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NEURODYNAMIC COMPUTING 

For several years, the Computing Science and Technology Group (SlA) of the APL Space Depart­
ment has been engaged in research and development in the emerging technology of connectionist, or 
neural-network, systems. Some of the earlier work involved the development of the Hopkins cellular 
logic processor. This article describes the viewpoint on this technology that has emerged during a cooperative 
effort between APL and The Johns Hopkins University Department of Electrical and Computer Engi­
neering. A number of ongoing projects within that cooperative effort are discussed. 

CONNECTIONIST ARCHITECTURES 

Neural-network computing technology is currently in 
vogue and is going through an explosion of activity that 
is typical of a rapidly emerging technology. The subject 
is not new, though, and has been an active field of re­
search for a long time. APL is a relative newcomer in 
the field. It would be impossible in a paper of this scope 
to survey and cite all of the important past research re­
sults. Instead, we draw the reader's attention to the re­
cent two-volume work by Rumelhart and McClelland 
et aI., 1 which presents most of the main ideas of the 
field and contains many references. 

Why the sudden surge of activity in the 1980s? It is 
probably the result of understanding and many ideas fi­
nally coming together. A key contributing factor is the 
willingness of researchers (typified by J. J. Hopfield 2) 
to unshackle themselves from the details of neurologi­
cal systems and study physical dynamic systems that ex­
hibit only the major architectural features of the brain. 
That has led to some colorful and inspirational results 
that captured the fancy of many people. 

Neurological systems are dynamic networks of com­
municating cells that influence one another's behavior, 
and physical systems that capture that property are com­
monly called connectionist systems. The main architec­
tural features of such dynamic systems are as follows: 

1. The system is made up of a large number of simple, 
identical elements, variously referred to in the liter­
ature as units, neural elements, or automata. 

2. Each unit stores very little information internally­
typically only its own scalar state or "activity 
level. " 

3. Each unit is connected to some number of other 
units to form a network; the units transmit their 
activity states one to another and use that informa­
tion to compute new states of activity. (The anal­
ogous connections in biological systems are called 
synapses.) 

4. Information being processed by the system is rep­
resented by globally distributed patterns in the ac­
tivity levels of large groups of units. The program 
for processing information (or knowledge) is stored 
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within the system as globally distributed patterns 
of connection strengths, or "synaptic weights." 

5. Each unit determines its new state via a nonlinear 
function of its summed, weighted inputs from the 
other units connected to it. This nonlinearity seems 
to be crucial to much of the interesting behavior 
of such systems. Earlier studies of linear connnec­
tionist systems failed to produce some of the rich 
results currently observed with nonlinear models. 

The idea of storing information and knowledge as dis­
tributed patterns of weights and activity over large sets 
of units, rather than in the processing units themselves, 
is a principal feature. That, coupled with the fact that 
each unit computes its own change in state from locally 
derived information (its input connections), allows the 
system dynamic behavior to be massively parallel in na­
ture. Literally all of the information in the system is be­
ing processed simultaneously as the system evolves in 
time. In addition, for large numbers of connections, the 
system exhibits a great deal of fault tolerance, since 
failures of individual units or connections do not signif­
icantly change the global response or resulting patterns 
in the system state. The accepted term for computations 
that use such a connectionist system is "parallel, distrib­
uted processing," where the adjective distributed refers 
to how information is stored, not the spatial arrangement 
of the units. 

Systems with the above properties are being researched 
from a broad range of perspectives: cognitive science, 
neurology /neuro-anatomy, physics/biophysics, comput­
ing science, and engineering. Our current effort, with 
Dr. Fernando Pineda as the Principal Investigator, has 
been supported by both APL internal research and de­
velopment funds and a three-year grant from the U.S. 
Air Force Office of Scientific Research. The activity has 
profited from collaboration with the Homewood Cam­
pus of The Johns Hopkins University, principally Dr. 
Andreus Andreou of the Electrical and Computer En­
gineering Department and Ben Yuhas, a Ph.D. candi­
date in that department. Our group focus is from the 
computing and electrical engineering viewpoints, from 
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which we see two important interest areas for those dis­
ciplines. 

First, neural-network models provide an interesting 
signal-processing tool, of which adaptive linear arrays 
is a special case. This tool will augment traditional meth­
ods for complex processing tasks on a wide range of sig­
nals such as grey-level images, acoustic signatures, and 
radar returns. The image-processing power of cellular­
logic operations (a particularly simple connectionist sys­
tem) is a convincing example. 

Second, we advocate the (not original) viewpoint that 
neural networks constitute a new paradigm for comput­
ing, which will surely impact the underlying architectural 
structures and hardware that will implement it. 

