discriminant function value. When each class has 
a multivariate Gaussian distribution , the expression for 
g/x) becomes 

- (N log 27f-)/2 - (logIC i l)/2 + log P(wJ . ( 11 ) 

This expression can be further simplified for the follow­
ing reasons: 
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l. The (N log 27r)/2 tenn is the same for each class 
and can be ignored. 

2. In applications where each class of signal is cor­
rupted by the same noise process , the covariance matrix 
Ci is the same for all classes and the (logIC i l)/2 telm can 
be dropped. 

3. When the a priori probability of each class is 
known to be the same, or when it is unknown and is as­
sumed to be the same, the log P(Wi) term can be ignored. 

Disregarding the division by 2 in the remaining term, 
the discriminant function becomes 

(12) 

Therefore, under the stated conditions the Bayesian ap­
proach consists of classifying the candidate pattern in the 
class, to the mean of which the Mahalanobis distance is 
lowest. Constant-Mahalanobis distance contours are el­
lipses centered around the mean of each class; they coin­
cide with equal-density contours on the multivariate dis­
tributions (Fig. SA). In most applications, it is desirable 
to have the option of leaving some patterns unclassified 
or rejecting them. To leave patterns unclassified, only 
patterns that have a distance (or di stances) below an ac­
ceptance threshold are classified, which is equivalent to 
setting an elliptical decision boundary around the m{(an 
of each class. 

None of the reported neural spike sorting applications 
have used the Mahalanobis distance in classification, be­
cause of its computational burden: it requires ( 1) estima­
tion of the covariance matrix and the inversion thereof, 
and then (for each class) (2) a matrix-vector multiplica­
tion and a dot product. The Euclidean distance, which 
has been commonly used, is equivalent to setting a circu­
lar decision boundary and provides suboptimal results. 
The extent of perfonnance loss because the Euclidean 
distance is used depends on the covariance matrix of 
noi se, the noise level of the data, and the similarity be­
tween different classes. If the noise level is relatively low 
and the clusters of different classes are sufficiently apart, 
the Euclidean distance can provide satisfactory results 
regardless of the covariance matrix of noise. Our recent 
studies , using 32-sample templates and five different 
neural spike classes embedded in typical neural record­
ing noise, showed that if the Euclidean distance between 
the means of the two closest clusters is more than 14 
standard deviations of noise, perfect classification can be 
obtained. But as the clusters get closer or the noise level 
increases, the perfonnance drops, and the loss (referred 
to the optimal case) can be up to 30%. The perfonnance 
drop is caused by the Euclidean di stance being compati­
ble with circular density contours (Fig. 5B), but in many 
applications , such as the neural spike sorting problem, 
the distributions are elliptical. 

In the template-matching approach for neural spike 
sorting since the variance of each dimension is the same, 
elliptical distributions result only from the significant au­
tocorrelation in the noise process . Such elliptical distri -
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Figure 5. Decision boundaries in two-dimensional space 
spanned by variables Xl and x2 ; m1 and m2 are the mean vectors 
of the corresponding classes. A. Decision boundaries of a Ma­
halanobis-distance classifier. B. Decision boundaries of a Euclid­
ean-distance classifier. 

butions are reflected in the covariance matrix. The extent 
to which Euclidean distance causes the classification per­
formance to deteriorate depends on the covariance ma­
trix. With Euclidean distance, the higher the autocorrela­
tion in noise, the higher the eccentricity of the elliptical 
distributions and the lower the performance. 

Whitening 

If the density contours were circular, optimal classifi­
cation could be achieved with the Euclidean distance. 
Circular density contours occur when the components of 
the multivariate distribution are uncorrelated, in other 
words, when the noise process is white. Then the covari­
ance matrix C is diagonal, with the elements all equal to 
the variance of noise, 52; its inverse C-1 is diagonal, with 
elements equal to 1/52

; and the discriminant function 
reduces to 

(13) 
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which is equivalent to classification with minimal Eu­
clidean distance. We recently reported a method for 
transforming the correlated noise into white noise that 
provided theoretically expected optimal results with the 
Euclidean distance.38 This method is based on an au­
toregressive moving-average model of noise and can be 
implemented on-line with a recursive filter using less 
than ten coefficients. The best possible classification per­
formance can be achieved with this approach, under any 
level of noise. 

