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A NEURAL-NETWORK-BASED SYSTEM FOR 
MONITORING THE AURORA 

Electrons and ions from the various regions surrounding the Earth rain down upon, or precipitate 
into, the upper atmosphere at high latitudes. The visible manifestation of this precipitation is the aurora, 
which in the Northern Hemisphere is also called the northern lights. The particles precipitating into the 
Earth's atmosphere can be used as a diagnostic-a "space weather" monitor. A series of Air Force De­
fense Meteorological Satellite Program satellites, collectively in continuous operation, measure precipitating 
particles in the range where most of the energy flux is carried. We have developed an algorithm for auto­
matically monitoring the high-latitude precipitation, including a neural-network-based identification of 
the source region of all precipitation observed. The result is an enormous and sophisticated database, 
one use of which is to determine the appropriate mapping of ionospheric magnetic field lines into near­
Earth space. The database is also being provided on a limited basis to the space physics community as 
a service. In addition, the system is a logical step in the development of a real-time capability to predict 
space weather. 

INTRODUCTION 
A continuous outflow of hot ionized gas from the 

Sun-the solar wind-blows against the Earth. The 
Earth's magnetic field forms a bubble that keeps most 
of the solar wind out. Within this bubble, called the mag­
netosphere, various regions of trapped or quasi-trapped 
plasma exist. The charged particles that make up the 
plasma, mostly electrons and protons, are guided by the 
Earth's magnetic field lines, and a portion of them are 
continually striking the Earth's upper atmosphere at high 
latitudes in a ring around the magnetic poles that is called 
the auroral oval. Figure 1 shows an ultraviolet image of 
the polar region from an altitude of about 1000 km; ap­
proximately three-quarters of the auroral oval is clearly 
visible. The image is from the Air Force Polar BEAR (po­
lar Beacon Experiment and Auroral Research) satellite, 
built at APL. 

The magnetic field lines throughout the magneto­
sphere are focused together above the Earth's polar 
regions, since the field lines of a dipole converge into 
the poles. Hence, a low-altitude polar-orbiting satellite, 
when suitably equipped with the appropriate particle de­
tectors, can rapidly sample the various plasma regimes 
surrounding the Earth. This sampling ability makes mea­
surements of the auroral oval a logical candidate for 
monitoring "space weather," that is, the state of the 
magnetosphere. In effect, the polar regions provide a 
projection-screen view of near-Earth space. 

The upper atmosphere of the Earth acts as the screen; 
the precipitating electrons excite the airglow display 
known as the northern and southern lights (aurora 
borealis and aurora australis, respectively). Although 
many scientific satellites have investigated the auroral 
regions at various times, by far the largest and most com-
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prehensive data set of auroral particle measurements 
comes from the Air Force Defense Meteorological Satel­
lite Program (DMSP). The DMSP satellites are operated 
continuously, providing a completeness of record un­
available elsewhere. The DMSP data set is thus the best 
choice for routinely monitoring the auroral oval and oth­
er high-latitude precipitation, and is therefore a fairly 
good indicator of the state of the magnetosphere. 

Although our primary interest is in basic research, we 
have found some practical use in monitoring space 
weather. At high latitudes, intense auroral activity can 
knock out power stations and disrupt radio communi­
cations and over-the-horizon radars Oooking over the po­
lar cap), and correlated processes at high altitude can 
charge spacecraft to high voltages. Moreover, in look­
ing toward a future of increased presence in space, it 
makes sense to understand the Earth's space environ­
ment as much as possible. 

