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NEURAL NETWORKS FOR 
AUTOMATIC TARGET RECOGNITION 

Developments in neural network technology have provided several tools that can be used to solve the 
problem of automatic target recognition. Those tools include collective computation for implementing 
a variety of computational vision techniques, learning and adaptation for pattern recognition, knowl­
edge integration for expert-system capabilities, and hardware beyond the supercomputer level. This arti­
cle summarizes some of APL'S contributions and continuing efforts. 

INTRODUCTION 

Automatic target recognition (ATR) is the process of 
recognizing high-value targets in noisy environments and 
discriminating them from low-value objects and false 
alarms. The problem is challenging and has significant 
potential applications for the national defense. An ex­
ample of a possible application is an infrared or radar 
system for recognizing tanks, ships, or airplanes. Al­
though significant progress has been made toward ATR, 

substantial developments are still needed to make it oper­
ationally usable. 

Neural networks represent a developing technology 
that can provide solutions to a wide variety of scientific 
and engineering problems involving extraction of use­
ful information from complex and uncertain data. 1 

The approach uses the massively parallel distributed­
processing capabilities of computational hardware that 
can now be realized. Neural networks are models and 
algorithms that can be simulated on conventional com­
puters but are best implemented on special-purpose com­
putational hardware known as neurocomputers. 

Neural networks and neurocomputers are radical 
departures from traditional digital computer algorithms 
and architectures. They are "neuron-inspired," using 
processing elements that mimic some of the properties 
of biological nervous systems. Neural networks do not 
accurately simulate real neurons; instead, they approxi­
mate the useful computational properties exhibited by 
biological nervous systems. The result is that neural net­
works exhibit characteristics not readily available in other 
types of systems. 

Researchers at APL have been applying neural network 
technology to the ATR problem, with both application­
oriented studies and theoretical and hardware develop­
ments. This article presents a brief summary of APL'S 

contributions and continuing efforts. 

ISSUES, NEEDS, AND 
NEURAL NETWORK TOOLS 

One issue with current ATR systems is their high false­
alarm rates, which is influenced by the high variability 
of target signatures and backgrounds that results from 
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effects such as variation in illumination and aspect an­
gles. Other important effects, primarily for ground tar­
gets, include occlusion (one target behind another) and 
obscuration (a target behind an environmental object). 

A framework (Fig. 1) has been developed showing 
how neural network technology can provide several sig­
nificant tools that can be directly applied to the ATR 

problem. 2 Automatic target recognition needs methods 
for representing targets and backgrounds that are suffi­
ciently descriptive yet resistant to variations in signature 
and environment. Neural networks offer powerful col­
lective computation techniques for implementing special­
purpose hardware that can achieve fast optimization for 
several potential computational vision and multisensor 
fusion methods. It must be able to adapt to additional 
targets and environments. The existence of powerful 
learning algorithms is one of the main strengths of the 
neural network approach. Systems for ATR need to con­
struct a compact set of maximally discriminating target 
features. Several techniques inspired by neural networks 
can be used for the selection or development of such a 
feature set. Finally, effective ATR performance can be 
enhanced if a priori knowledge about target signatures 
and backgrounds is used. Although previous techniques 
for integrating diverse forms of knowledge were limit­
ed, neural network technology provides expert-system 
capabilities for automatic integration. 

One technique for achieving robust representations of 
signatures and backgrounds is to estimate geometric 
shapes accurately. The geometric shape of an object is 
invariant with respect to lighting variations and is also 
invariant with respect to aspect angle if the object is ro­
tated to a coordinate system corresponding to the same 
aspect angle. One way of estimating geometric shape 
from image data is to perform stereopsis (estimation of 
depth information from images of the same scene tak­
en at two or more aspect angles). We are examining this 
approach. 

Figure 2 shows a binocular stereo displacement map 
that was produced using model images 3 and the 
Drumheller-Poggio stereo algorithm 4 on the Connec-
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Figure 1. Critical ATR issues. 
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Figure 2. Example of preliminary 
stereo calculations on the Connec­
tion Machine. The original stereo 
pair consisted of images of ship 
models at 75° and 85° aspect an­
gles. The displacement map shown 
is the amount (in pixels) that one 
image is displaced from the other 
at isolated features . If the remain­
ing displacement map can be filled 
in, detailed three-dimensional 
shape data can be calculated. Im­
plementation of algorithms produc­
ing improved displacement maps is 
in progress. 
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tion Machine at the Naval Research Laboratory.5 The 
figure was computed by first taking the digitized images 
of a ship model viewed at two different aspect angles 
(75° and 85°). The depth of an object in the image is 
estimated by matching features from the object, calculat­
ing the relative displacement between them, and then 
computing the depth to the features. The algorithm used 
detected edges as features . The figure shows the displace­
ment in pixels from the edges in one image to the 
matched edges in the other image in false-color coding, 
which explains why the maximum displacements occur 
at the bow and the stem of the ship model. Although 
the features are relatively sparse, techniques exist for fill­
ing in objects where there are no features (i.e., using 
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Markov random fields). We are working on the devel­
opment of such improved techniques. Although this ap­
proach of calculating geometrical shape is computation­
ally intensive, the potential of neurocomputer hardware 
to implement such calculations as neural-network col­
lective computations implies that the neural network ap­
proach could lead to real-time implementations. 

