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NEURAL-NETWORK TECHNOLOGY AND ITS 
APPLICATIONS 

Neural-network technology can provide solutions to a wide variety of science and engineering prob­
lems that involve extracting useful information from complex or uncertain data. Although neural net­
works have long been a topic of academic research, the recent developments of effective learning algorithms 
and special-purpose computational hardware and the demonstrations of their applications have suggested 
that neural networks can provide useful tools for solving practical problems. This paper surveys some 
of the highlights of developments in neural-network technology in the areas of algorithms, hardware, 
and applications. Some of the ongoing work on neural networks at APL is also described. 

INTRODUCTION 

There are a number of problems in science and en­
gineering that involve the extraction of useful informa­
tion from complex or uncertain data. For many of these 
problems, the traditional approaches using techniques 
of signal processing, pattern recognition, control-systems 
theory, and artificial intelligence have been inadequate. 
Pattern recognition of fixed patterns in stationary back­
grounds is a straightforward task for which numerous 
effective techniques have been developed. If the patterns 
or the backgrounds are variable in either a limited or 
known manner, more complex techniques-such as those 
using methods based on artificial intelligence-can be 
effective. But if the patterns or the backgrounds vary 
in an unlimited or unknown manner, the traditional ap­
proaches have not been able to furnish solutions. 

The success rate of solving pattern-recognition prob­
lems using traditional pattern-recognition approaches has 
mirrored the success rate of artificial intelligence because 
much of the current pattern-recognition technology heav­
ily uses the methods of artificial intelligence. Experience 
has shown that artificial intelligence is good at solving 
problems that can be strictly defined by rules. For many 
applications, however, such rules are difficult or impos­
sible to develop. In general, artificial intelligence has 
problems with choice because of the frequent need to 
conduct a time-consuming search through large data­
bases consisting of predetermined rules. Unfortunately, 
that approach has not been successful if the rules could 
not be firmly established, because of either complexity 
or uncertainty. A new approach is required-one that 
offers the possibility that it will do things better than 
artificial intelligence when there is high complexity or 
high uncertainty with regard to the definition of the rule 
set. 

Artificial intelligence has been succe3sfully applied to 
problems such as proving mathematical theorems. With 
the application of a large amount of effort, it has led 
to effective systems for chemical analysis and playing 
chess. But it has difficulty with seemingly simple prob­
lems, which in human experience employ common 
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sense-such as that of understanding a simple world 
made from children's playing blocks. The difficulty 
stems from the very large number of rules required for 
employing common sense and the inability of current 
artificial-intelligence technology to deal with problems 
having a large number of rules. Artificial intelligence has 
yet to provide an accurate system for continuous speech 
recognition and has made little progress on image in­
terpretation or sonar recognition. 

Expert systems are merely those artificial-intelligence 
systems for which an appropriate known or knowable 
rule base can be developed by an analyst. While expert 
systems have been effective in applications where a real 
expert could contribute to the definition of a real effec­
tive rule set, expert systems have been ineffective when 
there was no real expertise or when there was an inabil­
ity to define an appropriate rule set, such as in attempts 
to create expert systems for stock-market trading. Ex­
pert systems based on artificial-intelligence techniques 
exhibit brittle rather than robust behavior; that is, there 
is great sensitivity to the specific assumptions and en­
vironments. 

Likewise, numerous other science and engineering 
problems that depend on effective pattern recognition 
have had limited or little success when the pattern­
recognition rules became either too complex or too un­
certain. Similar remarks can be applied to related kinds 
of problems for signal-processing and control systems. 
Such problems have included: pattern classification; real­
time artificial intelligence; data fusion; image-data resto­
ration, compression, and recognition; scene analysis; 
control systems under anomalous sensor/servo behavior; 
knowledge extraction from large databases; and autono­
mous vehicles. The solutions to those and similar prob­
lems require the application of a new technology with 
the potential for improved performance when there is 
uncertainty or high complexity with regard to rules. 

Neural networks are a developing technology that uses 
the massively parallel-distributed processing potentials 
of computational hardware that can only now be real­
ized. l

-6 Neural-network technology is aimed at develop-
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ing information processing that is analogous to biological 
nervous systems. Neural networks are the models and 
algorithms that can be simulated on conventional com­
puters but are best implemented on special-purpose com­
putational hardware. Known as neurocomputers, they 
exhibit characteristics that are not readily available in 
other types of systems. These characteristics suggest the 
potential for new systems capable of learning, autono­
mously improving their own performance, adapting au­
tomatically to changing environments, and coping with 
serious disruptions. 

Neural networks and neurocomputers represent a rad­
ical departure from digital-computer algorithms and ar­
chitectures. They are "neuron-inspired," using proces­
sing elements that share some of the properties of bio­
logical nervous systems. Neural networks do not attempt 
to simulate accurately real neurons . They are attempts 
to implement approximations of useful computational 
properties exhibited by biological nervous systems. The 
technology underlying the development of neural net­
works draws heavily from: (1) cognitive psychology 
models of human memory, learning, and perception, (2) 
biological models of synaptic organization of neurons, 
and (3) the device physics of special-purpose computa­
tional hardware. 