Therefore, our research group has been pursuing a 
campaign in which we (1) try to identify as accurately 
as possible the magnetospheric (or solar) source of all 
forms of particle precipitation observed at high latitudes, 
and (2) teach a computer to perform the same identifica­
tions. We have, in effect, been developing a system to 
monitor space weather routinely with the following goals 
in mind: (1) providing a service to the space physics com­
munity (providing other magnetospheric researchers with 
the position and state of the auroral oval); (2) performing 
statistical manipulations on the data set, leading, for ex­
ample, to a more accurate mapping of the ionosphere 
to the magnetosphere; and (3) performing routine mon­
itoring, which is an important step in developing a pre­
dictive capability. 
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Figure 1. An ultraviolet image of 
the Earth from the Polar BEAR satel­
lite at an altitude of about 1000 km. 
The false color scale gives the inten· 
sity in Rayleighs of auroral oval emis­
sions at 135.8 nm. About three­
fourths of the auroral oval is clearly 
distinguishable. The thickening at 
the sides is due to the slanted view· 
ing angle when looking away from 
nadir. For orientation, the red line at 
the top paints toward the Sun. 

PRECIPITATING PARTICLES AND 
THE DMSP DATA SET 

The DMSP satellites are all polar -orbiting satellites in 
nearly circular polar orbits at an altitude of 835 km and 
an orbital inclination of 98.7°. Normally, two DMSP 

satellites are in operation at any given time. Currently, 
F8 and F9 are operational; the previous pair was F6 and 
F7. The DMSP satellites are sun-synchronous; F6 and F8 
are in approximately the dawn! dusk local-time meridian, 
and F7 and F9 are in the prenoon/premidnight local­
time meridian. The instruments we use are the SSJ/ 4 elec­
trostatic analyzers, which measure electrons and ions 
once per second from 32 e V to 30 keVin twenty logarith­
mically spaced steps. I The DMSP satellites are three-axis 
stabilized, and the particle detector apertures are always 
directed toward local zenith. At the magnetic latitudes 
(MLAT) of interest to auroral researchers (say, greater 
than 50° MLAT), this condition means that only parti­
cles aligned approximately in the direction of the Earth's 
magnetic field are observed. Such field-aligned particles 
will hit the Earth's upper atmosphere and deposit their 
energy therein. Particles less field-aligned will be reflected 
from the magnetic mirror of the Earth's converging field 
lines and bounce back into space. 

We classify precipitating particles in the energy range 
measured by DMSP as having come from one of seven 
sources. Because charged particles tend to follow mag­
netic field lines, these various source regions can be 
mapped from distant locations to the polar region ion-
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osphere along converging magnetic field lines to DMSP 

altitudes (835 km) (see Fig. 2). The source regions are, 
in order of their latitude of most likely occurrence, from 
lowest to highest: photoelectrons, created by the more 
energetic portion of the solar spectrum; the central plas­
ma sheet (CPS), high-energy precipitation so called be­
cause it is conventionally believed to map to the Earth's 
central plasma sheet or its dayside extension; 2 the 
boundary plasma sheet (BPS), conventionally believed to 
map to the boundary between the Earth's plasma sheet 
and the lobes; the low-latitude boundary layer (LLBL), 

a region just inside the Earth's magnetosphere along the 
flanks; the cusp, a limited region at high latitudes on 
the dayside where the shocked solar wind has fairly direct 
access to low altitudes above the Earth; the mantle, a 
region of de-energized solar wind, above and below the 
magnetosphere; and polar rain, soft electrons also of &.0-
lar origin entering from deeper down the tail. 3 

Of these seven regions, three-photoelectrons, the 
CPS, and polar rain-are easy to identify because they 
have the least spectral and spatial fine structure; that is, 
these regions tend to be comparatively homogeneous. 
The cusp was first identified by Heikkila and Winning­
ham 4 in 1971; more recently, identification of the cusp 
has been made quantitative and systematic,5-7 and this 
region can now also be considered to be reliably identifi­
able in a data set of precipitating particles. More work 
needs to be done in establishing firmly that the LLBL and 
the BPS can be distinguished reliably on the basis of only 
the spectral properties of the precipitation; but the lower 
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Figure 2. Mapping the magnetosphere into the ionosphere along magnetic field lines. A. Schematic diagram of various observed 
magnetospheric boundary layers. B. Schematic diagram of the regions occupied by the various boundary layers mapped into the 
ionosphere. (Reprinted, with permission, from Vasyliunas, V. M., " Interaction between the Magnetospheric Boundary Layers and 
the Ionosphere," in Proc. Magnetospheric Boundary Layers Cont., European Space Agency Special Publication, ESA SP-148, 1979. 
Published by courtesy of the European Space Agency.) 

energy of the electrons and especially the ions in the 
LLBL would seem to make such identification practical. 
The plasma mantle has only recently been identified at 
low altitude, 8 except for the obvious case of directly 
poleward of the cusp. It is outside the scope of this arti­
cle to review each of these identifications in detail, al­
though we will give some examples of the identifications 
later. 

