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INTERNAL WAVES FROM MOVING POINT SOURCES 

We describe a theoretical model for internal waves generated by a moving surface vessel. Our rather 
simple model uses a simple density depth profile (three layers: two mixed, and one with a constant densi­
ty gradient) and represents the ship by two dipoles moving in the upper mixed layer. Nevertheless, it 
seems to agree rather well with actual field data obtained during a joint United States-Norwegian ocean 
radar project in the Sognefjord in July 1988. 

Editor's note: This article, written by two Norwegian scien­
tists involved with the Sognefjord delta-k radar program, is 
an effort to describe theoretically the internal wave wake left 
by a ship traveling in the highly stratified waters of a summer­
time fjord. The initial portion of their calculation is similar 
to an earlier model published by Keller and Munk but was de­
veloped independently by Dysthe and Trulsen, who only later 
became aware of the Keller-Munk results. While highly mathe­
matical, the article's relevance to both the Sognefjord and the 
Loch Linnhe experiments discussed in this issue of the Tech­
nical Digest has led us to include it. 

The model deals with the formation of an internal wake by 
a source-sink dipole, according to potential flow theory. The 
authors have advanced the calculation to a fair state of real­
ism for the asymptotic portion of the wake and have comput­
ed subsurface displacements and currents for that region. Using 
data from the experiment, they have evaluated parameters in 
the model and have obtained reasonable agreement with the 
observations. This agreement has led to the utilization of the 
theory as a means of extrapolating the field measurements away 
from the points of observation to the entire volume occupied 
by the wake, and hence to a way to simulate the surface sig­
nature of the internal wake. 

J. R. Apel 

INTRODUCTION 
A simple numerical model for internal waves gener­

ated by a moving surface vessel was· developed in con­
nection with a joint United States-Norwegian ocean 
radar experiment that took place in Norway in the Sog­
nefjord during July 1988. During the experiment, a sur­
face vessel (the trawler SaebjrjJrn) was moving with 
constant velocity for about 3 km. The draft of the ship 
was such that the ship penetrated the pycnocline, a lay­
er within which there is a density gradient between lighter 
surface water and denser deep water. (In the Sognefjord, 
the surface water is fresh water from the surrounding 
mountains, and the deep water is salty water from the 
sea.) Consequently, the ship produced internal waves as 
it moved along. In situ measurements were taken by in­
struments deployed from a second ship at rest (H. U. 
Sverdrup). 

The model provides information about the surface 
current, induced by the internal waves, over a large area. 
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The in situ point measurements are used as a means of 
calibrating and checking the model predictions. The 
model uses a well-known analytical model for the 
equilibrium density profile (see, e.g., Ref. 1) and a sim­
ple source function, and can be run on a personal com­
puter. Even so, it seems to agree with the in situ measure­
ments quite well. 

In this article, we derive the dispersion relation and 
discuss the asymptotic approximation for long waves. 
Next, we discuss the asymptotic wave field from a mov­
ing ship, with special emphasis on the asymptotic wave 
pattern. We rederive, by a slightly different approach, 
some of the asymptotic results of Keller and Munk l 

and extend their results to the outer edge of the wave 
pattern. Then we calculate the wave field from moving 
point sources, using a technique similar to that of 
Hudimac. 2 Finally, we comment briefly on the actual 
numerical model and compare some of its predictions 
with data from the Sognefjord experiment. 

INTERNAL WAVE DISPERSION 
RELATION 

We chose the same ocean model as Keller and 
Munk l with a profile of density p and a Brunt-Vaisala 
frequency N, shown in Figure 1, where 

fl.p 
N 2 = g­

lp 
(1) 

Here N is the natural angular frequency of vertical os­
cillations of a fluid parcel and is also known as the 
buoyancy frequency, g is acceleration due to gravity, and 
I is the thickness of the pycnocline. 