The traditional view of a computer is a finite-state ma­
chine performing sequential sets of instructions. Parallel­
ism, through the introduction of multiple such machines, 
does not change that traditional view very much. On the 
other hand, the neural computation paradigm is a more 
general view of the computer as a dynamic system evolv­
ing under the control of dynamic laws and external stim­
ulus (that is, inputs). Much of the recent excitement in 
neural networks was, in fact, generated by Hopfield's 
suggestion in 1983 that the collective properties of phys­
ical dynamic systems could be used to directly implement 
computing tasks. The major benefits of such a comput­
ing paradigm will be realized by hardware in which the 
physics of the underlying machine and the computational 
algorithm are intimately related. 

An appreciation of the potential benefit of such an 
approach to computing has focused our activities onto 
dynamic systems with connectionist architecture that 
have continuous-valued states and equations of motion 
expressible as differential equations. Such systems have 
the benefits of being mathematically familiar to physicists 
and of relating well to analog electronics for implemen­
tation. In the past year, Fernando Pineda of APL has 
developed computational algorithms for a fairly general 
and well-known form of such systems, and has shown 
that those algorithms are generalizations of some earlier 
results. 3

,4 In the following sections, that particular dy­
namic system is briefly described, along with its use in 
computational tasks. The description paraphrases and 
somewhat oversimplifies the theoretical material present­
ed in Ref. 4, and it also discusses concepts that are more 
or less standard at this point. 

Some of our earlier efforts involved cellular logic op­
erations-simple two-state dynamic systems with connec­
tions between nearest neighbors. Our current concentra­
tion on the particular system described below by no 
means implies that it is the only fruitful connectionist 
approach. It is just that we are forced to narrow our 
focus because of the limitations of our resources. Fur­
ther, we feel that the major payoff of such a technology 
will come through eventual implementations in analog 
microelectronics, for which the system below is particu­
larly well suited. Such is the subtle unifying theme of 
the work described in this article. In the remaining sec­
tions, several projects are described that will appear to 
be rather loosely coupled, partly because they are of ne-

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988) 

cessity funded from diverse sources within the APL 
Space Department, and partly because they reflect the 
diverse interests of the people involved in the collabora­
tion. 

A NEURODYNAMIC SYSTEM 
The basic model of the system that Pineda has stud­

ied is shown in Fig. 1. The units are arbitrarily connected, 
and an arbitrary subset receive inputs Ii from the ex­
ternal world. The state of the ith unit is described by 
the continuous variable Xi that represents the compo­
nents of the system state vector X. The connection 
strengths are described by the continuous variables Ujk 
that form a connection matrix W. The dynamic equa­
tions of the system are: 

dXi 
= -Xi + F(Vi ) + Ii (1) 

dt 

where Vi = Ej WijXj. The quantity Vi is loosely anal­
ogous to the so-called "activity potential" in biological 
systems. The nonlinear activation function F is frequent­
ly chosen to be the continuous sigmoid given by 

1 
F( V) = 1 + e - U • (2) 

The saturation property of F bounds its values between 
o and 1, and the continuous valued input vector I is 
usually normalized to that range. 

Equation 1 and various forms similar to it have been 
widely studied in the literature. Sometimes Ii is placed 
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1. Each unit has an activity potential Vi = Lj wij Xj . 

2. Each produces an output Xi that is a nonliner function 
of its activity potential: Xi = F (Vi ). 

3. The set of Xi is a vector of real r:umbers specifying the state 
of the system at any time. 

4. The network connectivity is described by a "synaptic weight" 
matrix ~ j that represents the connection strengths. 

Figure 1-A dynamic connectionist network. 
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inside the function F and added to Ui • In some cases 
the models have been discrete, whereby Xi is restricted 
to a finite set of states, such as 0 or 1. In some cases 
the dynamics are stochastic. For example, rather than 
a time derivative, the right-hand side of Eq. 1 could be 
interpreted as a probability of change in the state of unit 
i during the next time interval. 1 In addition to Eq. 1, 
Grossberg5 has over the years treated numerous similar 
systems, some of which are much more complex, and 
his work merits careful attention. 

Within APL's Computing Science and Technology 
Group, it is generally felt that a system described by Eqs. 
1 and 2 captures the major essence of neurodynamic 
computation. It contains, as special cases, both the con­
tinuous Hopfield Net 2 (symmetric weight matrix) and 
the popular feed-forward architecture 1 Oower triangular 
weight matrix). Also, as Hopfield has pointed out, it is 
amenable to implementation in analog electronic hard­
ware. Consequently, we have concentrated on such a sys­
tem, reviewing previously published work and working 
to contribute to the further understanding of potential 
applications. 