AUTOMATED IDENTIFICATION OF 
HIGH-LATITUDE PRECIPITATION 

The system for automated identification of high-lati­
tude precipitation consists of a feed-forward, backward­
error-propagation neural network (as explained later) and 
a post-processor. The neural network operates on each 
second's worth of data, namely, one electron and one 
ion spectrum. Thus, the network is making decisions 
without context, which is the most serious limitation. The 
output of the neural network goes to a simple expert 
system-a set of explicit rules for converting the stream 
of up to 1500 one-second identifications into a compara­
tively small number « 1 0) of distinct regions encoun­
tered. We consider each of these steps in the sections 
that follow. 

The Neural Network 
Interest in neural networks has recently surged; con­

ferences are being held and journals devoted to the sub­
ject are appearing. The underlying ideas are not recent, 
however; theoretical forerunners reach back at least to 
the 1940s. 9

,10 Very simple networks known as percep-
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trons 11 were popular in the artificial intelligence com­
munity in the late 1950s and early 1960s, until their severe 
limitations became clear. 12 Although it was realized at 
that time that more complicated networks could be con­
structed, no learning algorithm for these networks ex­
isted, so that interest waned. 

More recently, it has become clear (e.g., Ref. 13 and 
references therein) that an efficient method, known as 
the generalized delta rule and based on the method of 
steepest descent, could be used to "train" a network to 
learn the values for weights between nodes. Spectacular 
successes with this method, such as a network that taught 
itself to pronounce English, 14 have led to the resurgent 
interest. 

Recently, interest has moved beyond the artificial in­
telligence community, and neural networks have been 
applied to scientific and technical problems, particular­
ly in the fields of signal and image processing. 15,16 At 
APL, Sigillito et al. 17 have implemented a neural net­
work to identify good and bad radar returns in iono­
spheric studies, although the method has never been 
adopted for practical use. Other examples of neural net­
work applications in image and signal processing can be 
found in the July 1988 issue of the IEEE Transactions 
on Acoustics, Speech, and Signal Processing. 

As the name implies, the idea of a neural network is 
to simulate the distributed processing of the human 
brain. Several models of neural networks are under 
study; the one we have chosen, which is the most com­
monly used, is a feed-forward, backward-error-propa­
gation network. It contains several layers of nodes; each 
layer accepts input only from lower layers of nodes and 

293 



P. T. Newell et al. 

outputs only to the next higher layer of nodes. For def­
initeness, we will now describe the particular network 
we used in our application. 

Our network had three layers: the input layer, the out­
put layer, and one intermediary or hidden layer. We tried 
networks with two hidden layers, but with little or no 
improvement in accuracy. The input layer was composed 
of forty nodes, consisting of the thirty-eight particle 
count rates (a nineteen-point electron and nineteen-point 
ion spectrum), Magnetic Local Time (ML T), and 
MLAT. Eight output nodes were included, one for each 
type of dayside precipitation that we wanted identified: 
photoelectrons, the cusp, the near cusp, LLBL, BPS, the 
dayside extension of the CPS (also known as the outer 
radiation zone), the mantle, and polar rain. The output 
nodes produced "1" if the type of precipitation they 
specialized in was present and "0" otherwise. 

Each of these forty input nodes is connected to each 
of the hidden nodes in the second layer (a hidden node 
is any node that is not an input or an output node). For 
the dayside network, thirty hidden nodes gave the best 
results; for the nightside network, only fifteen were 
necessary. These, in turn, were connected to each of the 
eight output nodes. The exact number of hidden nodes 
to use is a matter of judgment and experimentation; we 
tried various values before settling on the final numbers. 