Although conventional computer technology has 
progressed to an advanced, powerful, and affordable 
state, biological nervous systems can solve problems and 
perform calculations that are well beyond the abilities 
of supercomputers. Unlike conventional computers, neu­
ral networks seek to emulate aspects of biological sys­
tems, and they have shown that they can spontaneously 
learn or can discover new ways to process input data 
and modify the rules they use so as to seek the best so­
lution to a given problem; conventional computers are 
programmed with hard-and-fast rules that must be 
manually reprogrammed if a better solution is needed. 
Neural networks can process inexact, ambiguous, fuzzy 
data that do not exactly match any information stored 
in memory; conventional computers cannot adjust the 
specific definitions and rules that they are programmed 
to use so as to accommodate new, inexact, degraded, 
or contradictory input. Neural networks are very good 
at solving knowledge-processing problems by virtue of 
their ability to do hypothesis testing, to detect statistical 
patterns and regularities, to perform probability estima­
tion, and to adjust dynamically the implicit rules used 
to process information when presented with new input 
data. Neural networks can offer better solutions to some 
information-processing problems currently being ad­
dressed by the expert-systems sector of traditional ar­
tificial intelligence. Although some concern has been 
expressed as to whether neural-network solutions could 
be validated only empirically, researchers are develop­
ing tools so that both specific network elements as well 
as networks as a whole can be validated. (See the boxed 
insert for some abilities that have been demonstrated in 
simple neural-network systems). 

In the remainder of this paper, some of the highlights 
of neural-network technology are surveyed. Unfortunate-
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SOME ABILITIES DEMONSTRATED IN SIMPLE 
NEURAL-NETWORK SYSTEMS 

Real-time performance in pattern recognition 
The ability to recognize patterns with computational 
speeds at rates at least as fast as the rates at which new 
patterns can be entered into the system 

Control in multiple-constraint environments 
The ability to control systems in environments with a mul­
tiplicity of complex nonlinear constraints 

Associative recall on cue 
The ability to retrieve original inputs from fragments of 
the original 

Robust associative recall 
The ability to recognize distorted patterns 

Intelligent association 
The ability to "remember" related items even when the 
relationship might not be obvious or carefully pre­
determined 

Real-time learning 
The ability to learn (in real time) solutions to new prob­
lems, from positive demonstrations of solutions to simi­
lar problems, with the ability to adapt to changing 
environments 

Graceful degradation 
The ability to recall memories even if some individual 
processors (units) fail-stored information is distributed 
among many processors and their interconnections, so 
that performance degrades gracefully rather than catas­
trophically in the event of unit failure 

ly, because of the very large number of publications con­
cerning neural networks, no single paper could even hope 
to survey the entire field. The application of neural net­
works to a broad area of problems is a relatively recent 
development, and this paper represents an attempt to 
survey some of those applications and related models, 
algorithms, and special-purpose computational hard­
ware. For surveys and reviews of other aspects of neu­
ral networks, see Refs . 1 to 6. 

NEURAL-NETWORK MODELS 
AND ALGORITHMS 

The basic unit of a neural network is the processing 
element that performs the operation 

(1) 

where Xj are the input values; Yi are the output values; 
~j are the interconnection weights; Ti are the thresh­
old values; and f is the response function that equals 1 
for large positive arguments, 0 for large negative argu­
ments, and varies monotonically between 0 and 1 for in­
termediate values. The processing element given by Eq. 1 
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is the starting point for most neural-network models, al­
gorithms, hardware, and applications. When the re­
sponse function f in Eq. 1 is a step function, the 
processing element is referred to as a threshold-logic unit. 
A neural network consists of a network of processing 
elements in which the units may connect onto either 
themselves or additional units. Additional terms, such 
as dissipation terms, may also be added to give the net­
work dynamic behavior. The importance of dynamic be­
havior is described later in this paper. The motivation 
for creating such networks of units is that when a suffi­
ciently large number of units (with an appropriate selec­
tion of weights) are connected to form a network, 
significant computations can result, The selection of the 
values of the weights Wi) is one of the most important 
aspects of neural-network technology because it deter­
mines the specific computation that the network per­
forms, such as pattern recognition. The specific values 
of the weights are determined by algorithms referred to 
as learning algorithms. 

The Hopfield Model and Its Extensions 
Much of the current interest in neural networks was 

stimulated by the work of Hopfield and his collabora­
tors. 1,7- 15 In 1982, Hopfield introduced a model in 
which the processing element was a threshold logic unit, 
the weights were selected as the sum of the outer prod­
ucts of desired pattern values as suggested by Hebb, 16 
all the units were connected to each other, and the units 
were updated in a random, asynchronous, and recur­
sive manner. 7 The motivation for this model was to 
show that a network of simple, nonlinear, recursive units 
could achieve significant computational capabilities. Be­
cause of the symmetry of the weight matrix, Hopfield 
showed that this model could be interpreted in terms of 
an energy function such that stable states of the model 
corresponded to minima of the energy function. 

