
ROBERT E. JENKINS

NEURODYNAMIC COMPUTING

For several years, the Computing Science and Technology Group (SlA) of the APL Space Depart­
ment has been engaged in research and development in the emerging technology of connectionist, or
neural-network, systems. Some of the earlier work involved the development of the Hopkins cellular
logic processor. This article describes the viewpoint on this technology that has emerged during a cooperative
effort between APL and The Johns Hopkins University Department of Electrical and Computer Engi­
neering. A number of ongoing projects within that cooperative effort are discussed.

CONNECTIONIST ARCHITECTURES

Neural-network computing technology is currently in
vogue and is going through an explosion of activity that
is typical of a rapidly emerging technology. The subject
is not new, though, and has been an active field of re­
search for a long time. APL is a relative newcomer in
the field. It would be impossible in a paper of this scope
to survey and cite all of the important past research re­
sults. Instead, we draw the reader's attention to the re­
cent two-volume work by Rumelhart and McClelland
et aI., 1 which presents most of the main ideas of the
field and contains many references.

Why the sudden surge of activity in the 1980s? It is
probably the result of understanding and many ideas fi­
nally coming together. A key contributing factor is the
willingness of researchers (typified by J. J. Hopfield 2)
to unshackle themselves from the details of neurologi­
cal systems and study physical dynamic systems that ex­
hibit only the major architectural features of the brain.
That has led to some colorful and inspirational results
that captured the fancy of many people.

Neurological systems are dynamic networks of com­
municating cells that influence one another's behavior,
and physical systems that capture that property are com­
monly called connectionist systems. The main architec­
tural features of such dynamic systems are as follows:

1. The system is made up of a large number of simple,
identical elements, variously referred to in the liter­
ature as units, neural elements, or automata.

2. Each unit stores very little information internally­
typically only its own scalar state or "activity
level. "

3. Each unit is connected to some number of other
units to form a network; the units transmit their
activity states one to another and use that informa­
tion to compute new states of activity. (The anal­
ogous connections in biological systems are called
synapses.)

4. Information being processed by the system is rep­
resented by globally distributed patterns in the ac­
tivity levels of large groups of units. The program
for processing information (or knowledge) is stored

232

within the system as globally distributed patterns
of connection strengths, or "synaptic weights."

5. Each unit determines its new state via a nonlinear
function of its summed, weighted inputs from the
other units connected to it. This nonlinearity seems
to be crucial to much of the interesting behavior
of such systems. Earlier studies of linear connnec­
tionist systems failed to produce some of the rich
results currently observed with nonlinear models.

The idea of storing information and knowledge as dis­
tributed patterns of weights and activity over large sets
of units, rather than in the processing units themselves,
is a principal feature. That, coupled with the fact that
each unit computes its own change in state from locally
derived information (its input connections), allows the
system dynamic behavior to be massively parallel in na­
ture. Literally all of the information in the system is be­
ing processed simultaneously as the system evolves in
time. In addition, for large numbers of connections, the
system exhibits a great deal of fault tolerance, since
failures of individual units or connections do not signif­
icantly change the global response or resulting patterns
in the system state. The accepted term for computations
that use such a connectionist system is "parallel, distrib­
uted processing," where the adjective distributed refers
to how information is stored, not the spatial arrangement
of the units.

Systems with the above properties are being researched
from a broad range of perspectives: cognitive science,
neurology /neuro-anatomy, physics/biophysics, comput­
ing science, and engineering. Our current effort, with
Dr. Fernando Pineda as the Principal Investigator, has
been supported by both APL internal research and de­
velopment funds and a three-year grant from the U.S.
Air Force Office of Scientific Research. The activity has
profited from collaboration with the Homewood Cam­
pus of The Johns Hopkins University, principally Dr.
Andreus Andreou of the Electrical and Computer En­
gineering Department and Ben Yuhas, a Ph.D. candi­
date in that department. Our group focus is from the
computing and electrical engineering viewpoints, from

fohns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

which we see two important interest areas for those dis­
ciplines.

First, neural-network models provide an interesting
signal-processing tool, of which adaptive linear arrays
is a special case. This tool will augment traditional meth­
ods for complex processing tasks on a wide range of sig­
nals such as grey-level images, acoustic signatures, and
radar returns. The image-processing power of cellular­
logic operations (a particularly simple connectionist sys­
tem) is a convincing example.

Second, we advocate the (not original) viewpoint that
neural networks constitute a new paradigm for comput­
ing, which will surely impact the underlying architectural
structures and hardware that will implement it.

The traditional view of a computer is a finite-state ma­
chine performing sequential sets of instructions. Parallel­
ism, through the introduction of multiple such machines,
does not change that traditional view very much. On the
other hand, the neural computation paradigm is a more
general view of the computer as a dynamic system evolv­
ing under the control of dynamic laws and external stim­
ulus (that is, inputs). Much of the recent excitement in
neural networks was, in fact, generated by Hopfield's
suggestion in 1983 that the collective properties of phys­
ical dynamic systems could be used to directly implement
computing tasks. The major benefits of such a comput­
ing paradigm will be realized by hardware in which the
physics of the underlying machine and the computational
algorithm are intimately related.