The linearized equations of motion in the Boussinesq 
approximation can be written in the form (see Phillips 3) 

and 

aw 
+ v·u az o (2) 

o , (3) 
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Figure 1. The depth profile of density, p, and the Brunt­
Vaisala frequency, N, assumed in the present model. 

where the z-axis points vertically upward (with z = 0 
at the free surface), \l is the horizontal part of the gra­
dient operator, and t is time. The velocity field has the 
vertical component wand the horizontal component u. 
We shall assume that the depth of the ocean is greater 
than any horizontal wavelength considered. The bound­
ary conditions are taken to be 

w(O) o and w( -(0) O. (4) 

The first one (the "rigid lid" approximation) excludes 
the surface gravity wave mode. At the interfaces z = 
- d and z = - d - I, the kinematic and dynamic con­
ditions imply continuity in wand awlaz. 

If we look for plane-wave solutions of the form 

w W(z) exp[i(k·r - wt)] , 

where k is a horizontal wave vector, r is the horizontal 
coordinate, and w is the angular frequency of the plane 
wave, we find that the function W(z) is given by 

The dispersion relation (Eq. 7) has an infinite num­
ber of solutions for a given real k, corresponding to 
different internal wave modes that may exist as long as 
the pycnocline region has a finite thickness I. 

In the limit of a vanishing pycnocline thickness, we 
are left with only the lowest mode with a dispersion re­
lation 

~p k 
g-

p coth kd + 1 ' 
(8) 

where d is the thickness of the upper layer. In the long­
wave limit (kd small), Equation 8 reduces to 

For the general case, no simple solution can be found 
from Equation 7. It is not difficult, however, to obtain 
the first few terms in the power series of w(k) for small 
k. As shown in Ref. 1, that particular bit of informa­
tion can be used to obtain far-field approximations of 
the wave field from a ship. 

When k - 0, the phase velocity wi k of a particular 
mode tends to a finite limit that is the maximum veloci­
ty of that mode. This means that K - 00, while Kk tends 
to a finite limit as k - o. We write 

If we find the first two terms of the expansion of the 
left-hand side of Equation 7, 

tan Klk 

-d ~ z ~ 0 

{ 

U sinh kz 
W = - U sinh kd cos Kk(z + d) + (U/K) cosh kd sin Kk(z + d) 

- U (sinh kd cos Kkl + (11K) cosh kd sin Kkl)ek(z+d+/) 
-I - d ~ z ~ (- d) (5) 

z ~ (-I - d) 

The horizontal velocity is found by means of Equation 
2, and it is readily seen that iU represents the complex 
amplitude of the surface current, that is, the surface cur­
rent has amplitude U but is shifted in phase from w by 
7r/2. 

In Equation 5, k = I k I, K is given by 

- 1 , 

and wand k satisfy the dispersion relation 
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K(tanh kd + 1) 
tan Kkl = 

K2tanh kd - 1 

(6) 

(7) 

and on the right-hand side, 

K(tanh kd + 1) 

K
2tanh kd - 1 

we find that ao is a solution of the equation 

tan ao (10) 
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while a} is given by 

(11) 

There is one solution of Equation 10 for each internal 
wave mode, the lowest mode corresponding to the 

Internal Waves from Mo ving Point Sources 

4.--------.------~---------.------~ 

3 

smallest solution. We further have (? 2 

(12) 

dw ( a} ) 
C g - - = Co 1 - 2 - k + (9 (k2 

) 
dk ao 

where C is the phase speed, Co = Nfl ao is the maxi­
mum velocity of the given mode, and cg is the group 
speed. 

The variation of ao with fI d for the two lowest 
modes is shown in Figure 2. In Figure 3, a numerical 
solution for the first few modes is shown for the 
parameters fl.p / p = 0.015, d = 4 m, I = 2 m. 

ASYMPTOTIC W A VB FIELD 
FROM A MOVING SHIP 

The dispersion relation (Eq. 7) for the internal wave 
modes was given in the previous section. Let us denote 
it symbolically as 

D(w,k) = 0 . (13) 

For waves created by a ship moving with a constant 
velocity v, the waves have frequencies V· k in the rest 
frame of the water. Therefore, k == I k I is a function 
of the angle 0 between v and k determined by 

D(kv cos O,k) o. (14) 

This equation has an infinite number of solutions cor­
responding to the different internal wave modes. Let k 
= K(cos 0) be one such solution. The wave field cor­
responding to this particular mode can, in principle, be 
constructed as a superposition of plane waves. 