Figure 1 shows how the Hopfield model acts as a 
content-addressable memory, with the desired memories 
representing minima of the energy function. The com­
putational energy of the Hopfield model can be pictured 
as a landscape of hills and valley. The connection pat­
tern and other characteristics of the model determine its 
contours. The model computes by following a path that 
decreases the computational energy until the path reaches 
the bottom of a valley, just as water moves downhill to 
minimize its gravitational potential energy. If the mod­
el starts out with approximate or incomplete informa­
tion, it follows a path downhill to the nearest valley that 
contains the complete information. 

Although the Hopfield-82 model was an important 
demonstration of the significant computational capabil­
ities that a neural network of simple units could achieve, 
it had a number of limitations that motivated addition­
al efforts. One of its main limitations was that the stor­
age capacity of the network (in terms of the number of 
patterns that could be stored with little or no error) was 
about 140/0 of the total number of units. Several studies 
have been conducted to quantify precisely that storage 
limitation. 17-21 Another limitation was the existence of 
the so-called "spurious" states-stable final states that 
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were not members of the set of originally selected pat­
terns. Because of group theoretical properties of the 
Hopfield-82 model, those spurious states can be identi­
fied precisely. 22 

In 1984, Hopfield introduced a significant extension 9 

of the Hopfield-82 model to overcome the computation­
ally intensive procedure of asynchronous updating that 
was necessary in the original model for the system to 
converge to global rather than local minima. 23 Unlike 
the earlier model, the Hopfield-84 model was syn­
chronous, continuous, and deterministic with a sigmoi­
dal response function flu). Hopfield showed that there 
is also a corresponding energy function such that in the 
high-gain limit, the system is equivalent to the original 
Hopfield-82 model. The Hopfield-84 model inspired 
many efforts at analog VLSI (Very Large Scale Integrat­
ed) circuit implementations and computational experi­
ments because of the advantages of the deterministic 
formulation over the stochastic one. For example, the 
Hopfield-84 model retains the ability of a content­
addressable memory similar to the 1982 model. 24 The 
sigmoidal nonlinearity is an important feature of the 
model because a sharp nonlinearity causes convergence 
to local rather than global minima. 10,12 The importance 
of the sigmoidal nonlinearity has also been emphasized 
by Grossberg. 6 Convergence theorems for continuous 
models with sigmoidal nonlinearities have also been 
proven. 25 

The most straightforward technique for increasing the 
storage capacity of the Hopfield model is to orthogonal­
ize the desired patterns. This is a well-known technique 
for linear neural networks and can be implemented by 
using a weight matrix related to the Moore-Penrose 
pseudoinverse. 26 Orthogonalization and use of the 
pseudoinverse greatly increase the storage capacity of the 
Hopfield models. 27-3o It is even possible to have perfect 
storage and to eliminate spurious states altogether by 
storing not only orthogonal patterns, but also faithful 
patterns that are exactly and exclusively reproduced by 
the model. 31 

Computational 
flow 

t Computational 
energy 

Figure 1-A representation of the computational flow that 
minimizes the computational energy for the Hopfield neural­
network model (adapted from Ref. 15). 
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Higher-order extensions of the Hopfield model are 
also of interest because of their relationships with the 
higher-order energy functions for certain optimization 
problems. 32-34 In those networks, the input to the re­
sponse function is given by the sum of the product of 
a weight tensor and unit values, so that Eq. 1 is replaced 
by 

Yi = I( E Wij, ····jn xj , ····xjn - 1",), (2) 
JI' '' :Jn 

where the order of the weight tensor is n + 1. Numeri­
cal simulations show that use of these higher-order in­
teractions gives better memory capacity than the 
Hopfield-82 model. 35,36 The pattern-storage capacity in­
creases by the number of units to the power of n, but 
it is completely compensated for by an increase in 
memory-storage requirements for the tensor weight ma­
trix. 37 The information capacity (in terms of the ratio 
of the number of bits stored to the number of bits re­
quired for recall with a fixed error rate) is also indepen­
dent of the order. 38 A single layer, as in Eq. 2, 
however, can have translation invariance, as well as other 
geometric invariances and a priori knowledge, automat­
ically incorporated in an elegant fashion. 39 

Layered Architectures 
and the Backpropagation Algorithm 

A different approach to neural networks that has also 
stimulated much current interest is the development of 
the backpropagation learning algorithm for layered, 
feed-forward networks. Although algorithms similar to 
backpropagation had been independently proposed by 
several different authors,40-43 it was the studies of 
Rumelhart, Hinton, and Williams44 that provided 
demonstrations and dissemination that did not previously 
exist. Backpropagation is a learning algorithm designed 
to solve the problem of choosing weight values for hid­
den units in a layered, feed-forward network. Hidden 
units are units in intermediate layers that are neither in­
put nor output units. They are introduced to give the 
network enhanced internal-processing capabilities it could 
not have if only input and output units were present. 
The limitations of networks with only feed-forward in­
put and output units, such as the single-layer percep­
tron, 45 were well documented by the work of Minsky 
and Papert. 46 The introduction of one hidden layer al­
lows the network to represent an arbitrary Boolean func­
tion, 47 and two layers allows the network to represent 
an arbitrary decision space. 3,48,49 Hidden unit layers can 
be introduced to automatically represent geometrical in­
variances such as translation invariance. 5o Finally, the 
minimum number of layers and the number of units 
within hidden layers necessary to compute an arbitrary 
dichotomy of n points in general positions in arbitrary 
Euclidean dimensions can also be calculated. 51 