APPLICATION 
The two main tasks in neural waveform sorting are 

detection of wavefOlIDs and their classification. The op­
timal approach significantly improves the performance 
of both detection and classification. Detection can be 
considered a two-way classification of the data as wave­
form or no-waveform. Therefore, one class contains all 
waveforms from all neurons, and the other class contains 
noise alone. In multidimensional space, noise segments 
of N points each form a hyperspherical cluster around the 
origin when the data are whitened. When no prior infor­
mation is available on waveforms, the optimal approach 
is to use a hyperspherical decision boundary to dis­
criminate waveforms from noise. Waveforms can be dis­
criminated from noise by computing the sum of squares 
of the N samples and by comparing this power estimate 
to an appropriate threshold. The threshold determines the 
radius of the hyperspherical decision shell and can be set 
by using the statistics of the noise. The guiding criterion 
in setting the threshold is to obtain no, or very few, false 
positives (e.g., one per second). 

Figure 6 (top) shows a segment of neural recording 
with a relatively low level of noise. Amplitude discrimi­
nation, a widely used detection technique, consists of 
setting a threshold on the recorded data; it can, in the 
segment shown, perfectly discriminate noise from wave­
form. But when the noise level is higher (Fig. 6, middle 
and bottom) , as in many neural recordings, the detection 
performance of amplitude discrimination drops to about 
90% and 30% correct for recordings similar to those of 
the middle and bottom panels of Figure 6, respectively. 
On the other hand, the corresponding performance of the 
optimal detection technique, with N set to 32, is 100% 
and about 70% correct, respectively. 

In the classification phase, a detected waveform rep­
resented by a vector of N samples has to be classified in 
one of the K different classes. Optimal classification is 
achieved by whitening the data and assigning the wave­
form to the class that yields the lowest Euclidean dis­
tance (Eq. 13) below an acceptance threshold. The clas­
sification threshold is set in a manner similar to that of 
detection. Classification with amplitude is 100%, 65 %, 
and 40% correct on records such as those in the top, mid­
dle , and bottom panels, respectively, of Figure 6. The 
corresponding perfOlIDance of optimal classification is 
100% correct for all three records. 

DISCUSSION AND CONCLUSION 
The optimal detection and classification approach us­

ing whitening and template matching provides the most 
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Figure 6. Neural recordings at three 
different noise levels, digitized at 32 
kHz. The numbers on the waveforms 
indicate the neuron that fired. 
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reliable performance. Previous studies showed that the 
performance of the principal-components method can be 
close to that of template matching for neural spike sort­
ing.34 The advantages of principal components are con­
siderable data reduction and speed, whereas template 
matching is the theoretically optimal approach. Reliable 
resolution of spike superpositions requires templates of 
individual spikes. Resolution of superpositions can be 
reliably achieved by using an iterative algorithm based 
on template matching.38 

It is possible that basis functions other than principal 
components can provide successful classification. A 
promising candidate is the wavelet transform,39 which is 
especially suited for an efficient representation of tran­
sient signals. Since its orthonormal basis functions are 
independent of the data, the wavelet transform does not 
require computation of the data covariance matrix and its 
eigenvectors. 

Recently, neural networks have been applied to vari­
ous pattern-recognition problems. Their ability to gener­
ate nonlinear and sometimes disjoint decision regions is 
the main contribution of neural networks to pattern 
recognition. In applications where each class has one 
cluster and when components of patterns are uncorrelat­
ed (whitened data) , the distribution of each class is 
spherical around its centroid. In such applications, the re­
quired decision boundary is a spherical shell, and it can 
be implemented simply with a template and the Euclide­
an distance. The nonlinear discriminatory power of neu­
ral networks does not provide an advantage for such ap-
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plications. If the application precludes satisfactory 
whitening of the data, then neural networks may contrib­
ute to the solution. 

Our classification performance studies also included 
the evaluation of template matching with the city block 
distance, the sum of absolute valued differences of com­
ponents of two patterns. The binary equivalent of the city 
block distance is the Hamming distance. The evaluation 
showed that the classification performance is only about 
5% lower than the performance with the Euclidean dis­
tance, and that the increase in performance that results 
from whitening is the same for both distances. In some 
applications, the city block distance can be preferable for 
higher processing speed. 

The optimal neural spike sorting system that we are 
developing is based on template matching with Euclide­
an distance and a high-speed whitening front end. This 
approach is applicable to a wide range of signal- and im­
age-processing problems where theoretically optimal de­
tection and classification under heavy noise conditions 
are desired. We expect the robust on-line operation and 
full automation of the system to contribute significantly 
to functional data analysis in the investigation of biologi­
cal neural networks. 
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