In the following, we use the reference frame of the 
ship (see Fig. 4), where the wave frequencies are zero. 
Here, the wave field / can be written as an integral 

J
7r /2 

/(r,¢) = F(O)e- iKrcos(¢+O) dO, 
00 

(15) 

where F(O) depends on how we model the ship as a wave 
source (see the next section), and rand ¢ are polar coor-
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Figure 2. The variation of ao as a function of lid for the 
fi rst two modes. 
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Figure 3. Dispersion diagram for the first few modes, for 
the parameters !:lplp = 0.015, d = 4 m, and I = 2 m. 

v 
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Figure 4. Configuration diagram. The ship, located at S, is 
moving with velocity v along the - x·axis. The radiated waves 
propagate in the direction denoted by the wave vector k. 

dinates. The angle 00 is a critical angle corresponding 
to the maximum wave velocity Co of the given mode, 
through the equation 

cos 00 Co/V. (16) 
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Here and in the following we assume the ship to be mov­
ing with supercritical velocity (v > co). 

Asymptotically, for Kr > > 1, the main contribution 
to the integral (Eq. 15) comes from the points where the 
phase is stationary with respect to (J, that is, when 

a ax 
a(J [K cos(cf> + (J)] - a(J 

This can be shown to occur when 

tan cf> 
Cg sin (J 

v - cg cos (J 

o. (17) 

(18) 

where cg = dwl dk is the group speed in the rest frame 
of the water. Physically, Equation 17 can, in the refer­
ence frame of the ship, be interpreted as the condition 
that the wave energy at a given point P was radiated 
by the ship (i .e., along the line SP; see Fig. 4). 

The asymptotic wave field of the mode under con­
sideration is then 

I(r,cf» == A «(J)r- Y2 e - i [r x(6) - 7r / 4) , (19) 

where A«(J) == F«(J)[2'71/(a 2x l a(J2)] \12 is a slowly varying 
amplitude, and (J is to be considered a function of cf> 
through Equation 17. 

The phase function t/; of the asymptotic wave field, 

t/; ( r, cf» = r X [ (J ( cf> )] , 

can now be used to find the wave pattern. We simply 
have to map equipotentials of t/;, for example, t/; = 271", 
471", .... In Cartesian coordinates, the equations 

x= 

and 

Y = 

t/; cos cf> 

x«(J) 

t/; sin cf> 

x «(J) 
(20) 

give a parametric representation, where cf> or (J can be 
chosen as a parameter (they are related through Eq. 18). 

In the far field, excluding a sector around the x-axis, 
only long waves with velocities near Co are found. 
Asymptotic expressions can be derived from Equation 
20 using the expansion of w(k) in terms of k (for small 
k) derived in the previous section and the relation in 
Equation 17 . We find that 

X == 
cos 2 cf>o sin 2 (cf> - cf>o) 

sin cf>o cos cf> 
(21) 
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where cf>o = 71"/2 - (Jo is the maximum value of cf>. 
From Equation 21 we obtain 

[t/;x(al lao) sin cf>o] \12 
Y == x tan cf>o - 2 2 ,(22) 

cos cf>o 

which gives the asymptotic curves of constant phase (by 
choosing t/; = 271"n, n = 1, 2, . . . ). This relationship 
corresponds to that of Keller and Munk.l 

Around the edges of the wave pattern where t/; - 0, 
Equation 19 (and thus Eq. 22) is invalid as the point of 
stationary phase moves toward the lower end point of 
integration of Equation 15. For an asymptotic evalua­
tion of the integral in this case, only a small domain next 
to (Jo matters, and I(r,cf» can be approximated by the 
integral 

I(r,cf» == F«(Jo ) r ooo exp i[r aao

1 

cos cf>o J sin cf>o 

x [1] sin (cf> - cf>o ) + 1] 2 cos cf> J] d1] , 
cos cf>o (23) 

where F has been moved outside the integral (neglect­
ing its variation over the small region of 1] = (J - (Jo 
giving the main contribution to the integral), and the up­
per limit has been taken to be 00. 