Although the introduction of hidden units gives a feed­
forward network the potential for an arbitrary mapping, 
before the introduction of the backpropagation al­
gorithm no known technique existed for determining the 
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weights of a deterministic feed-forward network with 
hidden layers . This was the essence of the credit­
assignment problem: how to determine the weights of 
intermediate hidden units such that desired responses oc­
curred as a result of specified inputs. Several algorithms 
were known for single-layer feed-forward networks with­
out hidden units, such as the perceptron learning algo­
rithm 45 and the Widrow-Hoff algorithm. 52 In addition, 
an ingenious algorithm known as the Boltzmann learn­
ing algorithm 53 had been developed for a stochastic 
network, which used Bayesian probability rules to up­
date the weights for both hidden and external units. 

The backpropagation algorithm is an extension of the 
Widrow-Hoff algorithm and can be understood by the 
following. Define the error E between the actual out­
puts Yi and the desired outputs yf as 

(3) 

where the angle brackets represent an average over all 
of the input patterns and output units. A gradient­
descent technique for adjusting the weights so as to min­
imize the error leads to the expression 

- E 
aE 

aWij 

- 2. \(Yi - y,D) aa~) , (4) 
Ij 

where ~ Wij is the weight adjustment and E is a select­
ed adjustment rate. By choosing a conveniently differen­
tiable response function f, and by applying the chain rule 
of calculus to compute the weight adjustments for lay­
ers before the output layer, a convenient formula for 
the weight adjustments of all layers can be derived, which 
has become known as the backpropagation algorithm. 

The backpropagation algorithm has demonstrated 
several advantages in addition to having the potential 
for determining networks with arbitrary mapping prop­
erties. For example, backpropagation classifiers are rea­
sonable alternatives to traditional classifiers for problems 
with continuous-valued inputs. 54 Although the error 
rate of a backpropagation-based pattern classifier often 
is close to that of a Bayesian classifier, a backpropaga­
tion classifier also is robust and can outperform conven­
tional techniques by a wide margin when inputs have dis­
joint probability distributions. The backpropagation al­
gorithm can also be used to learn distributed represen­
tations. 55 A distributed representation is one whereby 
a concept is distributed over several units, as opposed 
to being represented by a single unit. Using backpropa­
gation, weights can automatically evolve to show rela­
tionships that were not explicitly input. Whereas neural 
networks can learn topological mappings using lateral 
inhibition and modified Hebbian-type learning, 26 the 
backpropagation algorithm can also be used to discover 
topological mappings 56 and to invert a feed-forward 

245 



Roth - Neural-Network Technology and Its Applications 

network. 57 Given a network of fIxed weights and speci­
fied output patterns, the input patterns can be deter­
mined. Indeed, it has been proposed that backpropaga­
tion can be modifIed to minimize the log-likelihood func­
tion rather than the error, and thereby learn probability 
distributions. 58 

The gradient-descent nature of the backpropagation 
algorithm leads to slow convergence, and modifications 
to the algorithm have been proposed to speed up con­
vergence. Adding a momentum term to Eq. 4 to smooth 
the weight-updating process has been shown to improve 
the convergence rate. 59 In addition, there are signifI­
cantly different results when there is massive training of 
a particular item versus distributed training, which is bet­
ter for a number of items. 60 This is to be expected 
from inspection of Eqs. 3 and 4 because the error is the 
total error over all the input patterns. Even the simple 
modification of shifting the response function to cover 
the interval [- 0.5, + 0.5] results in much better con­
vergence and much less variance for a large number of 
hidden units and patterns. 61 Sometimes the backpropa­
gation algorithm gets stuck for a large number of itera­
tions on an error plateau; it has been proposed that an 
order of magnitude improvement in convergence can be 
achieved by searching along the line of the error gra­
dient and selecting the best point for weight updating. 62 

Another suggestion is that a dramatic speedup can be 
accomplished by assigning a specific adjustment rate Ep 

to each input pattern, by doubling Ep for a particular 
pattern p if its individual error is too high, and by halv­
ing all the rates overall if the total error does not de­
crease very much. 63 Finally, extensions of backpropaga­
tion based on quasi-Newton methods of functional mini­
mization have been introduced to speed up convergence, 
although such algorithms can have stability prob­
lems.64-66 Unfortunately, because these algorithms have 
a higher order of complexity than backpropagation, they 
are appropriate for moderate problems but not large-size 
problems. 