When used in a processing task, the "answers" that 
the network gives are generally the final state-vector re­
sponse to a set of external inputs or to a set of initial 
conditions. By final response, we mean the stable points 
of static equilibrium of the system. Hence, the question 
of stability is of great importance and is of major con­
cern to researchers. 

The general problem of stability of nonlinear, multi­
dimensional systems is difficult; a saving grace is that, 
empirically, we have observed large networks described 
by Eq. 1 to be stable under a wide variety of connec­
tivity patterns. It appears that one must make a definite 
effort to construct weight matrixes that induce instability. 
In fact, Atiya 6 has shown that systems described by 
Eq. 1 will converge to a unique fixed-point attractor if 
the magnitudes of the weights are small enough. The sta­
bility question is an active area of research, but for our 
present purposes we assume that we are dealing with a 
dissipative system. That is, for a fixed set of inputs I 
and initial conditions, Xo, 

dX 
- 0, 

dt 
as t - 00 . (3) 

Under this condition, the system state X converges to 
point attractors A that are solutions to the equation 

(4) 

We can arbitrarily denote a subset of the final state 
as being the network "outputs," which leads to a picture 
such as Fig. 2. The network can be thought of as a 
"black box" that responds with transient behavior when 
it receives a new set of fixed inputs, or when it is per­
turbed into a new state. Eventually the system restabilizes 
at a new fixed point and produces a new set of outputs. 
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Inputs I applied 
to subset of units 
and held fixed. 

Network shortly comes to 
......... ~ equilibrium. 

Final state depends on I, W, 
and Xo 

Figure 2-Dynamic neural network as a black box. Transient 
activity is generated each time the system is perturbed by the 
external world. Useful computations are done as the system 
comes back to static equilibrium. 

LEARNING 

To be useful as a cQmputational tool, the network 
needs to be programmed; that is, the fixed points of the 
system in response to inputs must be moved around to 
useful spots in the state space of A. That is done by ad­
justing the connection weights, since Eq. 4 shows that 
the system fixed points are obviously a function of W. 
When done via an adaptive procedure, such a process 
is called "learning." 

Computer models of neural networks learn by adjust­
ing themselves (via some algorithm) to a sequence of ex­
ternal inputs, not by being reprogrammed with a new 
set of logic or rules. The program logic is simply the so­
lution to the dynamics of Eq. 1, along with an algorithm 
for weight adjustment. 

Learning is generally done through an iterative proce­
dure that slowly adjusts the weights by small increments 
in a sequence of repeated presentations of patterns to 
be learned. For each presentation the system is allowed 
to stabilize to a fixed point, which is then used to deter­
mine a small adjustment to the weights. (For some spe­
cial cases, such as the Hopfield Net2 or linear net­
works, the weights can be computed in closed form from 
the patterns.) 

Thus, there are three different time constants associat­
ed with the overall dynamics when learning is included. 
The changes in the inputs happen slowly relative to the 
settling time of the network, so the network stays in a 
kind of quasi-equilibrium with the inputs. Learning, or 
adjusting the weights in response to the changing inputs, 
occurs over time scales that are longer yet. The process 
is analogous to those processes that physicists call adia­
batic. 

There are numerous choices for learning algorithms, 
and it is beyond the scope of this article to review the 
field. The class of learning algorithm that has been the 
focus of our current effort is known as "supervised" 
learning, in which a priori knowledge about the desired 
system output is used to adjust the weights. That is, the 
fixed points are purposefully moved and positioned in 
the state space of the system. By contrast, unsupervised 
learning allows the fixed points to move where they may 
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under the weight-adjustment algorithm. In both classes 
of learning, the network gradually begins to respond in 
an organized way to temporal variations in the inputs. 

One way to position the fixed points is to minimize 
a measure of the error in the system outputs over a range 
of inputs. Such an approach has become fairly standard 
in the literature, and has been the recent focus of our 
work. Consider a set ex of input vectors px, on which 
the network is to be trained. We choose a subset k of 
units to represent the system output, and for each input 
vector in the training set there is a corresponding desired 
target state T t for the outputs. The weights can be ad­
justed by minimizing the positive definite function 

E = Yz E E (Tt - A t ) 2 , (5) 
ex k 

where the vector A ex is the fixed point that corresponds 
to the exth input pattern. 