An appreciation of the potential benefit of such an
approach to computing has focused our activities onto
dynamic systems with connectionist architecture that
have continuous-valued states and equations of motion
expressible as differential equations. Such systems have
the benefits of being mathematically familiar to physicists
and of relating well to analog electronics for implemen­
tation. In the past year, Fernando Pineda of APL has
developed computational algorithms for a fairly general
and well-known form of such systems, and has shown
that those algorithms are generalizations of some earlier
results. 3

,4 In the following sections, that particular dy­
namic system is briefly described, along with its use in
computational tasks. The description paraphrases and
somewhat oversimplifies the theoretical material present­
ed in Ref. 4, and it also discusses concepts that are more
or less standard at this point.

Some of our earlier efforts involved cellular logic op­
erations-simple two-state dynamic systems with connec­
tions between nearest neighbors. Our current concentra­
tion on the particular system described below by no
means implies that it is the only fruitful connectionist
approach. It is just that we are forced to narrow our
focus because of the limitations of our resources. Fur­
ther, we feel that the major payoff of such a technology
will come through eventual implementations in analog
microelectronics, for which the system below is particu­
larly well suited. Such is the subtle unifying theme of
the work described in this article. In the remaining sec­
tions, several projects are described that will appear to
be rather loosely coupled, partly because they are of ne-

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

cessity funded from diverse sources within the APL
Space Department, and partly because they reflect the
diverse interests of the people involved in the collabora­
tion.

A NEURODYNAMIC SYSTEM
The basic model of the system that Pineda has stud­

ied is shown in Fig. 1. The units are arbitrarily connected,
and an arbitrary subset receive inputs Ii from the ex­
ternal world. The state of the ith unit is described by
the continuous variable Xi that represents the compo­
nents of the system state vector X. The connection
strengths are described by the continuous variables Ujk
that form a connection matrix W. The dynamic equa­
tions of the system are:

dXi
= -Xi + F(Vi) + Ii (1)

dt

where Vi = Ej WijXj. The quantity Vi is loosely anal­
ogous to the so-called "activity potential" in biological
systems. The nonlinear activation function F is frequent­
ly chosen to be the continuous sigmoid given by

1
F(V) = 1 + e - U • (2)

The saturation property of F bounds its values between
o and 1, and the continuous valued input vector I is
usually normalized to that range.

Equation 1 and various forms similar to it have been
widely studied in the literature. Sometimes Ii is placed

External ~j External

Output

Input
1/

1. Each unit has an activity potential Vi = Lj wij Xj .

2. Each produces an output Xi that is a nonliner function
of its activity potential: Xi = F (Vi).

3. The set of Xi is a vector of real r:umbers specifying the state
of the system at any time.

4. The network connectivity is described by a "synaptic weight"
matrix ~ j that represents the connection strengths.

Figure 1-A dynamic connectionist network.

233

Jenkins - Neurodynamic Computing

inside the function F and added to Ui • In some cases
the models have been discrete, whereby Xi is restricted
to a finite set of states, such as 0 or 1. In some cases
the dynamics are stochastic. For example, rather than
a time derivative, the right-hand side of Eq. 1 could be
interpreted as a probability of change in the state of unit
i during the next time interval. 1 In addition to Eq. 1,
Grossberg5 has over the years treated numerous similar
systems, some of which are much more complex, and
his work merits careful attention.

Within APL's Computing Science and Technology
Group, it is generally felt that a system described by Eqs.
1 and 2 captures the major essence of neurodynamic
computation. It contains, as special cases, both the con­
tinuous Hopfield Net 2 (symmetric weight matrix) and
the popular feed-forward architecture 1 Oower triangular
weight matrix). Also, as Hopfield has pointed out, it is
amenable to implementation in analog electronic hard­
ware. Consequently, we have concentrated on such a sys­
tem, reviewing previously published work and working
to contribute to the further understanding of potential
applications.

When used in a processing task, the "answers" that
the network gives are generally the final state-vector re­
sponse to a set of external inputs or to a set of initial
conditions. By final response, we mean the stable points
of static equilibrium of the system. Hence, the question
of stability is of great importance and is of major con­
cern to researchers.

The general problem of stability of nonlinear, multi­
dimensional systems is difficult; a saving grace is that,
empirically, we have observed large networks described
by Eq. 1 to be stable under a wide variety of connec­
tivity patterns. It appears that one must make a definite
effort to construct weight matrixes that induce instability.
In fact, Atiya 6 has shown that systems described by
Eq. 1 will converge to a unique fixed-point attractor if
the magnitudes of the weights are small enough. The sta­
bility question is an active area of research, but for our
present purposes we assume that we are dealing with a
dissipative system. That is, for a fixed set of inputs I
and initial conditions, Xo,

dX
- 0,

dt
as t - 00 . (3)

Under this condition, the system state X converges to
point attractors A that are solutions to the equation

(4)

We can arbitrarily denote a subset of the final state
as being the network "outputs," which leads to a picture
such as Fig. 2. The network can be thought of as a
"black box" that responds with transient behavior when
it receives a new set of fixed inputs, or when it is per­
turbed into a new state. Eventually the system restabilizes
at a new fixed point and produces a new set of outputs.