Equation 23 can be rewritten as 

[ 

1 + i 1 (2r lx l/7r) \12 sgn(c:t> - c:t>o) . J 
x - - - el7rx2 !2 dx ,(24) 

2 0 

whereA«(J) is the same as in Equation 19, and X is given 
by Equation 21. Using tabulated functions, we can write 

I(r,cf» == A «(Jo)(2r) - Y2 [g(s) + if(s)] , (25) 

where 

( 
r ao cos 2 cf>o ) \12 • 

S = - - sm (cf> - cf>o) , 
271" al sin cf>o cos cf> 

and the functions g and f are given in terms of the Fres­
nel integrals,4 with the asymptotic behavior 

g(s) + if(s) == 
{ 

V2 exp - i ( ~ s' - ~) 
i 1 
-+--
7I"S 7I"2S3 

s«o 

s»o 
(26) 
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It is then readily found that expressions 19 and 25 0.6 r-----.-------r------,- --r--- --, 

agree for large negative s except for the argument of 
A(O). An expression uniformly valid in the outer part 
of the wave pattern (I ¢ - ¢ o II ¢ o small) is then 

I(r,¢) :=:: A (0)(2r) - Y2 [g(s) + if(s)] 

with 

( 
r ao cos 2 ¢o ) Y2 . 

S = - - SIll (¢ - ¢ o) (27) 
27r a l sin ¢ o cos ¢ 

and 0 :=:: 00 - Y2 (cos ¢o/cos ¢) sin (¢ - ¢ o) (as de­
rived from Eq. 18). 

The asymptotic phase function t/; can be written, us­
ing Equation 21 or 22, 

ao cos 2 ¢ o (x sin ¢ o - y cos ¢ o) 2 

4al sin ¢ o x 
(28) 

An instrument at rest with respect to the water will 
register the variation of some field quantity like horizon­
tal velocity. If positioned at a distance y from the ship 
trajectory (with ky > > 1), the asymptotic part of the 
phase variation should be 

t/; = 
ao Co2 t2 cos 2 ¢ o 

4al cot + y cos ¢ o 
t > 0 , 

(29) 

where t = 0 corresponds to the moment when the in­
strument passes through the critical angle of the wave 
pattern. The instantaneous frequency w == at/;Iat as seen 
by the instrument is 

(30) 

where 

lid ] 
+ (l/d) 2 

and 

T = (y /v) cot ¢o . 

These asymptotic results are useful in the far field, well 
away from the axis (¢o > ¢ > ¢0 / 3, say). For the 
choice of parameters illustrated in Figure 5, the first wave 
front is found at approximately ¢ =:: ¢o 12 even 1 km 
from the source. This means that a result like Equation 
27 may only be accurate after a few kilometers. 
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Figure 5. The critical angle and constant phase lines (if; = 
27f') for the first two modes; D.plp = 0.015, d = 3 m, I = 8 m, 
and v = 2.5 m/s. 

W A YES FROM MOVING POINT SOURCES 
In the following, we consider the response from a 

point source moving with a velocity v at a fixed depth 
h (~d) in the upper mixed layer. In that layer the ve­
locity field is irrotational, given by the gradient of a 
potential c1>. If we are in the rest frame of the source, 
we take cI> to be 

m m 
+ (31) 

where r 1 = x 2 + y2 + (z ± h)2 , m is the source 
strength, and <1>0 satisfies the Laplace equation every­
where in the upper layer. Note that the first terms give 
a vanishing normal derivative at the surface (z = 0). 

The horizontal Fourier transform of <I> is 

m 
(e -klz- hl + e - klz+h l ) + cPo (32) 

k 

where r == (x,y, 0) and cPo satisfies the equation 
a2cPolaz2 

- k 2cPO = O. In the lower layers, the verti­
cal component of velocity w satisfies Equation 3. 

Taking the Fourier transform of Equation 3 and as­
suming steady state (ala t - - v · v), we obtain 

o , (33) 

where K2 = [N2/(v· k) 2] - 1. 
The vertical velocity in the three layers (denoted I, II, 

and III from the top) is 
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WI = m[e -klz-hl e-klz+h l sgn(z + h)] 

+ A sinh kz (34) 

WII = B cos Kk(z + d) + C sin Kk(z + d) 

WIll = E ek(z+d+/) . 