Signals propagate from layer i to layer i + 1 within 
the network as follows: The output 0/+ 1 of node j of 
layer i + 1 is related to the outputs of layer i by the 
rule 0/+1 = 1/[1 + exp( -EWijO/)], where the sum­
mation is over all nodes j within a layer. The network 
is defined when the weights ~j are determined for 
each node j within each layer i. 

The technique for determining these weights is to train 
the network by using a set of example inputs and target 
outputs. Initially, the weights are selected at random, 
and the outputs will differ greatly from the target an­
swers. The rule for adjusting the weights, known as the 
generalized delta rule, is based on the method of steepest 
descent. 13 Therefore, the change in the weights ~ Wij, 
after each target output is compared with the actual out­
put, is given by ~Wij = l1JE/JWij, where the error 
function E = Ej (tj - OJ) 2 is based on the difference 
between the target outputs tj and the actual outputs OJ. 
The constant 11 is called the learning rate and is typically 
chosen to be in the range from 0.1 to 0.9. For our large 
data set, an 11 value of 0.08 or less proved necessary. 
In practice, it is often advantageous to add a "momen­
tum" term that is proportional to the previous ~ Wij to 
help prevent oscillation about local minima (our momen­
tum coefficient was 0.3). The corrections to the weights 
are propagated backward, starting from the output layer 
and working toward the input layer. Hence, the network 
feeds signals forward from the input layer to produce 
its output and propagates error correction backward on 
the basis of closeness of the actual outputs to the target 
outputs. 

As a practical matter, therefore, the work required 
by the scientist in training the network to identify fea­
tures of interest is simply to come up with a set of ex­
ample inputs and target identifications. Typically, 50 to 
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100 examples of each signature to be identified are re­
quired, normally including roughly the same number of 
examples having the phenomena present as having the 
phenomena absent. These examples and targets are 
presented repeatedly until the network converges to iden­
tifying a high percentage of the training set. 

It is then necessary to test the network on data it was 
not trained on, to ensure that the network has truly 
learned to generalize and has not simply memorized the 
correct answers for the limited training set. This second 
data set is called the testing set. In our case, we used 
training sets for the dayside and nightside of sizes 100 
and 63, respectively, and a testing set of size 10 for both 
networks. A larger training set was necessary for the day­
side than for the nightside simply because more classifi­
cation categories were used for the dayside. The nightside 
network reached 980/0 correct on the training set and 
96% correct on the testing set. The dayside network, with 
its larger number of categories and fmer distinctions, was 
91 % correct on the training set and 90% correct on the 
testing set. Recall that these are one-second identifica­
tions, so that most of the incorrect identifications are 
due to fluctuations within a region. Most mis-identifi­
cations can be corrected by post-processing, as described 
in the next section. 

Rules-Based Post-Processing 
Regions of precipitation extend from a few consecu­

tive seconds to several hundred seconds; an entire polar 
pass can be up to 1500 seconds, where each second in­
cludes a thirty-eight point spectrum and two location 
coordinates. Rather than attempting a neural network 
with 60,000 input nodes, the computation involved in 
the network was kept to a manageable level by having 
the network evaluate a single spectrum (one second of 
data) at a time. Thus, a second level of processing is 
needed to convert the stream of one-second (one-spec­
trum) data into regions of precipitation, each of which 
has one overall identification. Most mis-identifications 
can be corrected at this step on the basis of contextual 
information. A set of explicit rules, in effect, a simple 
expert system, was chosen for the second-stage process­
ing. Some of the necessary rules are obvious; for exam­
ple, a string of identifications such as BP, BP, BP, CP, BP, 

BP, BP is stored as one region of BP, signifying BPS. 

Others involve knowing something about the magneto­
spheric configuration, for example, that CPS cannot be 
found poleward of the cusp, although unusually ener­
getic polar rain might be. Altogether, about thirty such 
rules were adopted, each of which resolves a conflict or 
unlikely string of identifications according to various 
quantitative conditions. 