The minimization of E can be done in various ways, 
most of which are essentially iterative using the gradient 
of E in the weight space. For each individual pattern 
in the summation over the training set, the contribution 
to the gradient can be shown to be the outer product 
of an error term and the corresponding fixed-point state 
vector of the system. Pineda4 has derived a general for­
mulation of the error term for arbitrarily connected net­
works that has the form of a differential equation. The 
learning process in terms of the gradient is typically also 
cast in the form of a differential equation: 1 

dW 

dt 

1 
--'IE, 

T 
(6) 

where V is the gradient with respect to the components 
of the weight matrix W. The parameter T is sometimes 
called the gain, but is best thought of as a time constant. 
Equation 6 can also be made second-order in time, which 
is equivalent to adding what many researchers have re­
ferred to as a "momentum term." 1 That term appears 
in the second-order difference equation as a terrr.. propor­
tional to the first difference in W, and has been found 
to improve convergence of the steepest-descent method 
of minimizing E by reducing the sensitivity to fine-scale 
undulations of the surface. 

For historical reasons, such a process is called back­
propagation, and special cases of it have been used for 
some time. 1 The name is derived from the concept that 
the process propagates the observed error in the output 
units back into the network to correct the weights. Pine­
da's formulation of back-propagation as being complete­
ly described by a set of first-order differential equations 
includes the learning process as part of the continuous 
dynamic system. That is an important step toward imple­
menting the entire system, including learning, in analog 
hardware, although it is not clear to us at this point how 
to accomplish it with electronic devices. It is also true 
that minimizing the function in Eq. 5 may not necessarily 
be the best way to accomplish learning, although it is 
a useful place to start for analog implementation. 
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PATTERN-MAPPING AND 
AUTO-ASSOCIATION 

There are two fundamental computational tasks that 
can be performed by a system such as Eq. 1: continuous 
pattern-mapping and auto-association. Pineda's learn­
ing algorithm can be applied to either, although there 
are subtle differences between the two. 

It is easy to see from Eqs. 1 and 4 that the fixed-point 
attractors of the system are a function of the weights, 
the inputs, and the initial conditions for Eq. 1; that is, 

A = g(W, I, Xo) . (7) 

For a given connection matrix and a fixed input vector, 
there may be more than one fixed-point attractor, and 
if the system starts in a state nearby one of these, it will 
stablize at that point. Use of the term nearby implies 
a basin of attraction associated with each fixed point. 
If the weight magnitudes are small enough (Atiya's con­
dition 6), the fixed points are degenerate, and all possi­
ble initial conditions lie in a single basin of attraction 
associated with a unique fixed point. Pattern-mapping 
makes use of that property, although the uniqueness 
properties are n9t well understood for networks with 
feedback connections. 

In pattern mapping, the value of Xo is set to a con­
venient fixed value (such as all zeros), an input is applied, 
and the system is then allowed to relax to its fixed point 
of equilibrium. Provided that Atiya's condition is satis­
fied, that establishes a unique, stable output state. If the 
input is changed an infinitesimal amount, the output 
state will correspondingly change because F in Eq. 4 is 
a continuous function. The output thus becomes a con­
tinuous, but complicated, function of the input. In that 
case the system will "interpolate" in an extremely com­
plex function if it has been programmed through learn­
ing to give the correct output for a sufficient number 
of cases that span the input domain. Pictorially, the pro­
cess could be visualized as shown in Fig. 3. 

As an example of that type of computation, suppose 
l ex is a set of 3000 or so carefully selected backgammon 
situations, that is, suitably encoded representations of 
the markers at each point and the current dice throw. 
The required corresponding outputs T ex would be suita­
bly encoded representations of appropriate moves. After 
adjusting the weights so that all the situations in the 
training set give the correct output, the network has pre­
sumably formed some internal representation of the 
function relating the appropriate move to the board po­
sition. The network then plays a reasonable game of 
backgammon by interpolating that function for new po­
sitions. This example is a simplified description of actual 
work done by G. Tesauro and T. Sejnowski using the 
back-propagation learning algorithm on networks of 
about 500 units. 7 

In the auto-associative mode, the patterns to be learn­
ed are stored in the network as retrievable memories rath­
er than input mappings. In this case, the value of the 
input vector I is set to a fixed value (usually 0). Then 
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Input states 

Figure 3-Pictorial view of pattern-mapping mode. Training set 
11 - In is used to adjust the synaptic weights to force the net­
work to form an internal representation of a complicated func­
tion. Since the output state is a continuous function of the input, 
the network will interpolate in response to a new input that is 
not a member of the training set. 

an initial condition Xo is applied and the system is al­
lowed to converge to the fixed point within whose basin 
of attraction the initial state lay. The state of the system 
at that point becomes the output. In this mode, the learn­
ing process proposed by Pineda 4 breaks the degeneracy 
in the fixed points and moves them to positions corre­
sponding to the patterns to be stored, so that the net­
work behaves in the same manner as an associative mem- . 
ory. The training set in this mode becomes the set of 
patterns used as initial conditions Xoa rather than as in­
puts. Unlike the pattern-mapping mode, the output of 
the system is now a sharply discontinuous function of 
the initial conditions. 