Note that w(O) = w( - (0) = O. At the interfaces (I, II) 
and (II, III), the kinematic and dynamic boundary con­
ditions require that wand awlaz are continuous. This 
gives the relations 

B = 2me - kd cosh kh - A sinh kd 

KC = 2me- kd cosh kh + A cosh kd 
(35) 

E = B cos Kkl - C sin Kkl 

E = K(B sin Kkl + C cos Kkl) 

where rand k are the unit vectors along rand k, respec­
tively. The first term is the horizontal surface current 
from the two first terms in Equation 31, and the second 
term contains the current induced by the radiated inter­
nal waves. 

Taking the radiation condition (or causality condition) 
into account (see Ref. 5), the integral in Equation 38 is 
to be interpreted as follows. The substitution v· k - v· k 
- iE (E > 0) makes the integral well defined, and one 
interprets Equation 38 as the limit when E - O. This rules 
out waves upstream of the source, when v > co. 

Using polar coordinates k,O, and keeping only the con­
tribution from the poles, the second term of Equation 
38 becomes 

I
7r / 2 

( -cos 0, sin 0, O)FI (O)e- iKr cos(c/l+O) dO , (39) 
00 

where 

- 2mK2 K2 cosh Kh 

K2Kd - Kl - 1 + (K2 + 1) sinh Kd(eKd + Kd sinh Kd) , 

Eliminating B, C, and E from Equation 35, we get 

A 
2mN2 

------:2 e- kd tan Klk cosh kh , 
D(v·k) 

(36) 

where D == K(cosh kd + sinh kd) + tan (Klk)(cosh kd 
- K2 sinh kd). The dispersion relation (Eq. 7) (with w 
= k· v) is equivalent to the equation D = O. The field 
quantities can now be found by inverse Fourier trans­
form. Concentrating on the induced surface current U, 
we have from the equation of motion that its Fourier 
transform fJ is parallel to k. The equation of continuity 
then gives 

- 2 aw I U = i(k/k ) -
az z=o (37) 

2i(k/k)me- kh + 2im(k/k) 

N 2 

X 2 e- kd tan Klk cosh kh 
D(v·k) 

The induced surface current then becomes 

2mr 
U(r) 

. N 2 I 100 

- kd+ik·r 1m Ae + -- k ------: 
7r - 00 D(v·k) 2 

(38) 

x tan Klk cosh kh dk , 
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and K is the solution of the dispersion relation (Eq. 14). 
Actually, there is one integral like Equation 39 for each 
mode of internal waves (or each solution of the disper­
sion relation, D = 0). 

The corresponding expression for the velocity field at 
arbitrary depth is 

(u, w) 

f7rn [ i i ] J 00 ~ W' (z) cos 0, K W' (z) sin 0, W(z) 

X F I (O)e- iKr cOS(c/l+O) dO , (40) 

where W(z) is given by Equation 5 with iV = 1. 
Weare interested in internal waves generated by a sur­

face vessel. The ship is represented in a crude manner 
by a source and a sink separated by a distance 2L, both 
moving along the line of separation with velocity v. With 
source strengths m and - m, and with the origin mid­
way between the source and the sink, the surface cur­
rent becomes 

U(r + xL) - U(r - xL) , (41) 

where U(r) is given by Equation 38, and x is the unit 
vector along the x-axis. 

The wave-induced part of the surface current (Eq. 41) 
is similar to the integrciI in Equation 39, with a new fac-
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tor 2i sin(kxL) in the integrand. Thus, the factor FI (0) 
in the right-hand side of Equation 40 is replaced by the 
expression 

(42) 

To calculate how the surface gravity waves are in­
fluenced by the current induced by the internal waves, 
it is important to know the divergence of the surface cur­
rent, given by 

1
7r: !2 

V . U = - KF2 (O)e - iKr cos(I/> + 8) dO 
80 

(43) 

NUMERICAL SIMULATIONS 
The asymptotic results derived previously allow direct 

physical insight into general properties of the internal 
wave field generated by the moving ship. For detailed 
studies of the field as a function of model parameters, 
however, a complete numerical simulation code is prefer­
able. Such a code will take as its starting point the ex­
pression for the velocity field for a given internal wave 
mode generated by the moving ship modeled as a di­
pole (Eq. 42) or, better, as a sum of suitably spaced 
dipoles. 