Despite the successes of the backpropagation al­
gorithm, it has a number of limitations that affect its 
performance and potential for future applications. For 
example, the dependence of convergence on the num­
ber of hidden layers shows a complicated behavior. 59 

The backpropagation algorithm sometimes fails to 
properly converge to bimodal patterns, and it has been 
suggested that randomization of weights, in addition to 
the initial randomization usually employed, may be fruit­
ful in escaping such local minima. 49 Initial weight ran­
domization is very important to the backpropagation 
algorithm. In fact, if a hidden layer of sufficient size 
with random weights is used, then even the perceptron 
learning algorithm can learn an arbitrary linear dis­
criminant network. 67 Still, the weights most likely to be 
altered by the backpropagation algorithm are those that 
are already providing useful feature detection. 68 Some 
means needs to be identified to keep the useful features 
while exploring new possibilities. Backpropagation is 
good at generalization but poor at learning specific in­
stances. 69 
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One of the major limitations of backpropagation is 
that it does not scale well to larger-size networks. With 
more than a few thousand connections, it learns extreme­
ly slowly. 70 Percept ron-like learning algorithms require 
more than 2d adjustments, where d is the number of 
input features 71 with similar results for backpropaga­
tion. 72

,73 Part of the problem is that supervised learn­
ing in feed-forward networks is an NP-complete 
problem. 74 NP-complete problems are mathematical 
problems for which solutions require a number of com­
putational steps that grow faster than any finite power 
of some appropriate measure of the size of the problem. 

One of the most important limitations of backpropa­
gation is its restriction to feed-forward networks only. 
As was discussed earlier, feed-forward networks can per­
form a number of computationally significant opera­
tions, but there are a significant number of computa­
tional operations that cannot be performed by a feed­
forward network with a finite number of layers, as not­
ed by Minsky and Papert. 46 An example of such an 
operation is determining whether a given figure is con­
nected. But such a restriction does not apply to recur­
sive or feedback networks such as the Hopfield model. 
As an illustration, Fig. 2 shows a three-layer network, 
with two of the layers recursive, that can compute the 
connectedness of a figure. The first layer is a lateral in­
hibition network that merely picks out a single point in 
the figure (noise can be added to ensure that only a sin­
gle point is selected). The result is directly transferred 
by feed-forward connections to a Hopfield network 
whose weights are the outer product of the binary input 
pattern restricted to nearest-neighbor weights only. This 
second layer acts like a cellular automaton in that, if a 
single point of the input fIgure is activated, then all points 
connected to that point will also be activated. Finally, 
the result of the Hopfield network layer is fed forward 
to a single-threshold logic unit whose weights are the in­
put pattern, but with a threshold suffIciently high so that 
a perfect match is required. The weights of the second 
and third layers are determined by only the current in­
put pattern. In this manner, a network with a combina­
tion of feed-forward and recursive layers can compute 
the connectedness of a figure and overcome the com­
putationallimitations of feed-forward networks alone. 

Some authors have begun to explore appropriate 
learning algorithms for such networks with both feed­
forward and feedback connections. Lapedes and Far­
ber 75 present an algorithm for implementing a content­
addressable memory using a nonsymmetric neural net­
work. Optimization of an energy function is shown to 
lead to dynamic equations that are related to the 
HopfIeld-84 model. The learning equations are interpret­
ed as another network analogous to the process of back­
propagating the errors in the backpropagation algorithm. 
Unfortunately, the computations are very intensive be­
cause the number of weight equations is on the order 
of the square of the number of units. Pineda 76 makes 
a major extension of that work by first noting that feed­
forward processing elements are a special case of the 
Hopfield-84 dynamic equations (e.g., the weight matrix 
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Figure 2-A layered neural-network architecture for computing the connectedness of a given figure using both feed-forward 
and feedback connections . 

is lower triangular) and then derives a learning algorithm 
for a network with arbitrary feed-forward and feedback 
connections for which backpropagation is the special 
case, limited to feed-forward networks only_ (For a 
detailed derivation of the connection between Hopfield 
and feed-forward networks, see Ref. 77.) The learning 
equations can also be interpreted as another network, 
but with substantially improved computational perfor­
mance over that for Lapedes and Farber. This algorithm 
cannot serve as an associative memory, because all the 
initial states are in a single basin of attraction. 78 The 
problem can be circumvented by deriving a related al­
gorithm whereby the external units are constrained dur­
ing learning to be the desired patterns. Almeida 79 

independently derived a learning algorithm similar to 
Pineda's algorithm and showed that a feedback network 
with a smaller number of weights can at times achieve ' 
superior performance over a feed-forward network. 

NEURAL-NETWORK HARDWARE 

Neural-network models and algorithms are computa­
tionally intensive on general-purpose computers. Because 
of the computational simplicity of the basic processing 
element, however, neural networks can be implemented 
on special-purpose massively parallel hardware, which 
can vastly outperform implementations on even the most 
powerful serial computers. Consequently, a number of 
groups are developing such special-purpose neurocom­
puter hardware for implementing neural-network appli­
cations. The recent appearance of those neurocomputers 
has been an essential ingredient for the development of 
practical applications of neural-network technology. 