As an example of such a computation type, suppose 
Xoa is a set of normalized grey-level images of faces. 
The learning process would establish each image as a 
fixed-point attractor for the system. If a noisy or dis­
torted version of one of the faces is used as the starting 
state, the system will stabilize at the fixed point corre­
sponding to that face. The initial state need only lie in 
the correct basin of attraction. This pattern-recognition 
example has been used by our group to test the auto-as­
sociative learning mode of Eq. 6. Some of the results 
are shown in the next section. 

The two computations are interesting approaches to 
function-mapping and pattern-recognition because the 
rules or underlying algorithms do not have to be explicit­
ly expressed or even known. In both cases, the networks 
are programmed with a set of examples, which can be 
a great advantage in certain problems. Of course, it is 
quite possible that a completely different and more tradi­
tional approach could be used to develop a computer 
algorithm that would be programmed with examples. We 
stress again our view that the main advantage of an ap­
proach based on dynamic systems (Eq. 1) is the poten­
tial for direct implementation in analog electronics. 
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APPLICATION TO OPTIMIZATION TASKS 
There is another kind of computation that can be per­

formed by a system represented by Eq. 1, which derives 
from the property of global stability. If the system is 
in fact asymptotically stable, then, by definition, there 
will exist what is referred to as a Lyapunov function for 
the system. That is, there will exist at least one positive 
definite function of the weights, inputs, and state vector 
that will monotonically decrease to a global minimum 
as the system stabilizes to a fixed point from any start­
ing condition. That is a (nonrigorous) statement of the 
second theorem of Lyapunov. 

Let us suppose for the moment that we could find 
such a function, denoted as L (X,W,I). Let us further 
suppose that some optimization problem can be explicitly 
formulated in terms of minimizing a cost function, 
C(p ,ex,(3) with respect to a set of parameters, P. Sup­
pose now we can perform a direct mapping of the cost 
function to the Lyapunov function: 

C(P,ex,{3) ..... L(X,W,I) , (8) 

by making a functional correspondence between P and 
X, and between the sets of constants ex, {3 and W,I. Then, 
having set Wand I to the values corresponding to ex and 
{3, when the system stabilizes from any starting condi­
tion, the final state vector X is the solution to the minimi­
zation problem. 

For the special case of a symmetric weight matrix, 
Hopfield 8 was able to derive for Eq. 1 a Lyapunov 
function that happens to be quadratic in X. He showed 
how that function could be mapped to the traveling sales­
man problem, and demonstrated near-optimal solutions 
obtained by simulations of the dynamic system. The 
traveling salesman problem is one of a class of difficult 
computational problems in computer science. Since Hop­
field's work, there has been a plethora of published ap­
plications of this technique to various similar optimiza­
tion problems, such as resource allocation, optimal re­
ceivers, and tree search. 9 

To my knowledge, Hopfield's result for the symmetric 
case is the only known Lyapunov function for the system 
described by Eq. 1. Other less restrictive conditions for 
global stability may exist that could lead to solutions to 
other optimization problems. In fact, there is no reason 
to restrict the method to Eq. 1. The general technique 
of solving optimization problems by simulating an ap­
propriate dynamic system may be a viable algorithm for 
existing computers. The question is whether the required 
computation time for the simulation would be an im­
provement over existing search algorithms. I feel that 
such work could lead to interesting research possibilities 
for computer scientists who dare to stray from conven­
tional approaches. An exciting prospect, of course, is 
to have analog systems with programmed weights that 
will converge to solutions in milliseconds. 

NUMERICAL STUDIES 
To support our studies of neurodynamic computing 

and to investigate potential applications, we have imp le-
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mented fairly general software simulations of the system 
described by Eqs. 1 through 6. To achieve the flexibility 
needed for exploratory numerical experimentation, the 
software is written in the APL language. The programs 
run on IBM personal computers and on an Analogic 
back-end array processor for large networks. 

The major computing time is spent on the matrix mul­
tiplication term in Eq. 1, and the major storage/memory 
problem is in holding the weight matrix W, which can 
be quite large and sparse for typical networks. To allevi­
ate such problems, we have used a sparse matrix formu­
lation that compresses W with no assumptions about its 
block structure, and which pipelines very well on an ar­
ray processor. To improve the computation on the per­
sonal computers, the matrix multiply is written in as­
sembly language and the extended memory space is used 
to hold W. On the Analogic machine the programs can 
handle networks with up to 100,000 connections, and 
on the personal computer runs have been made with as 
many as 20,000 connections. 