Although it would be prohibitive to describe each of 
the rules in detail since some are quite complicated, the 
flavor of the rules can be shown with a few simple ex­
amples. Three or more consecutive seconds that have 
the same identification, say x, are considered to be a re­
gion Rx. One or two seconds of an identification is tak­
en to be a short region Sx' Thus, the general version of 
the rule first mentioned is RxSySZRx - Rx, that is, the 
two short regions are absorbed. Another example is that 
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a string that alternates between regions of polar rain and 
void, each region of length less than ten seconds, is listed 
as a single region of either polar rain or void, according 
to which has the greater number of seconds identified 
(regions of longer consecutive similar identifications are 
not combined). 

It was found useful to construct a "guess function" 
to help resolve conflicts in identifications. The guess 
function is an explicit algorithm for making a reasonable 
(context-free) guess based on quantitative information 
about a region (especially integral parameters, such as 
average energy and energy or number flux). In general, 
the guess function does not perform as well as the neu­
ral network, but it can act as a valuable second opinion 
in resolving conflicts. For example, a region that satis­
fies the Newell and Meng 5 quantitative criteria for the 
cusp proper has a guess value of cu. Consider a case 
in which the neural network identified a region of LLBL 

at a higher latitude than the cusp. This identification con­
flicts with likely magnetospheric morphology, unless the 
satellite is changing significantly in local time as well as 
latitude. The resolution would depend on the guess 
values of the two regions and the lengths of the two 
regions (regions larger than nine seconds are almost never 
changed, whatever the conflict). Experience shows that 
the net effect of the rules is to greatly improve the over­
all accuracy of the identifications. 

We have not made a systematic effort to quantify the 
overall accuracy of the entire system. We have, however, 
compared the network performance to our own identi­
fications for more than 100 polar passes. Our experience 
is that the automated identifications are almost always 
basically correct for clearly unambiguous regions, al­
though the exact position of the boundary between re­
gions may differ slightly from the one that a human 
using context would choose. For the most ambiguous 
situations, the automated identifications are at least tena­
ble. The identifications are least reliable, however, when 
the precipitation patterns are the most unusual. Unfor­
tunately, the more unusual the magnetospheric condi­
tions, the more likely the period is to be of interest to 
space researchers. Even under these circumstances, the 
database of automated identifications can be of some 
use to other members of the space physics community, 
for example, by identifying the general position of the 
auroral oval, even though the detailed region identifica­
tions will be less reliable. 

The On-Line Database 
The entire set of DMSP F7 particle data, as well as data 

from F9 through the present (with about a six-month 
lag), has been processed through the neural-network­
based system. After the identifications of a given pass 
are finalized, they are added to the compressed database. 
The region identification, ephemeris information, and 
spectral information for the region are stored. The points 
of peak electron and ion energy flux over the period of 
the region, based on a sliding three-second average, if 
the region is longer than three seconds, are also recorded. 
This information is all stored onto a write-once read-
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many (WORM) compact disk; the entire database easily 
fits onto one WORM. 

A permanent on-line database is also created; it differs 
from the main database only in that the detailed spectral 
information (the count rates in each of the thirty-eight 
channels) is dropped, thus reducing the storage require­
ments by about 600/0. Integral information such as aver­
age energy and total energy flux is retained. In the re­
duced form, each region identified takes 56 bytes (56 B). 
The data are stored in one-month files, which average 
about 1200 blocks (600 kB). For our own use, and for 
the use of other magnetospheric researchers at APL, in­
stant access to data from any time over the past several 
years is possible. Moreover, a simple database search al­
gorithm allows one to search by geographic, magnet­
iC,18 or temporal coordinates, or certain other 
conditions. This ability should be particularly useful for 
collaborating with ground-based researchers since it al­
lows a determination of coincidences (overflights of the 
satellite through the ground-based observer's field of 
view). 