The first generation of neurocomputers was based on 
pipelined implementations of digital VLSI technology 
with some low-level parallelism. In fact, a number of 
designs, such as the TRW, Inc., Mark 111 80,81 and the 
Science Applications International Corporation (SAl C) 
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Sigma-I, are now commercially available. 82 Those 
machines can handle on the order of 1 million connec­
tions, 60 thousand processing elements, and equivalent 
processing speeds that are 10 to 30 times that of a Digi­
tal Equipment Corporation VAX 11/780 computer. 
Neural networks have been implemented on more gener­
al-purpose parallel hardware, and an implementation on 
the Connection Machine 2 was reported to achieve an 
equivalent speed of 500 times that of a Digital Equip­
ment Corporation VAX 111780 computer. 83 Also, a 
number of special digital VLSI chips are being devel­
oped. 84 This first generation of neurocomputers con­
sists of simulators of neural-network models and algo­
rithms, and does not exploit the powerful computational 
potential of direct implementations using device physics. 

A number of groups have recognized the computa­
tional potential of direct implementations of neural net­
works using the device physics of analog VLSI. Such 
efforts include the electronic neural-network chips de­
veloped at AT&T's Bell Labs, 85 a VLSI chip im­
plementation of the Boltzmann learning algorithm, 86 

and the analog VLSI retinal and cochlear chips devel­
oped by Mead. 87

,88 The main advantage of going to 
analog VLSI is in using the analog circuitry to perform 
the neural-network computations, thereby gaining an 
enormous processing advantage. One Bell Labs chip has 
256 processing elements and 130,000 fixed resistive 
weights, and can converge in less than 1.4 jJ.S. That chip 
can be applied to a number of optimization and pattern­
recognition problems that are described later. It is be­
lieved that this technology may be limited in the num­
ber of connections that can be achieved because of the 
two-dimensional nature of the chips. 

Optical implementations of neural networks have the 
potential for achieving very high connectivity because 
beams of light can pass through one another without 
interaction. 89

,90 There may be a fortuitous marriage be-
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tween optical-computer technology and neural-network 
algorithms because of their complementary strengths and 
limitations. Future applications of neural networks will 
require massive parallelism, which is a strength of opti­
cal computers. Optical computers have limited dynam­
ic range, which may not be a problem for neural net­
works. Finally, there are possibilities for all-optical com­
putation loops that would avoid the interface bottleneck 
between electronic and optical components. Optical 
neuro-computers are prime examples of the computa­
tional potential for neural-network models and al­
gorithms to exploit device physics. 

The fIrst optical neurocomputer designs employed op­
tical matrix-vector multipliers using light-emitting diodes, 
photodiodes, light masks, and electronic feedback. 91,92 
This matrix-vector-multiplier approach has evolved con­
siderably to the point where designs have now been pro­
posed with optoelectronic integration on VLSI chips. 
Photo diodes integrated into VLSI chips could provide 
optically controlled weights, and the light intensity could 
be varied by masks or acousto-optical crystals. 93 An­
other chip design proposes using magneto-optical spa­
tial light modulators. 94 

An additional optical approach to implementing neu­
ral networks is the use of holographic devices such as 
volume holograms. Combined with optical feedback, 
systems could retrieve associatively millions of image pat­
terns in a very short time. 89 The use of photorefractive 
crystals represents a promising approach to volume holo­
grams because of the ease of dynamic holographic mod­
ification of interconnections. 95 The density of intercon­
nections that may be implemented in these crystals is of 
the order of 108 to 10 10 weights/cm3. Also, the volume 
hologram can be viewed as a programmable two-port 
device that operates on the optical electric field. 96 The 
Hopfield model can be precisely implemented in an all­
optical design using computer-generated holograms, 97 

and a design for an all-optical implementation of back­
propagation has been presented. 98 Holograms used in 
conjunction with optoelectronic resonator cavities have 
also been considered. 99 One of the most promising de­
signs is the proposal by Caulfield to use page-orientated 
holographic memory. 100 In this design (Fig. 3) a num­
ber of small holograms are illuminated by a reference 
beam so that the holograms are imaged onto a trans­
missive or reflective spatial light modulator that is used 
as a representation of the input pattern. The resultant 
image-the sum of the holograms weighted by the 
input -is extracted to form the output. 

APPLICATIONS OF 
NEURAL-NETWORK TECHNOLOGY 

One of the first applications of neural-network tech­
nology was for the solution of complex optimization 
problems. Because many different kinds of problems can 
be formulated as optimization problems, the potential 
for neural-network technology to solve quickly such 
problems is a very important development. The first 
demonstration of such a potential was by Hopfield and 
Tank 10 for the Traveling Salesman Problem. (The 
Traveling Salesman Problem is an NP-complete prob­
lem that asks what is the shortest tour of several cities 
such that each city is visited only once.) Hopfield and 
Tank showed that the Hopfield-84 model can be used 
to compute good solutions to that problem within a few 
network time constants. They also showed that the 
Hopfield-84 model can be configured to solve decom­
position problems and related linear-programming prob­
lems. 11 Other kinds of optimization and constraint 
satisfaction problems, such as constructing a four-color 
map 102 and detecting graph isomorphisms,103 can be 
solved by the same techniques. Another application is 
for communication modems, where the maximum-likeli-
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Figure 3-An optical neurocom­
puter design using page-orientated 
holographic memory, with the po­
tential for 1012 interconnections. 
Data input is achieved with a spatial 
light modulator array. Each element 
of the input array is combined with 
a weighted array from a holographic 
array into an output array (adapted 
from Ref. 101). 
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hood-sequence estimator can be implemented by the 
Hopfield-84 network with much less complexity than the 
Viterbi algorithm. 104 Both static and dynamic schedul­
ing of multiple microprocessors are also optimization 
problems that can be solved by those techniques. 32,33 
Finally, the problem of computing image shape from 
image shading can be interpreted as an optimization 
problem that can also be solved by a modified 
Hopfield-84 model. 34 