As an example of our numerical experiments, the soft­
ware has been used to test the properties of the auto-as­
sociative operating mode using digitized video images of 
faces as the patterns. Working with faces is fun, and 
they are a convenient unclassified problem domain, typi­
fying the kind of difficult pattern-recognition that people 
do well but for which it is hard to quantify rules. Using 
the network connectivity shown in Fig. 4, six faces were 
learned. Tests were then performed to get a qualitative 
measure of the basins of attraction. The results of several 
of those tests are shown in Fig. 5, which shows time his­
tories of the system state vector starting from various 
initial conditions. 

55 
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Hidden layer of 50 units 

Interlayer 
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t 24 x 55 array of output units 
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Figure 4-A network topology for the auto-associative mode. 
X face is made a fixed-point attractor of the system. Any initial 
conditions for the units in the bottom layer that are in the ba­
sin of attraction of X face will cause the system to recall X face . 

The most important result of the tests was the ability 
of the system to recognize the patterns from initial con­
ditions that were spatially scaled, translated, or rotated 

Initial state Time~ 

Figure 5-Response of the system of Fig. 4 after having learned six faces. The pictures are a grey-level encoding of 
the state of the units in the bottom layer. The sequence shows the time evolution of the network starting from the 
initial state on the left. 
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up to about 10070 of the total picture size. Image or sig­
nal registration is a chronic problem in most real-world 
processing tasks, and the ability to deal with even small 
distortions of that type was encouraging. Other positive 
tests included destroying a number of connections in the 
network after learning, to demonstrate fault tolerance, 
and using networks with similar topology but which were 
sparsely connected. A negative result was the inability 
to store more than about a half-dozen faces in a network 
of 60,000 connections. The work is continuing with an 
emphasis on including second-order terms in the activity 
potential Vi of Eq. 1. In the second-order system, the 
potential is given by: 

Vi = E E Wijk XjXk . 
j k 

There is evidence that both memory capacity and learn­
ing rates are significantly increased by introducing higher­
order coupling terms. 

Other numerical experiments with this software system 
have been performed by Ben Yuhas to support his Ph.D. 
research in the Department of Electrical and Computer 
Engineering at the Homewood Campus of The Johns 
Hopkins University. Yuhas's research is directed to an 
understanding of the relation between an acoustic speech 
signal and the corresponding visual signal of the speaker's 
lips. Such an understanding could supply techniques for 
automated lipreading or for improved speech recognition 
in noisy environments. As part of the effort, Yuhas is 
investigating the possibility of directly mapping digitized 
video images of a speaker's lips to the short-term power 
spectral density of the accompanying speech. He has per­
formed a number of experiments using the pattern-map­
ping mode to successfully train networks to perform the 
mapping. Figure 6 is an example of the data he is work­
ing with, which have up to now been limited to static im­
ages of vowel and dipthong sounds_ 

One standard technique for such a mapping is to use 
the training data as a library. When a new lip image is 
encountered, the library is searched via some matching 

Visual signal (lips) 

criterion, such as correlation, and the output spectrum 
is chosen from the closest matches. In another variation, 
the library can be used as a set of basis vectors to form 
a linear mapping. Yuhas has been able to show, for the 
limited cases examined thus far, that a network can re­
produce the acoustic power spectrum somewhat better 
than the standard library techniques. This implies that 
some of the subtle variations in the acoustic signal are 
reflected in the lip image. Current plans are to expand 
the experiments by including information about the lip 
dynamics in the form of temporal image data, rather 
than just static images. 

HARDW ARE ACTIVITIES 
Along with our numerical and theoretical activities, 

we have been investigating potential hardware implemen­
tations of the neurodynamic computing algorithms. 
There are two possible paths to be taken, digital or ana­
log, and both are being examined. We feel that there 
is much near-term potential in connectionist algorithms 
as signal-processing tools, through a straightforward 
simulation of the network dynamics on conventional dig­
ital machines. Even greater potential can be realized 
through special-purpose digital processors, where the ar­
chitecture has been tuned to the network simulation. The 
bigger, far-term potential lies in the analog approach. 

On the digital side, there is already a good deal of 
commercial activity to develop products based on con­
ventional pipelined array processors with software shells 
that allow easy implementation of a variety of neural 
nets. Our activities should not overlap that type of prod­
uct development. The near-term products that will 
emerge from the commercial developers will likely strike 
a balance among generality, performance, and ease of 
use. Generality is a primary ingredient for a viable com­
mercial product because of the need for wide appeal to 
generate larger-volume sales. That is not necessarily so 
for application in certain research and military systems. 