234

Inputs I applied
to subset of units
and held fixed.

Network shortly comes to
......... ~ equilibrium.

Final state depends on I, W,
and Xo

Figure 2-Dynamic neural network as a black box. Transient
activity is generated each time the system is perturbed by the
external world. Useful computations are done as the system
comes back to static equilibrium.

LEARNING

To be useful as a cQmputational tool, the network
needs to be programmed; that is, the fixed points of the
system in response to inputs must be moved around to
useful spots in the state space of A. That is done by ad­
justing the connection weights, since Eq. 4 shows that
the system fixed points are obviously a function of W.
When done via an adaptive procedure, such a process
is called "learning."

Computer models of neural networks learn by adjust­
ing themselves (via some algorithm) to a sequence of ex­
ternal inputs, not by being reprogrammed with a new
set of logic or rules. The program logic is simply the so­
lution to the dynamics of Eq. 1, along with an algorithm
for weight adjustment.

Learning is generally done through an iterative proce­
dure that slowly adjusts the weights by small increments
in a sequence of repeated presentations of patterns to
be learned. For each presentation the system is allowed
to stabilize to a fixed point, which is then used to deter­
mine a small adjustment to the weights. (For some spe­
cial cases, such as the Hopfield Net2 or linear net­
works, the weights can be computed in closed form from
the patterns.)

Thus, there are three different time constants associat­
ed with the overall dynamics when learning is included.
The changes in the inputs happen slowly relative to the
settling time of the network, so the network stays in a
kind of quasi-equilibrium with the inputs. Learning, or
adjusting the weights in response to the changing inputs,
occurs over time scales that are longer yet. The process
is analogous to those processes that physicists call adia­
batic.

There are numerous choices for learning algorithms,
and it is beyond the scope of this article to review the
field. The class of learning algorithm that has been the
focus of our current effort is known as "supervised"
learning, in which a priori knowledge about the desired
system output is used to adjust the weights. That is, the
fixed points are purposefully moved and positioned in
the state space of the system. By contrast, unsupervised
learning allows the fixed points to move where they may

John s Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

under the weight-adjustment algorithm. In both classes
of learning, the network gradually begins to respond in
an organized way to temporal variations in the inputs.

One way to position the fixed points is to minimize
a measure of the error in the system outputs over a range
of inputs. Such an approach has become fairly standard
in the literature, and has been the recent focus of our
work. Consider a set ex of input vectors px, on which
the network is to be trained. We choose a subset k of
units to represent the system output, and for each input
vector in the training set there is a corresponding desired
target state T t for the outputs. The weights can be ad­
justed by minimizing the positive definite function

E = Yz E E (Tt - A t) 2 , (5)
ex k

where the vector A ex is the fixed point that corresponds
to the exth input pattern.

The minimization of E can be done in various ways,
most of which are essentially iterative using the gradient
of E in the weight space. For each individual pattern
in the summation over the training set, the contribution
to the gradient can be shown to be the outer product
of an error term and the corresponding fixed-point state
vector of the system. Pineda4 has derived a general for­
mulation of the error term for arbitrarily connected net­
works that has the form of a differential equation. The
learning process in terms of the gradient is typically also
cast in the form of a differential equation: 1

dW

dt

1
--'IE,

T
(6)

where V is the gradient with respect to the components
of the weight matrix W. The parameter T is sometimes
called the gain, but is best thought of as a time constant.
Equation 6 can also be made second-order in time, which
is equivalent to adding what many researchers have re­
ferred to as a "momentum term." 1 That term appears
in the second-order difference equation as a terrr.. propor­
tional to the first difference in W, and has been found
to improve convergence of the steepest-descent method
of minimizing E by reducing the sensitivity to fine-scale
undulations of the surface.

For historical reasons, such a process is called back­
propagation, and special cases of it have been used for
some time. 1 The name is derived from the concept that
the process propagates the observed error in the output
units back into the network to correct the weights. Pine­
da's formulation of back-propagation as being complete­
ly described by a set of first-order differential equations
includes the learning process as part of the continuous
dynamic system. That is an important step toward imple­
menting the entire system, including learning, in analog
hardware, although it is not clear to us at this point how
to accomplish it with electronic devices. It is also true
that minimizing the function in Eq. 5 may not necessarily
be the best way to accomplish learning, although it is
a useful place to start for analog implementation.

fohn s Hopkins APL Technical Digest, Volume 9, N umber 3 (1988)

Jenkins - Neurodynamic Computing

PATTERN-MAPPING AND
AUTO-ASSOCIATION

There are two fundamental computational tasks that
can be performed by a system such as Eq. 1: continuous
pattern-mapping and auto-association. Pineda's learn­
ing algorithm can be applied to either, although there
are subtle differences between the two.