The numerical task involves the solution of the dis­
persion relation (Eq. 14) for the given wave mode and 
angle of propagation O. Most of all, however, the task 
involves the evaluation of phase integrals of the form 

where F(O) is a slowly varying function but where the 
real function G(O) diverges as 0 approaches the upper 
limit of the integration interval-generally after flrst go­
ing through an extremum. The properties of this extre­
mum have already been used for the asymptotic evalua­
tion of the integral. 

It is well known that for oscillating integrands, clas­
sical integration schemes like the trapezoidal rule or 
Romberg's method become unsuitable because of sig­
nificantly reduced convergence rates. We have therefore 
developed an integration method based on integration 
interval division and the repeated use of Aitken's con­
vergence acceleration scheme. 6 

The integration interval is divided into part intervals 
(Oi,Oi +l) such that IG(Oi+d - G(Oi) I = 7r. Successive-
I . d .. 1(0) 1(0) 1(0) f th Y Improve approXimatIons i,l, i,2, i,3' ... 0 e 
contribution Ii to the phase integral from a given part 
interval i are derived using the trapezoidal rule and in­
tegration point doubling. This series of approximations 
next forms the basis for the repeated application of the 
Aitken convergence acceleration scheme, 

I!~+ I)= I!~)_ (/!~) - l!k»2/(/!~) _ 2/!k) + I!~» 
I,j I, j I,j+ I I, j l,j+2 I,j+ I I, j ' 
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to determine Ii . The phase integral is now 

I = lim Sn , 
n-oo 

where 

We take So, SI, S2, ... as a new sequence of approx­
imations to which the repeated Aitken acceleration 
scheme outlined above is again applied. The calculation 
stops at a certain part interval n when a suitable con­
vergence criterion is satisfied. 

The numerical simulation method for evaluating the 
phase integral as outlined above can be made accurate 
and fast. The accuracy can be judged by evaluating tabu­
lated integrals like the Fresnel and Airy integrals. 

We have chosen to simulate the surface vessel by two 
dipoles, as 

<P m[<p I (x + L,y,z,h) - <PI (x - L,y,z,h) 

+ c<P I (x + (b + a)L,y,z,h) 

- c<P I (x + (b a)L,y,z,h)] (44) 

where <PI (x,y,z,h) is the velocity potential induced by 
a source of strength 1, moving at a constant speed v at 
a depth h « d). The first dipole has strength m and 
separation 2L, and the second has strength em and sepa­
ration 2aL. Both dipoles are moving with speed v in the 
x-direction at a depth h, but the center of the second 
dipole has been displaced by bh relative to the first. 

A more complete model, the so-called thin-ship model, 
has been used by Hudimac2 for a two-layer model of 
the ocean. Here, the velocity potential is 

v 

27r 

at(a,{3) 
--- <PI (x - a,y,z,(3) dad{3 , 

aa 

(45) 

where y = t{x,z) is the shape of the hull, and So is its 
centerplane section. If we compare Equations 44 and 45, 
a reasonable estimate of the dipole strength should be 

vAo 
(46) m 

where Ao is the area of the midship transverse section 
(below the water line). In the following, we have cho­
sen a = 0.75, b = 0.1, e = 0.5, L = 25 m, and h 
2.4 m. 
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COMPARISON WITH EXPERIMENT 

We compared our model results with in situ measure­
ments from the Sognefjord internal wave experiment per­
formed near Kaupanger, Norway, during July 1988. 