If one is willing to sacrifice generality, the simulation 
of the dynamics is a good candidate for an application-
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Figure 6-Examples of the visual-to-acoustic pattern-mapping data being used by Ben Yuhas to train a network to perform 
the mapping. Digitized video images of a speaker's lips are used as the inputs to the bottom layer of the network. Supervised 
learning is then used to force the outputs of the top layer of units to be the normalized short-term power spectral densities 
that correspond to those video frames. Those spectra can then be used to help reproduce the speech. 
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specific coprocessor of the extremely low-cost variety es­
poused in Ref. 10. That is, with a combination of custom 
chips and standard commercial parts in an architecture 
specifically tuned to Eqs. 1 through 6, it may be possible 
to get very high performance for very low cost. The ma­
jor computation required is a sparse matrix multiply, 
which should pipeline ol.llte well. In addition, preliminary 
studies have indicated that precision of only about 7 or 
8 bits is needed in W. We have been examining architec­
tural possibilities for a single-board personal-computer 
coprocessor for Eq. 1 that would perform at least 30 
x 106 multiply/accumulations per second for weight 
matrices of several million connections. The target com­
ponent and fabrication cost for the board is less than 
$1000. 

Craig Vandervest, of the APL Fleet Systems Depart­
ment' has developed a candidate architecture for such 
a board as a course project in his master's degree pro­
gram. His approach is based on pipelining, and it capital­
izes on the sparse-matrix representation and 8-bit preci­
sion requirement. Although his work has only recently 
been completed and is not yet documented, it has served 
as a starting point for further development of the appli­
cation-specific approach. In a joint effort with the Com­
puter Engineering Group of the Technical Services De­
partment, that work will be continuing for the remainder 
of 1988. The work will include further investigation of 
the important issue of precision requirements. 

Kim Strohbehn is leading the development of a com­
pletely different type of application-specific processor 
based on a connectionist architecture. It is a wafer-scale 
very-Iarge-scale-integration (VLSI) implementation of an 
optimal detector for drifting, narrowband signals. The 
processor would operate on images formed by taking 
sequences of power spectra of a received low-level broad­
band signal. If the image rows are the sequential power 
spectra, then the image is known as a time-frequency 
image. A drifting, narrowband signal would appear in 
the image as a faint, hard-to-detect diagonal line. De­
tection of such a signal is a problem of general applica­
bility, including the search for extraterrestrial intelligence. 

Our approach is to use neural units that are each con­
nected to an individual sub field of the time-frequency 
image (Fig. 7). The receptive field of each unit corre­
sponds to a unique linearly drifting signal, and by thesh­
olding the summed signal in that field the unit acts as 
a near-optimal feature detector for that line. We call the 
receiver a "brute force detector" (for obvious reasons); 
the idea for it arose from the work of Michael Roth of 
the APL Fleet Systems Department (see the article by 
Roth elsewhere in this issue). The outputs of the recep­
tor units themselves form an image in frequency-slope 
space, and we envision a subsequent layer of units to 
detect patterns in the output. 

A test chip for the receiver has been designed and fab­
ricated in complementary metal oxide silicon (CMOS). 
The test chip contains two receptive units for prototyp­
ing. Laser reconfigurable test cells have been included 
on the same chip to explore the possibility of wafer-scale 
integration using techniques described in Ref. 11. The 
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Figure 7-A neural-network detector for drifting, narrowband 
signals. Each unit in the second layer is a feature detector that 
accumulates pixel values in a specific region of a time­
frequency image. That region is called the unit's receptive field. 
The unit effectively performs a noncoherent integration of a par­
ticular frequency and drift rate, acting as a near-optimal receiv­
ing element. 

idea is to fill the wafer with neural units that can be as­
signed receptive fields, and then eliminate the nonwork­
ing elements by laser reconfiguration. Our results indicate 
that on the order of 105 receptive fields could be imple­
mented on a 6-in. wafer using Strohbehn's design. 

In collaboration with the Department of Electrical and 
Computer Engineering at the Homewood Campus, an 
initiative has also been started in the technology needed 
for analog implementations. This activity is, by design, 
lagging our theoretical and applications effort. Our ap­
proach is modeled after that of Professor Carver Mead 
at the California Institute of Technology. Dr. Mead is 
an innovative thinker who has had major influence in 
this country on the technologies associated with integrat­
ed circuits. He has recently mapped out an approach to 
analog computation that capitalizes on the high integra­
tion densities and low fabrication cost achievable with 
metal-oxide-silicon field-effect transistor (FET) devices. 
(In my opinion, it is possible to have a useful and 
productive research program in advanced computing 
through the simple strategy of trying to keep up with 
Carver Mead.) 