The Hopfield model can also be used to perform pat­
tern recognition. Farhat et al. 105 apply a hetero­
associative variant of the Hopfield model to the clas­
sification of radar targets. Because radar returns con­
sist of dilute, point-like images, the data are represented 
as sinograms that consist of the variations of the loca­
tions in an image of the dilute points as a function of 
the aspect angle. This results in good classification with 
as little as 100/0 of the sinogram available. Neural­
network implementations related to the Hopfield-84 
model can also be used for extraction of weak targets 
from high clutter environments 77 and multitarget track­
ing. 106 Application of the Hopfield model, using the 
pseudoinverse weight matrix, to handwritten character 
recognition gives results comparable to computing Ham­
ming distances or optimal linear classifiers.30 This 
pattern-recognition application has also been used to de­
sign a system for video-data compression using a hier­
archy of Bell Labs' electronic neural-network chips. 107 
Finally, the Hopfield-84 model can be extended for 
recognizing time-warped and noisy sequences with ap­
plication to continuous speech recognition. 13,14 

Because of backpropagation's ability to learn effec­
tive pattern recognition from training databases, it has 
found numerous applications in a variety of problems. 
The first such effective demonstration was by Sejnowski 
and Rosenberg, 108 who showed how a backpropagation 
network could learn to convert text to realistic speech. 
The backpropagation algorithm can also be used for 
recognition of spoken digits 48 and handwritten 
characters 48,109 with excellent performance. Additional 
applications include classification of electronic intelli­
gence data 110 and recognition of sonar III and radar 112 
targets. The pattern-recognition capacity of backpropa­
gation can also be used for data compression by forc­
ing the output to reproduce the input for a network with 
a lower-dimensional hidden layer. 113 Such a technique 
has been applied to aircraft infrared data, after Fourier 
polar transformation to remove translations and rota­
tions, and showed that the hidden layer did separate the 
data into clustered classes. 114 

Neural networks have been applied for a number of 
years to solve engineering problems in the area of con­
trol systems. 115 One example is the use of polynomial 
networks to model the optimum solution for a large do­
main of possible missile-flight trajectories in the two­
point boundary-value problem. More recently, back­
propagation has been used to train a neural network to 
drive an automobile. 116 To avoid control-system insta­
bility, the network first attempts to imitate a trainer, then 
it is permitted to operate with the trainer overriding mis-
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takes and retaining proper performance. Several authors 
have proposed neural-network models for explaining 
coordination of head and eye movements in animals, and 
the weights of the network have been determined using 
both the pseudoinverse l17 and backpropagation. 118 

Those models can also be used for robotic systems. Fi­
nally, because optimal control systems are determined 
by minimization of a Liapanov function and the optimal 
trajectories could be approximated by training, optimal 
control is a promising area for future applications of the 
Hopfield model and the backpropagation algorithm. 66 

For applications related to expert systems, neural net­
works can implement propositions and constraints with 
the ability to backtrack for explanations. 119 They also 
have features that support both robust reasoning and 
knowledge acquisition. Inferencing techniques can be de­
veloped to allow the expert system to reach conclusions 
when only a fraction of the input values is known. 120 
Also, techniques for confidence estimation, question 
generation, and conclusion explanation can be devel­
oped. Expert systems using these techniques have been 
developed for medical diagnosis and other problems. The 
backpropagation algorithm has been applied to the de­
velopment of expert systems as well. 121 As a demon­
stration of the potential for this approach, neural 
networks have learned to play backgammon by observ­
ing a human expert and training on the set of observa­
tions.122 Finally, neural-network expert systems 
employing backpropagation have found a number of 
commercial applications for computer-aided decision sys­
tems for problems such as bank-loan advising and air­
line scheduling. 123 

There are a number of other applications of neural 
networks. One such application is for computational 
modeling of brain functions,6,117,118,124 which is too ex-
tensive to describe here. Present and future neurocom­
puters have applications beyond the previously described 
neural-network models and algorithms because the hard­
ware architecture consists of massive parallelism of sim­
ple processing units. Because any finite-state computing 
machine can be computed with a set of Boolean func­
tions and because neural networks can be configured to 
compute an arbitrary Boolean function, any finite-state 
computing machine can be computed with neural net­
works. But some algorithms can be more efficiently im­
plemented on conventional rather than neural-network 
hardware. Conversely, many well-known processing al­
gorithms can be efficiently implemented using neural­
network algorithms and hardware. 125 