It is easy to see from Eqs. 1 and 4 that the fixed-point
attractors of the system are a function of the weights,
the inputs, and the initial conditions for Eq. 1; that is,

A = g(W, I, Xo) . (7)

For a given connection matrix and a fixed input vector,
there may be more than one fixed-point attractor, and
if the system starts in a state nearby one of these, it will
stablize at that point. Use of the term nearby implies
a basin of attraction associated with each fixed point.
If the weight magnitudes are small enough (Atiya's con­
dition 6), the fixed points are degenerate, and all possi­
ble initial conditions lie in a single basin of attraction
associated with a unique fixed point. Pattern-mapping
makes use of that property, although the uniqueness
properties are n9t well understood for networks with
feedback connections.

In pattern mapping, the value of Xo is set to a con­
venient fixed value (such as all zeros), an input is applied,
and the system is then allowed to relax to its fixed point
of equilibrium. Provided that Atiya's condition is satis­
fied, that establishes a unique, stable output state. If the
input is changed an infinitesimal amount, the output
state will correspondingly change because F in Eq. 4 is
a continuous function. The output thus becomes a con­
tinuous, but complicated, function of the input. In that
case the system will "interpolate" in an extremely com­
plex function if it has been programmed through learn­
ing to give the correct output for a sufficient number
of cases that span the input domain. Pictorially, the pro­
cess could be visualized as shown in Fig. 3.

As an example of that type of computation, suppose
l ex is a set of 3000 or so carefully selected backgammon
situations, that is, suitably encoded representations of
the markers at each point and the current dice throw.
The required corresponding outputs T ex would be suita­
bly encoded representations of appropriate moves. After
adjusting the weights so that all the situations in the
training set give the correct output, the network has pre­
sumably formed some internal representation of the
function relating the appropriate move to the board po­
sition. The network then plays a reasonable game of
backgammon by interpolating that function for new po­
sitions. This example is a simplified description of actual
work done by G. Tesauro and T. Sejnowski using the
back-propagation learning algorithm on networks of
about 500 units. 7

In the auto-associative mode, the patterns to be learn­
ed are stored in the network as retrievable memories rath­
er than input mappings. In this case, the value of the
input vector I is set to a fixed value (usually 0). Then

235

Jenkins - Neurodynamic Computing

Input states

Figure 3-Pictorial view of pattern-mapping mode. Training set
11 - In is used to adjust the synaptic weights to force the net­
work to form an internal representation of a complicated func­
tion. Since the output state is a continuous function of the input,
the network will interpolate in response to a new input that is
not a member of the training set.

an initial condition Xo is applied and the system is al­
lowed to converge to the fixed point within whose basin
of attraction the initial state lay. The state of the system
at that point becomes the output. In this mode, the learn­
ing process proposed by Pineda 4 breaks the degeneracy
in the fixed points and moves them to positions corre­
sponding to the patterns to be stored, so that the net­
work behaves in the same manner as an associative mem- .
ory. The training set in this mode becomes the set of
patterns used as initial conditions Xoa rather than as in­
puts. Unlike the pattern-mapping mode, the output of
the system is now a sharply discontinuous function of
the initial conditions.

As an example of such a computation type, suppose
Xoa is a set of normalized grey-level images of faces.
The learning process would establish each image as a
fixed-point attractor for the system. If a noisy or dis­
torted version of one of the faces is used as the starting
state, the system will stabilize at the fixed point corre­
sponding to that face. The initial state need only lie in
the correct basin of attraction. This pattern-recognition
example has been used by our group to test the auto-as­
sociative learning mode of Eq. 6. Some of the results
are shown in the next section.

The two computations are interesting approaches to
function-mapping and pattern-recognition because the
rules or underlying algorithms do not have to be explicit­
ly expressed or even known. In both cases, the networks
are programmed with a set of examples, which can be
a great advantage in certain problems. Of course, it is
quite possible that a completely different and more tradi­
tional approach could be used to develop a computer
algorithm that would be programmed with examples. We
stress again our view that the main advantage of an ap­
proach based on dynamic systems (Eq. 1) is the poten­
tial for direct implementation in analog electronics.

236

APPLICATION TO OPTIMIZATION TASKS
There is another kind of computation that can be per­

formed by a system represented by Eq. 1, which derives
from the property of global stability. If the system is
in fact asymptotically stable, then, by definition, there
will exist what is referred to as a Lyapunov function for
the system. That is, there will exist at least one positive
definite function of the weights, inputs, and state vector
that will monotonically decrease to a global minimum
as the system stabilizes to a fixed point from any start­
ing condition. That is a (nonrigorous) statement of the
second theorem of Lyapunov.

Let us suppose for the moment that we could find
such a function, denoted as L (X,W,I). Let us further
suppose that some optimization problem can be explicitly
formulated in terms of minimizing a cost function,
C(p ,ex,(3) with respect to a set of parameters, P. Sup­
pose now we can perform a direct mapping of the cost
function to the Lyapunov function:

C(P,ex,{3) L(X,W,I) , (8)

by making a functional correspondence between P and
X, and between the sets of constants ex, {3 and W,I. Then,
having set Wand I to the values corresponding to ex and
{3, when the system stabilizes from any starting condi­
tion, the final state vector X is the solution to the minimi­
zation problem.