In the experiment, the trawler Saebj¢rn (51 m long, 
9 m wide, 6 m draft) was run on a constant course at 
a speed of 2 ml s over nearly 3 km. Measuring instru­
ments (among them a conductivity, temperature, and 
densit.y (CfD) instrument and two UCM-40 current meters) 
were deployed from a second ship, H. U. Sverdrup, at 
rest at a distance of 200 m from the course of Saebjf/Jrn 
(see Fig. 6). The measurements discussed below were 
from run 3, starting at 1352 local time (GMT + 2 h) 
on 7 July. 

In Figure 7, the depth profile of the relative decrease 
in density [1 - p(z)1 p( - 20)] is calculated from the CfD 

records. The three profiles shown were recorded at the 
times shown in the figure. Even those taken only 3 min 
apart show considerable variation. Variations with a 
characteristic time in the range 8 to 10 min are seen in 
the current data for the same period. Unfortunately, this 
is the duration of the interesting part of the run. We 
do not have a profIle closer in time to run 3 (which start­
ed at 1352 local time) than the one at 1029. As one way 
to choose between the extremes shown in Figure 7 we 
have used the frequency spectrum of the current records 

v 
~~\~~=-~~~~-T 

200 m 

Saebjern 
H. U. Sverdrup 

Figure 6. Experiment geometry for the H. U. Sverdrup and 
the Saebj¢rn. 
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Figure 7. The depth profile of the relative density decrement 
[1 - p(z)/p( - 20)] calculated from the CTD data on 7 July at 
1019, 1022, and 1029 local time. 
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from run 3, shown in Figure 8. We interpret the fre­
quency where a "signal" rises clear of the noise level 
as the Brunt-Vaisala frequency, i N = NI27r, which is 
estimated to be between 0.04 and 0.05 Hz. The cor­
responding frequency calculated by fitting a straight line 
through the pycnocline region gives approximately 0.032 
Hz for the 1029 local time profIle and 0.043 Hz for the 
1022 local time profile. This is clearly in favor of the 
upper profile (1022) in Figure 8. 

Figure 9 shows the time series from the CTD instru­
ment, and Figure 10 shows the corresponding time se­
ries for the vertical velocity w at depths of 4 and 6 m, 
as produced by the current meters. 

For comparison with the theoretical model, we use the 
arrival time to (after the time of closest approach be­
tween Saebj¢rn and Sverdrup) of the ship-induced in­
ternal wave train. As a measure of to, we take the first 
appreciable dip in the salinity time series (correspond­
ing to a maximum of the downward displacement), giv­
ing about to = 340 s. We also use the period T of the 
first discernible wave in the salinity time series, giving 
T in the range 65 to 75 s. 

We checked to by comparing it with the arrival of 
the first dip in the lower current meter [w( - 6)] at ap­
proximately 310 s. Since the dip should arrive one-fourth 
of a period before to, it seems to indicate that the esti­
mate of to may be somewhat large. The uncertainty in 
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Figure 8. The spectral density of a vertical velocity time se­
ries, starting at 1352 local time, 7 July. A. 4-m depth . B. 6-m 
depth. 
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Figure 9. CTO time series, starting at 1352 local time, 7 July. 
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Figure 10. Vertical velocity time series from the same period 
as Figure 9. A. 4-m depth. B. 6-m depth. 

each reading (considering that there is a noisy back­
ground of comparable amplitude) is between 5 and 10 s. 

Figure 11 shows the model-generated signal profiles 
of the velocity components of the first mode along a 
track parallel to the ship trajectory at a distance of 200 
m (i.e., the shortest distance between Saebjf/Jrn and 
Sverdrup) taken at depths of 4 m (Fig. lla) and 6 m 
(Fig. lIb). From such profiles we have generated Table 
1, which lists the values that the model produced for 
IN' to, T, and the direction OJ of the first wave trough 
(with respect to the ship's direction), for several values 
of the model parameters v, d, /, and Api p. 

The parameters in columns 1 and 2 of the table pro­
duce values that are too large for T and too small for 
IN' These two cases are modeled from the CTD record 
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Figure 11. A model-generated signal profile (lowest mode). 
This section is along a parallel trajectory at y = 200 m. A. 
z = -4 m. B. z = -6 m. Here, ilplp = 0.022, d = 2.5 m, 
I = 3 m, and v = 2 m/s. 

taken at 1029 local time (see Fig. 7). Column 3 gives ac­
ceptable values, while column 4 gives too large to 
values. The rest of the columns show how small varia­
tions in v, d, /, and Api p (from the values in column 
3) affect the other parameters. In the following, we use 
the model parameters of column 7. 