ONGOING EFFORTS AT APL 
IN NEURAL-NETWORK TECHNOLOGY 

APL's neural-network efforts involve the theoretical 
development of improved models and algorithms, the 
design of neurocomputer hardware, and the practical ap­
plications of existing models an algorithms. Roth 77 has 
shown how neural-network technology can be used to 
enhance the detect ability of weak targets in high-clutter 
environments. In general, detection devices must set high 
thresholds to achieve a reasonable false alarm rate. This 
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is especially true for environments, such as radar at low 
elevation angles, where the clutter distributions have long 
tails. The problem with setting a high threshold to cut 
down on false alarms is that detections of targets of small 
and medium size can be missed. A previously impracti­
cal idea for dealing with this problem was to implement 
a large bank of matched filters to cover the target vari­
ations over multiple scans. Because neural-network hard­
ware is precisely designed to implement massively parallel 
computations, it offers new opportunities to implement 
such previously impractical ideas. In particular, it was 
shown that a modified Hopfield-84 model can imple­
ment the optimum post-detection target-track receiver. 
In this application, the desired states represent single tar­
get tracks, and spurious states would correspond to mul­
tiple tracks. Since it is desirable to detect multiple targets, 
the spurious states for this application are not a draw­
back but rather a desirable feature. Simulations have 
been conducted and show that considerable improvement 
of the signal-to-noise ratio can be achieved. 

Figure 4a shows a simulated field that would cor­
respond to multiple scans of a surveillance radar. The 
false alarm rate is chosen to be 2%. There are also two 
target tracks within the field with a probability of de­
tection per cell of 100/0 . This field is input as the initial 
field of the modified Hopfield-84 model and is allowed 
to search iteratively for target tracks. Figure 4b shows 
the state of the network units after a few iterations. The 
results are false-color coded (black, blue, green, yellow, 
red, pink, white) for display purposes, with black and 
white representing 0 and 1, respectively. The target tracks 
are already visible as green lines. In following iterations, 
the tracks are much more visible while the clutter has 
been greatly reduced. This process continues until the 
clutter is eliminated and only the target tracks remain 
(Fig. 4c). 

The previous simulations were performed on a serial 
computer and required considerable processing time. 
Special-purpose computer hardware is being developed, 
such as the digital VLSI chip designed by Strohbehn 126 

for sonar target recognition, which can substantially 
speed up such neural-network algorithms. 

Finally, Kulp 112 has studied the application of the 
backpropagation algorithm to the problem of automat­
ic radar classification of surface ships. This work was 
performed on an SAle Sigma-l neurocomputer work­
station that was obtained to facilitate insertion of neural­
network technology into the applications domain. Fig­
ure 5 shows a display of the screen of the Sigma-l after 
completion of the training phase. The network consisted 
of four layers. The first layer was the input data, which 
represented various bins of Fourier transformations of 
radar-profile data. The next two layers were the hidden 
units, and the last layer represented the output units that 
were compared to the desired classification outputs dis­
played in the target layer. The resultant error was back­
propagated to adjust the weights. The unit values range 
from blue to red and represent the values of - 5 to + 5, 
respectively, that are input to the response function. Also 
plotted is the value of the error as a function of the iter­
ation number. 
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Figure 4-(a) Initial state of a two-track simulation with single­
cell probabilities of detect ion and false alarm of 10 and 2%, 
respectively. (b) Two-track simulation using a modified Hop­
field model after a few iterations and starting with Fig . 4a. 
(c) Final state of the two-track simulation using a modified 
Hopfield model starting with (a) and going through (b)J7 

THE FUTURE OF 
NEURAL-NETWORK TECHNOLOGY 

Neural-network technology can resolve many prob­
lems that have resisted solution by traditional techniques. 
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Figure 5-Screen display of the SAle Sigma-1 neurocomputer 
workstation for a radar target-recognition network developed 
using backpropagation .112 (RMS error is the total root-mean­
square error; ANSim is the software package; and ANS is an 
Artificial Neural System window.) 

Such problems exist in the areas of signal processing, 
pattern recognition, control systems, and artificial in­
telligence. Neural-network technology also can produce 
a new kind of artificial intelligence that, instead of rely­
ing on the rules an expert might use to make decisions, 
learns from a series of examples. More intelligent knowl­
edge bases can be built with neural-network technolo­
gy. Through learning, neural networks could update the 
contents of a knowledge base and the heuristics used to 
process the knowledge. The full extent of the possibili­
ties presented is still unknown. 

Neural-network technology is not a replacement for 
existing computer technology. Investigators are currently 
working on understanding the potentials and limitations 
of neural-network technology; part of that effort in­
cludes learning how to combine both technologies into 
systems so as to make efficient use of their complemen­
tary abilities. 

Finally, a wide variety of specialists have contributed 
to neural-network technology, including biologists, phys­
icists, electrical engineers, computer scientists, and psy­
chologists. Neural-network studies and applications are 
a multidisciplinary endeavor that will continue to bene­
fit from the collaboration of such diverse specialists. 
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