For the special case of a symmetric weight matrix,
Hopfield 8 was able to derive for Eq. 1 a Lyapunov
function that happens to be quadratic in X. He showed
how that function could be mapped to the traveling sales­
man problem, and demonstrated near-optimal solutions
obtained by simulations of the dynamic system. The
traveling salesman problem is one of a class of difficult
computational problems in computer science. Since Hop­
field's work, there has been a plethora of published ap­
plications of this technique to various similar optimiza­
tion problems, such as resource allocation, optimal re­
ceivers, and tree search. 9

To my knowledge, Hopfield's result for the symmetric
case is the only known Lyapunov function for the system
described by Eq. 1. Other less restrictive conditions for
global stability may exist that could lead to solutions to
other optimization problems. In fact, there is no reason
to restrict the method to Eq. 1. The general technique
of solving optimization problems by simulating an ap­
propriate dynamic system may be a viable algorithm for
existing computers. The question is whether the required
computation time for the simulation would be an im­
provement over existing search algorithms. I feel that
such work could lead to interesting research possibilities
for computer scientists who dare to stray from conven­
tional approaches. An exciting prospect, of course, is
to have analog systems with programmed weights that
will converge to solutions in milliseconds.

NUMERICAL STUDIES
To support our studies of neurodynamic computing

and to investigate potential applications, we have imp le-

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

mented fairly general software simulations of the system
described by Eqs. 1 through 6. To achieve the flexibility
needed for exploratory numerical experimentation, the
software is written in the APL language. The programs
run on IBM personal computers and on an Analogic
back-end array processor for large networks.

The major computing time is spent on the matrix mul­
tiplication term in Eq. 1, and the major storage/memory
problem is in holding the weight matrix W, which can
be quite large and sparse for typical networks. To allevi­
ate such problems, we have used a sparse matrix formu­
lation that compresses W with no assumptions about its
block structure, and which pipelines very well on an ar­
ray processor. To improve the computation on the per­
sonal computers, the matrix multiply is written in as­
sembly language and the extended memory space is used
to hold W. On the Analogic machine the programs can
handle networks with up to 100,000 connections, and
on the personal computer runs have been made with as
many as 20,000 connections.

As an example of our numerical experiments, the soft­
ware has been used to test the properties of the auto-as­
sociative operating mode using digitized video images of
faces as the patterns. Working with faces is fun, and
they are a convenient unclassified problem domain, typi­
fying the kind of difficult pattern-recognition that people
do well but for which it is hard to quantify rules. Using
the network connectivity shown in Fig. 4, six faces were
learned. Tests were then performed to get a qualitative
measure of the basins of attraction. The results of several
of those tests are shown in Fig. 5, which shows time his­
tories of the system state vector starting from various
initial conditions.

55

Jenkins - Neurodynamic Computing

Hidden layer of 50 units

Interlayer
connections

t 24 x 55 array of output units

I Initial conditions

~Xface

24

Figure 4-A network topology for the auto-associative mode.
X face is made a fixed-point attractor of the system. Any initial
conditions for the units in the bottom layer that are in the ba­
sin of attraction of X face will cause the system to recall X face .

The most important result of the tests was the ability
of the system to recognize the patterns from initial con­
ditions that were spatially scaled, translated, or rotated

Initial state Time~

Figure 5-Response of the system of Fig. 4 after having learned six faces. The pictures are a grey-level encoding of
the state of the units in the bottom layer. The sequence shows the time evolution of the network starting from the
initial state on the left.

Johns Hopkins APL Technical Digest , Volume 9, Number 3 (1988) 237

Jenkins - Neurodynamic Computing

up to about 10070 of the total picture size. Image or sig­
nal registration is a chronic problem in most real-world
processing tasks, and the ability to deal with even small
distortions of that type was encouraging. Other positive
tests included destroying a number of connections in the
network after learning, to demonstrate fault tolerance,
and using networks with similar topology but which were
sparsely connected. A negative result was the inability
to store more than about a half-dozen faces in a network
of 60,000 connections. The work is continuing with an
emphasis on including second-order terms in the activity
potential Vi of Eq. 1. In the second-order system, the
potential is given by:

Vi = E E Wijk XjXk .
j k

There is evidence that both memory capacity and learn­
ing rates are significantly increased by introducing higher­
order coupling terms.