Neural network learning could facilitate two main ad­
vances for ATR: automatic knowledge acquisition and 
continuous system refmement. The use of learning in sys­
tem construction would save the user from spending the 
enormous amount of time necessary to derive rule-based 
databases for targets and environments. System refine­
ment could then be incorporated to make necessary 
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changes that would improve the performance of the rec­
ognition system. These two modifications alone could 
significantly advance the present abilities of ATR systems. 

While at APL, Fernando J. Pineda developed an im­
portant learning algorithm for recursive neural net­
works. 6 Since stereo algorithms can be implemented by 
recursive neural networks, Pineda's algorithm provides 
a means for learning the parameters from examples. The 
algorithm has already been demonstrated for random­
dot stereograms. 7 

Selection of appropriate target features is one of the 
most important tasks for ATR algorithm development. 
It is impractical to match a given input image (or image 
representation) with the image templates of all possible 
targets and their variations. Therefore, it is necessary to 
find a compact set of features that can represent the crit­
ical aspects of a target. The selection of the feature set 
is linked to the classification task because the feature set 
must be complete enough to discriminate targets from 
nontargets. Features that are invariant with respect to 
target and environmental variations (e.g., translation, ro­
tation, scale, context) are of more interest than nonin­
variant features. Neural network technology can simplify 
feature selection in several ways . 

Neural networks can use optimum feature receivers 
to extract weak features from high-clutter environ­
ments. 8 In general, detection devices must set high 
thresholds to achieve a reasonable false-alarm rate; this 
is especially true for environments where the clutter dis­
tributions have long tails, such as those produced by ra­
dar at low elevation angles. The problem with setting 
a high threshold to cut down on false alarms is that small 
and medium-size features can go undetected. A previ­
ously impractical idea for solving this problem was to 
use a large bank of matched filters to cover the feature 
variations. Because neural network hardware is precise­
ly designed to use massively parallel computations, it 
offers new opportunities for such previously impracti­
cal ideas. In particular, a recursive neural network can 
make an optimum post-detection target feature receiver 
possible. Simulations have shown that considerable 
(more than 12 dB) improvement in the signal-to-noise 
ratio can be achieved. 

Previously, it was believed that neural networks could 
implement only limited kinds of feature detectors. Al­
though feedforward neural networks can perform several 
computationally significant operations, some computa­
tional operations cannot be performed by a feedforward 
network with a finite number of layers. An example of 
such an operation is the determination of whether a given 
figure is connected. Such a restriction, however, does 
not apply to recursive or feedback networks. In partic­
ular, a three-layer network with two recursive layers can 
compute the connectedness of a figure. I 

Neural networks can contribute to the generation of 
expert systems for higher vision computations because 
they can automatically integrate a diverse set of features. 
A priori knowledge may suggest that a specific set of 
diverse features (i.e., size, Fourier-polar coefficients, 
presence of hot spots, etc.) is important for the classifi­
cation problem. There is a significant problem of com-
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bining such diverse features into an effective classifier, 
however, especially when there is no obvious metric 
available. Neural-network learning algorithms, combined 
with appropriate training sets, can be an effective way 
to integrate automatically such diverse features into a 
classification system. 9 Analysis of the resulting neural 
network weights can then determine whether a particu­
lar feature has effectively participated in the classifica­
tion task. 10 Otherwise, it can be removed without loss 
of overall performance. 

Neural network models and algorithms are computa­
tionally intensive on general-purpose computers. Because 
of the computational simplicity of the basic processing 
element, however, neural networks can be implemented 
on special-purpose massively parallel hardware that can 
vastly outperform implementations on even the most 
powerful serial computers. Consequently, several groups 
are developing such special-purpose neurocomputer 
hardware for neural network applications. Such neu­
rocomputers have been an essential ingredient for the 
development of practical applications of neural network 
technology. The ATR problem also requires that com­
putational hardware be configurable into a reasonably 
compact volume. Several research efforts on neural net­
work hardware promise to provide both high perfor­
mance and compact design. II For example, a very large 
scale integration (VLSI) chip has been developed to im­
plement the previously described technique for extract­
ing weak features in high clutter environments; wafer­
scale designs are in progress. 12 
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