Figure 12 shows the depth profile of the vertical ve­
locity for the first two modes for periods of 35 and 
70 s. Figure 13 shows a signal profile in a direction 75° 
to the ship's course. The profile shows the two compo­
nents of surface velocity, U, and - V . U. 

In Figures 11 and 12, we have chosen the source 
strength m such that the amplitudes of the model sig­
nals of w( - 4) and w( - 6) (Fig. 11) are roughly the same 
as in the corresponding measured signals. This is 
achieved by using m = 10, a reasonable value consider­
ing the velocity and dimensions of the ship. (The esti­
mate, Eq. 46 with c = 0.5 and Ao = 50 m2

, gives a 
value of m ::::: 10.) 

Finally, some comments on the higher wave modes 
are pertinent. In the model simulations, we noted that 
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Table 1. Calculated parameters (tN, to, T, 81 ) for given model parameters (v, d, I, 
D.p / p). 

Case 
2 3 4 5 6 7 8 9 10 11 

v (m/s) 2 2 2 2 2 2.2 2 2 2 2 2 
d (m) 2.5 2.5 3 3 3 3 2.5 3 2 3 3 
I (m) 5.5 4 3 2 3 3 3 4 3 2 2 
t1pl p 0.022 0.017 0.022 0.018 0.019 0.022 0.022 0.022 0.022 0.019 0.020 

J; (Hz) 0.031 0.032 0.043 0.047 0.036 0.043 0.043 0.037 0.043 0.048 0.050 
to (s) 352 415 325 390 
T (s) 81 86 78 74 

01 (deg) 24 18 22 18 

A 
0 

-5 

-10 

-15 

-20 

:[ 
~ -25 

8 ~ 

a 0 Q) 

0 

-5 

-10 

-15 

-20 

-25L-----------------~--------------~ 

W(z) 

Figure 12. The depth profile of vertical velocity at two differ­
ent wave periods. A. First mode. B. Second mode. Here, D.plp 
= 0.022, d = 2.5 m, I = 3 m, and v = 2 m/s. 

the second mode had a rather small amplitude compared 
with that of the first mode, perhaps because our source 
is restricted to the upper (mixed) layer. In the field data, 
we looked for evidence of a higher mode part of the 
"ship signal" using also the data from a thermistor 
chain. We were unable to find such evidence. 

CONCLUSION 
We have described a theoretical (numerical) model for 

internal waves generated by a moving surface vessel. It 
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Figure 13. The model-generated signal profile at the sur­
face (z = 0). This section is along a line at 75° to the ship's 
course starting at Xo = 1200 m, Yo = - 600 m. Here, D.plp 
= 0.022, d = 2.5 m, I = 3 m, and v = 2 m/s. 

is simple and can be run on a personal computer be­
cause the model chosen for the vertical density profile 
permits analytic expressions for the dispersion relation 
and the vertical velocity profiles for the different wave 
modes. Our model of the surface vessel is also simple 
(two dipoles). 

When we compared the results from the model with 
field data from the Sognefjord experiment, the model 
did surprisingly well, as far as could be checked. 

The results are rather sensitive (see Table 1) to the 
slope of the density profile. Since the profile may vary 
over time (even over the time scale of a single run), it 
would be desirable in future field experiments to mea­
sure CTD profiles at frequent intervals both before and 
after a run. 

As to the strength of our wave source m, we have 
made a theoretical rough estimate (Eq. 46) by compari­
son with the so-called thin-ship model. Using the dimen­
sions of Saebjrprn, we found to our surprise that the 
estimate gave approximately the correct amplitudes of 
the ship wave signal. 

In the simulations, the higher wave modes were less 
efficiently excited by our moving source, so we concen-
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trated on the lowest mode. For the field data, we were 
not able to identify positively higher mode components 
in the ship wave signal. 
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