Other numerical experiments with this software system
have been performed by Ben Yuhas to support his Ph.D.
research in the Department of Electrical and Computer
Engineering at the Homewood Campus of The Johns
Hopkins University. Yuhas's research is directed to an
understanding of the relation between an acoustic speech
signal and the corresponding visual signal of the speaker's
lips. Such an understanding could supply techniques for
automated lipreading or for improved speech recognition
in noisy environments. As part of the effort, Yuhas is
investigating the possibility of directly mapping digitized
video images of a speaker's lips to the short-term power
spectral density of the accompanying speech. He has per­
formed a number of experiments using the pattern-map­
ping mode to successfully train networks to perform the
mapping. Figure 6 is an example of the data he is work­
ing with, which have up to now been limited to static im­
ages of vowel and dipthong sounds_

One standard technique for such a mapping is to use
the training data as a library. When a new lip image is
encountered, the library is searched via some matching

Visual signal (lips)

criterion, such as correlation, and the output spectrum
is chosen from the closest matches. In another variation,
the library can be used as a set of basis vectors to form
a linear mapping. Yuhas has been able to show, for the
limited cases examined thus far, that a network can re­
produce the acoustic power spectrum somewhat better
than the standard library techniques. This implies that
some of the subtle variations in the acoustic signal are
reflected in the lip image. Current plans are to expand
the experiments by including information about the lip
dynamics in the form of temporal image data, rather
than just static images.

HARDW ARE ACTIVITIES
Along with our numerical and theoretical activities,

we have been investigating potential hardware implemen­
tations of the neurodynamic computing algorithms.
There are two possible paths to be taken, digital or ana­
log, and both are being examined. We feel that there
is much near-term potential in connectionist algorithms
as signal-processing tools, through a straightforward
simulation of the network dynamics on conventional dig­
ital machines. Even greater potential can be realized
through special-purpose digital processors, where the ar­
chitecture has been tuned to the network simulation. The
bigger, far-term potential lies in the analog approach.

On the digital side, there is already a good deal of
commercial activity to develop products based on con­
ventional pipelined array processors with software shells
that allow easy implementation of a variety of neural
nets. Our activities should not overlap that type of prod­
uct development. The near-term products that will
emerge from the commercial developers will likely strike
a balance among generality, performance, and ease of
use. Generality is a primary ingredient for a viable com­
mercial product because of the need for wide appeal to
generate larger-volume sales. That is not necessarily so
for application in certain research and military systems.

If one is willing to sacrifice generality, the simulation
of the dynamics is a good candidate for an application-

Neural network

~

Acoustic signal spectrum
1 .0 ,----,..-----r------r---.,

Q) 0.8
"0

.~ a.
~ 0.6
"0
Q)

~ 0.4
E o
Z 0.2

O~--~---L--~--~

o 10 20 30 40
Normalized frequency

Figure 6-Examples of the visual-to-acoustic pattern-mapping data being used by Ben Yuhas to train a network to perform
the mapping. Digitized video images of a speaker's lips are used as the inputs to the bottom layer of the network. Supervised
learning is then used to force the outputs of the top layer of units to be the normalized short-term power spectral densities
that correspond to those video frames. Those spectra can then be used to help reproduce the speech.

238 Johns Hopkins A PL Technical Digest, Volume 9, N umber 3 (1988)

specific coprocessor of the extremely low-cost variety es­
poused in Ref. 10. That is, with a combination of custom
chips and standard commercial parts in an architecture
specifically tuned to Eqs. 1 through 6, it may be possible
to get very high performance for very low cost. The ma­
jor computation required is a sparse matrix multiply,
which should pipeline ol.llte well. In addition, preliminary
studies have indicated that precision of only about 7 or
8 bits is needed in W. We have been examining architec­
tural possibilities for a single-board personal-computer
coprocessor for Eq. 1 that would perform at least 30
x 106 multiply/accumulations per second for weight
matrices of several million connections. The target com­
ponent and fabrication cost for the board is less than
$1000.

Craig Vandervest, of the APL Fleet Systems Depart­
ment' has developed a candidate architecture for such
a board as a course project in his master's degree pro­
gram. His approach is based on pipelining, and it capital­
izes on the sparse-matrix representation and 8-bit preci­
sion requirement. Although his work has only recently
been completed and is not yet documented, it has served
as a starting point for further development of the appli­
cation-specific approach. In a joint effort with the Com­
puter Engineering Group of the Technical Services De­
partment, that work will be continuing for the remainder
of 1988. The work will include further investigation of
the important issue of precision requirements.

Kim Strohbehn is leading the development of a com­
pletely different type of application-specific processor
based on a connectionist architecture. It is a wafer-scale
very-Iarge-scale-integration (VLSI) implementation of an
optimal detector for drifting, narrowband signals. The
processor would operate on images formed by taking
sequences of power spectra of a received low-level broad­
band signal. If the image rows are the sequential power
spectra, then the image is known as a time-frequency
image. A drifting, narrowband signal would appear in
the image as a faint, hard-to-detect diagonal line. De­
tection of such a signal is a problem of general applica­
bility, including the search for extraterrestrial intelligence.

Our approach is to use neural units that are each con­
nected to an individual sub field of the time-frequency
image (Fig. 7). The receptive field of each unit corre­
sponds to a unique linearly drifting signal, and by thesh­
olding the summed signal in that field the unit acts as
a near-optimal feature detector for that line. We call the
receiver a "brute force detector" (for obvious reasons);
the idea for it arose from the work of Michael Roth of
the APL Fleet Systems Department (see the article by
Roth elsewhere in this issue). The outputs of the recep­
tor units themselves form an image in frequency-slope
space, and we envision a subsequent layer of units to
detect patterns in the output.