In digital circuits, FETs are operated as switches con­
trolled by a voltage applied to their gates. To turn on 
the device, the gate voltage is above the threshold voltage 
(the critical voltage for which a highly conducting chan­
nel forms between source and drain). \\tben the gate volt­
age is below the threshold voltage, the switch is off. In 
the off state, the device operates in the subthreshold re­
gime, with only very tiny (nanoamperes) diffusion cur­
rents flowing between source and drain. In digital appli­
cations such a subthreshold current is considered a para­
sitic nuisance. Mead, however, has emphasized that it 
has a repeatable logrithmic dependence on low-level gate 
voltage that gives it very desirable properties for analog 
computation. In a textbook soon to be released,12 he 
has outlined the theory for subthreshold FET operation, 
described a number of circuits that can be used as com­
putational elements, and illuminated a path toward ap-
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plication of the technology to neural-network computa­
tions. Dr. Mead graciously supplied us with a preprint 
of that text to help us implement an analog VLSI course 
at The Johns Hopkins University. 

Using the subthreshold techniques described by Mead, 
it should be possible to design application-specific VLSI 
chips with a good deal of analog computing power. Fur­
ther, no special fabrication techniques would be required 
to achieve the normally high integration levels associated 
with metal-oxide-silicon chip fabrication. There is a tre­
mendous advantage in cost and parts accessibility if such 
chips can be fabricated by the standard 1.5-JLm CMOS 
foundry processes. The option of combining digital and 
analog circuitry on the same chip for signal-processing 
applications becomes viable. Also, the self-compensation 
techniques discussed by Mead may make analog process­
ing inherently more radiation-resistant than digital pro­
cessing in spacecraft applications. Thus, there are appli­
cations other than neural networks that could profit from 
the technology. 

Through a joint effort with Dr. Andreas Andreou, 
a Research Associate in the Department of Electrical and 
Computer Engineering on the Homewood Campus, 
much progress has been made in establishing an analog 
VLSI capability there. During the past two years he has 
set up a chip-probe facility that can reliably measure cur­
rents as small as 1 pA, a crucial requirement for testing 
subthreshold analog chips. An analog-circuit-design lab­
oratory course based on the preprint of Mead's textbook 
has been introduced at the Homewood Campus, and 
several student projects have been started. Those projects 
are designed to help us all become familiar with design 
and test techniques, to gain some experience with 
foundry-fabricated devices, and to start building a library 
of proven computational cells. One of the projects, a 
Bidirectional Associative Memory (BAM), has been 
fabricated in a prototype CMOS chip. 

The BAM design was carried out by two students at 
the Homewood campus, Kwabena "Buster" Boahen and 
Philippe Pouliquen, and is based on a neural-network 
architecture discussed by Bart Kosko. 13 In that system, 
the units are arranged in two layers with two-way syn­
aptic connections between the layers (Fig. 8). The units 
have two possible states (+ 1 and - 1) that are deter­
mined by thresholding the sum of their weighted inputs. 
Kosko analyzed the autoassociative properties of the sys­
tem and showed that it would store and retrieve binary 
patterns from noisy or incomplete initial conditions. The 
system is similar to the one being used for the face­
recognition experiments (Fig. 4), but the use of two-way 
connections makes it effectively have a symmetric weight 
matrix so that its character is similar to that of a Hop­
field net. 

Boahen and Pouliquen have cleverly implemented the 
system using subthreshold analog techniques, and a tiny 
prototype chip has been fabricated in 3-JLm CMOS. The 
chip (Fig. 9) contains 32 units and can be programmed 
by external digital input to store 8 binary patterns of 32 
bits. The initial conditions for pattern retrieval are input 
into the chip using the same input pads as those used 
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Figure a-Architecture for a bidirectional associate memory. 
8 ; and b; are neural units with possible states of + 1 and -1. 
The W;j are synaptic connections that control activation in both 
directions. Memories are stored in the system as binary-pattern 
pairs. 

Figure 9-Photomicrograph of the BAM chip. The dense cen­
tral area is the storage cells for the connection weights, along 
with the analog cells for forming the activity potentials from 
the weights. The periphery contains the interface to the out­
side world, including logic for externally loading the weights. 

for programming the connection strengths. The fabri­
cated chips have been tested, and a description of the 
work is being submitted for publication. Our plan is to 
expand the design to a full-sized (9-mm) chip in standard 
1.5-JLm technology, which will easily contain 256 units 
and be programmed for 256 stored patterns. 
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