Space physics researchers outside APL are provided 
with a more restricted access to the data set through the 
Space Physics Analysis Network (SPAN). Even though no 
classified research is done on the APL computers con­
nected to this network, it was deemed prudent not to 
allow outside users to actually initiate processes on the 
APL Vax computers devoted to space physics. Moreover, 
to allow the authors exclusive access to statistical results 
from the network, it is desirable to restrict outside users 
to forty-eight hours' worth of data at a time. Thus, a 
computer-based mail system for making requests was de­
veloped. The processing of the requests is automated; 
a program starts up three times per day and responds 
to the data requests. The procedure for making a re­
quest is simple. A rigidly formatted mail message, with 
the subject being "DAT~EQUEST," is sent to the 
SPAN address "APLSP: : OVAL." The message is three 
lines long: 

starting; 19xx,mm,dd,hh 
ending; 19xx;mm,dd,hh 
{return SPAN address} 

Space physics researchers interested in the database can 
find further information published elsewhere. 19 

SOME REPRESENTATIVE EXAMPLES 
OF NEURAL-NETWORK-BASED 
IDENTIFICATIONS 

Two examples each from DMSP F7 nights ide and day­
side crossings of the auroral oval are shown in Figure 3. 
The spectrograms are a convenient method of three-di­
mensional plotting. The x-axis is the spacecraft trajectory 
and is thus labeled with time and positional data, and 
the y-axis is the energy of the particles being plotted. 
The color scale gives the differential energy flux of elec­
trons and ions precipitating into the atmosphere. The 
orange labels under the spectrograms are generated auto­
matically by the neural-network -based system described 
in the previous section. 

295 



P. T. Newell et al. 

A 
F 7 

1 " , 0G2 , 3<) J.",G~hoo ~" ,03,30 1 .. , 04 , 00 

MLA 78.2 '7'6_ "9 ?s . ... 73.9 

GLA 80.9 ~.5 7~ _ 6 7'3. 0 

GLOH& 138.S ~38.3 .L79.? L?1.3 

)4LT .00 : 4'" 00 ,33 00, 25 OC , 1S 

B 

F7 

1 ... , 04 , 30 1 ... , 05 ,00 1 04 , 05 , 30 

72 . ... ?0.9 69.3 

77. 4 70_ j .04 .6 

165. " 1SS . ? ~55.6 

oo ,cs 00 ,= 23::59 

.104 , 06 , 00 

6"7.S 

73.2 

~51. 7' 

23, 53 

84 / 346 
12/.11 

LOG 

E FLUX 

E LE C l ON 

8 

5 3 

-72.<'84 / 346 
.12/.11 

Figure 3. Spectrograms from DMSP 

F7 showing differential energy flux 
(eV/cm2 . second· steradian· eV) from 
32 eV to 30 keV. The ion energy scale 
(eV) is inverted (all numerical labels 
are log values). The orange labels un­
der the spectrograms are generated 
automatically by the neural-network­
based system. The meaning of each 
label is given in the text. A. A night­
side crossing with easily distinguish­
able diffuse and discrete regions of 
auroral precipitation. B. A nightside 
crossing where the diffuse and dis­
crete regions are less sharply dis­
tinct. The counts at 1118:30 UT are 
due to penetrating radiation belt elec­
trons and are correctly discounted by 
the network. C. (next page) A dayside 
oval crossing showing a complicat­
ed structure, including the cusp 
proper, low-lat itude boundary layer, 
boundary plasma sheet, and central 
plasma sheet. D. (next page) A day­
side oval crossing with a much sim­
pler structure; only the diffuse and 
discrete auroral regions are seen. 
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Figure 3A shows a nightside crossing from 11 Decem­
ber 1984 at about 1400 UT during auroral sub storm ac­
tivity. In this crossing, three regions are clearly dis­
tinguishable (from right to left): the diffuse, compara­
tively unstructured aurora (CP); the region of discrete au­
rora (BP); and polar rain (PR) . We believe that few mag­
netospheric researchers would greatly disagree with the 
diffuse/ discrete auroral boundary selected by the 
network. 
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A more challenging example of a nightside crossing 
through a less active auroral oval is shown in Figure 3B, 
also from 11 December 1984, at 1117 UT. Again, the 
identifications are quite satisfactory. The neural network 
successfully discounted spurious counts due to penetrat­
ing electrons from the outer radiation belt at 1118:30 
UT; this region is correctly labeled as being void (VO) 