A test chip for the receiver has been designed and fab­
ricated in complementary metal oxide silicon (CMOS).
The test chip contains two receptive units for prototyp­
ing. Laser reconfigurable test cells have been included
on the same chip to explore the possibility of wafer-scale
integration using techniques described in Ref. 11. The

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

OJ
E
i=

Jenkins - Neurodynamic Computing

Frequency ~

Figure 7-A neural-network detector for drifting, narrowband
signals. Each unit in the second layer is a feature detector that
accumulates pixel values in a specific region of a time­
frequency image. That region is called the unit's receptive field.
The unit effectively performs a noncoherent integration of a par­
ticular frequency and drift rate, acting as a near-optimal receiv­
ing element.

idea is to fill the wafer with neural units that can be as­
signed receptive fields, and then eliminate the nonwork­
ing elements by laser reconfiguration. Our results indicate
that on the order of 105 receptive fields could be imple­
mented on a 6-in. wafer using Strohbehn's design.

In collaboration with the Department of Electrical and
Computer Engineering at the Homewood Campus, an
initiative has also been started in the technology needed
for analog implementations. This activity is, by design,
lagging our theoretical and applications effort. Our ap­
proach is modeled after that of Professor Carver Mead
at the California Institute of Technology. Dr. Mead is
an innovative thinker who has had major influence in
this country on the technologies associated with integrat­
ed circuits. He has recently mapped out an approach to
analog computation that capitalizes on the high integra­
tion densities and low fabrication cost achievable with
metal-oxide-silicon field-effect transistor (FET) devices.
(In my opinion, it is possible to have a useful and
productive research program in advanced computing
through the simple strategy of trying to keep up with
Carver Mead.)

In digital circuits, FETs are operated as switches con­
trolled by a voltage applied to their gates. To turn on
the device, the gate voltage is above the threshold voltage
(the critical voltage for which a highly conducting chan­
nel forms between source and drain). \\tben the gate volt­
age is below the threshold voltage, the switch is off. In
the off state, the device operates in the subthreshold re­
gime, with only very tiny (nanoamperes) diffusion cur­
rents flowing between source and drain. In digital appli­
cations such a subthreshold current is considered a para­
sitic nuisance. Mead, however, has emphasized that it
has a repeatable logrithmic dependence on low-level gate
voltage that gives it very desirable properties for analog
computation. In a textbook soon to be released,12 he
has outlined the theory for subthreshold FET operation,
described a number of circuits that can be used as com­
putational elements, and illuminated a path toward ap-

239

Jenkins - Neurodynamic Computing

plication of the technology to neural-network computa­
tions. Dr. Mead graciously supplied us with a preprint
of that text to help us implement an analog VLSI course
at The Johns Hopkins University.

Using the subthreshold techniques described by Mead,
it should be possible to design application-specific VLSI
chips with a good deal of analog computing power. Fur­
ther, no special fabrication techniques would be required
to achieve the normally high integration levels associated
with metal-oxide-silicon chip fabrication. There is a tre­
mendous advantage in cost and parts accessibility if such
chips can be fabricated by the standard 1.5-JLm CMOS
foundry processes. The option of combining digital and
analog circuitry on the same chip for signal-processing
applications becomes viable. Also, the self-compensation
techniques discussed by Mead may make analog process­
ing inherently more radiation-resistant than digital pro­
cessing in spacecraft applications. Thus, there are appli­
cations other than neural networks that could profit from
the technology.

Through a joint effort with Dr. Andreas Andreou,
a Research Associate in the Department of Electrical and
Computer Engineering on the Homewood Campus,
much progress has been made in establishing an analog
VLSI capability there. During the past two years he has
set up a chip-probe facility that can reliably measure cur­
rents as small as 1 pA, a crucial requirement for testing
subthreshold analog chips. An analog-circuit-design lab­
oratory course based on the preprint of Mead's textbook
has been introduced at the Homewood Campus, and
several student projects have been started. Those projects
are designed to help us all become familiar with design
and test techniques, to gain some experience with
foundry-fabricated devices, and to start building a library
of proven computational cells. One of the projects, a
Bidirectional Associative Memory (BAM), has been
fabricated in a prototype CMOS chip.

The BAM design was carried out by two students at
the Homewood campus, Kwabena "Buster" Boahen and
Philippe Pouliquen, and is based on a neural-network
architecture discussed by Bart Kosko. 13 In that system,
the units are arranged in two layers with two-way syn­
aptic connections between the layers (Fig. 8). The units
have two possible states (+ 1 and - 1) that are deter­
mined by thresholding the sum of their weighted inputs.
Kosko analyzed the autoassociative properties of the sys­
tem and showed that it would store and retrieve binary
patterns from noisy or incomplete initial conditions. The
system is similar to the one being used for the face­
recognition experiments (Fig. 4), but the use of two-way
connections makes it effectively have a symmetric weight
matrix so that its character is similar to that of a Hop­
field net.

Boahen and Pouliquen have cleverly implemented the
system using subthreshold analog techniques, and a tiny
prototype chip has been fabricated in 3-JLm CMOS. The
chip (Fig. 9) contains 32 units and can be programmed
by external digital input to store 8 binary patterns of 32
bits. The initial conditions for pattern retrieval are input
into the chip using the same input pads as those used

240

A layer

c:
c: 0
0 .~

i~
>

t~ "E
ca
:!:

~ .:::e.
u 0 ca

l..L. co

Slayer

Figure a-Architecture for a bidirectional associate memory.
8 ; and b; are neural units with possible states of + 1 and -1.
The W;j are synaptic connections that control activation in both
directions. Memories are stored in the system as binary-pattern
pairs.

Figure 9-Photomicrograph of the BAM chip. The dense cen­
tral area is the storage cells for the connection weights, along
with the analog cells for forming the activity potentials from
the weights. The periphery contains the interface to the out­
side world, including logic for externally loading the weights.

for programming the connection strengths. The fabri­
cated chips have been tested, and a description of the
work is being submitted for publication. Our plan is to
expand the design to a full-sized (9-mm) chip in standard
1.5-JLm technology, which will easily contain 256 units
and be programmed for 256 stored patterns.

REFERENCES
1 D. E. Rume1hart and 1. L. McClelland, eds., Parallel Distributed Processing,
Vols. 1 and 2, MIT Press, Cambridge, Mass. (1986) .

21. 1. Hopfield, "Neural Networks and Physical Systems with Emergent Col­
lective Computational Abilities," Proc. Nat!. A cad. Sci. USA 79, 2554-2558
(1982).

3F. 1. Pineda, "Generalization of Back Propagation to Recurrent Neural Net­
works," Phys. Rev. Lett. 18, 2229-2232 (1987).

4F. 1. Pineda, "Dynamics and Architecture in Neural Networks," 1. Complexity
4 (special issue on neural computation), 181 -211 (1988).

5G. A. Carpenter and S. Grossberg, "The Art of Adaptive Pattern Recognition
by a Self Organizing Neural Network," IEEE Computer 21, 77-88 (1988).

6A. Atiya, "Learning on a General Network," in Proc. IEEE Con! on Neural
Information Processing Systems, D. Z. Anderson, ed., Denver, Colo. (1987).

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

7G. Tesauro and T. 1. Sejnowski, "A Parallel Network That Learns to Play
Backgammon," submitted to Artificial Intelligence.

81. 1. Hopfield, "Neural Computation of Decisions in Optimization Problems,"
BioI. Cybern. 52, 141-152 (1985).

91. S. Denker, ed., Neural Networks jar Computing, AlP Can! Proc. 151,
Snowbird, Utah, American Institute of Physics, New York (1986).

lOR. E. lenkins and D. G. Lee, "An Application-Specific Coprocessor for High
Speed Cellular Logic Operations," IEEE Micro 7, 63-70 (Dec 1987).

111. l. Raffel, 1. R. Mann, R. Berger, A. M. Soares, and S. Gilben, "A Generic
Architecture for Wafer-Scale Neuromorphic Systems," in Proc. IEEE First
Int. Can! on Neural Networks, San Diego, Calif. (1987).

12c. A. Mead, Analog VLSI and Neural Systems, preliminary notes for publica­
tion (1986).

13B. Kosko, "Bidirectional Associative Memories," IEEE Trans. Syst. Man.
Cybern. 18, 49-60 (1988).

ACKNOWLEDGMENT -Clearly this anicle describes a good deal of pub­
lished work in the open literature, as well as the collective activities of a number
of people within our group of collaborators- at APL: F. Pineda, K. Strohben,
S. Yionoulis, G. Lee, 1. Hayes, D. Redish, and C. Vandervest; and at the Home­
wood Campus: A. Andreou, B. Yuhas, K. Boahen, P. Pouliquen, and A. Pava­
sovic. As a group we have profited by the occasional advice and wisdom of T.
Sejnowski at the Homewood Campus, one of the leading researchers in the field.

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

THE AUTHOR

Jenkins - Neurodynamic Computing

ROBERT E. JENKINS was born in
Baltimore and received an M.S. de­
gree in physics from the University
of Maryland in 1%5. He joined
APL in 1%1 and is supervisor of the
Computer Science and Technology
Group, an elected member of the
APL Advisory Board, a member of
APL's standing Independent Re­
earch and Development Committee,
the program manager for Space
Department Independent Research
and Development, a member of the
Electrical Engineering Program
Committee for The Johns Hopkins
G. W. C. Whiting School of Engi­
neering, and a lecturer in electrical

engieering at both the Homewood Campus and the APL education center.
During 1978, Mr. Jenkins was visiting scientist at the Defense Mapping
Agency. In 1985, he was awarded the Dunning professorship at the
Homewood Campus, where he introduced a new course in very-large­
scale integration design and conducted research in cellular automaton
processing.

241