of precipitation in the 32 e V to 30 ke V range. Although 
instances occur when it is difficult for anyone (or any-
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thing) to define a defensible boundary between CPS and 
BPS, our experience is that when such a boundary clearly 
exists, the automated identifications are almost invariably 
reasonable (i.e., a defensible choice, if not necessarily 
the only choice). 

Figure 3C shows a DMSP F7 pass from 5 December 
1983 through the dayside oval region, illustrating some 
of the complex structure that can be observed at these 
local times. From right to left (equatorward to further 
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Figure 3. (continued). 

poleward) in the spectrogram, one encounters first a re­
gion of kiloelectronvolt electron precipitation (CP) (the 
smooth green cloud). These are electrons originating on 
the nights ide and drifting to the dayside. Further 
poleward is a region of generally softer electrons with 
discrete structure; this region is the dayside extension of 
the oval of discrete aurora (BP). Further poleward is 
precipitation with characteristics suggestive of the LLBL 

(LL); next is the region of magnetosheathlike precipita-
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tion, the cusp proper (elJ); fmally, weak precipitation as­
sociated with the plasma mantles (MA) lies farthest 
poleward. 

Not all of these regions are observed in each pass, of 
course. Figure 3D shows a common alternative oval 
structure observed on 17 December 1983 at only a slightly 
earlier local time. From left to right (equatorward to 
poleward), one observes photoelectrons only (PH); both 
photoelectrons and CPS (CP, PH); a region of CPS without 
photoelectrons (CP); a region of dayside discrete aurora 
(BP); and farthest poleward, field lines with precipitation 
characteristic of the plasma mantle (MA). 

FUTURE WORK AND CONCLUSIONS 
The most needed improvement is to expand the sys­

tem to include the dawn-to-dusk satellites (F6 and F8). 
That will require first constructing an accurate classifica­
tion scheme for auroral precipitation in those time regions. 
In making the dayside identifications, we relied on our 
own work and experience in identifying the source region 
of particle precipitation. On the nightside, we simply 
adopted the conventional distinction between diffuse and 
discrete aurora. At dusk and especially at dawn, how­
ever, regions of precipitation exist that do not precisely 
match any of the nightside or dayside categories; hence, 
we believe that basic research is required before it is 
worthwhile to teach a computer to make identifications. 
The limitation here is not technical but rather our state 
of knowledge of precipitation and its source regions. 

A major technical enhancement that would probably 
be a significant improvement is a fuller use of context 
in having the neural network make its decisions. Three 
likely means of doing this are the following: (1) run the 
string of one-second decisions through a second neural 
network, (2) make the neural network much larger so 
that it can handle simultaneously the full 1500 seconds 
(by forty input nodes) for a pass, and (3) use a window­
ing procedure in which the neural network looks at 
neighboring spectra while making the identification. Pro­
gress here requires no new space physics knowledge but 
only improved computational sophistication. 

We conclude by briefly commenting on the advan­
tages and disadvantages of the neural-network-based 
system as compared with a quantitative-rule-based ap­
proach. The primary advantage of a neural network is 
that it minimizes the work of the space scientist. Either 
approach would have required the development of a 
comprehensive classification scheme for identifying each 
type of precipitation (to know it when you see it). For 
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a quantitative-rule-based system, a great deal of further 
work would have been necessary to develop and justify 
a set of explicit rules. For the neural network approach, 
once the classification effort was completed, the proj­
ect became a fairly straightforward exercise in applied 
computer science. The neural network approach un­
doubtedly minimized the work of the space scientist. An 
unresolved question, possibly one of philosophy, is 
whether an explicit and quantitative algorithm for iden­
tifying each region represents a deeper level of under­
standing, as well as more work. 
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