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SIGNAL PROCESSING FOR MISSILE GUIDANCE: 
PROSPECTS FOR THE FUTURE 

The future of missile guidance will depend heavily on signal processing technology. Expected mission 
requirements will demand autonomous weapons. APL has set the pace for developments in this area, 
taking the approach that missiles must use image-based signal processing and intelligent sensors. Current 
missile-guidance functions such as detection and tracking of point targets already have been developed 
successfully. New signal processing developments must meet new system requirements to resolve accurately 
the location and physical structure of targets. These processors also must decide what action to take 
on the basis of target identification. We present in this article two advanced concepts under investigation 
at APL that promise to support future missile-guidance needs. 

INTRODUCTION 

Of the many missions using guided missiles, those that 
have been the focus of work at APL include anti-surface, 
anti-air, and land-strike warfare. We emphasize in this 
article the anti-surface mission, and particularly the anti­
ship role. 

In anti-surface warfare, the prototypical scheme is rep­
resented by the "war-at-sea" engagement concept, in 
which the missile encounters a variety of surface com­
batants and must select a high-value target from less im­
portant ones. Although this is a relatively small "closed­
set" classification problem, it is surprisingly difficult. 

Natural and man-made signal degradations together re­
quire sophisticated seeker processing. For radar sensors, 
target motion and aspect changes are unpredictable. For 
imaging infrared sensors, signal degradation results from 
inherently low target contrast, which varies with target 
thermal signature, and from atmospheric propagation 
loss, which increases with range. These are the classical 
problems frequently faced by weapon system developers. 

Figure 1 shows the most important signal processing 
subsystems of a generic, advanced missile-guidance sys­
tem. The sensor suite can be a radio-frequency imaging 
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Figure 1-Signal processing subsystems for advanced anti-ship missile guidance. 
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radar (e.g., monopulse and synthetic aperture radar), an 
imaging infrared (or optical) focal plane array, or a com­
bination of both. Other key subsystems are the prepro­
cessor-which usually performs signal conditioning and 
feature extraction or segmentation-and the classifier. 
Important adjuncts to the system include a post­
processor for decision integration and a physically sep­
arate engagement (or mission) planning system that in­
cludes a mechanism for generating reference data for 
classification. Preprocessor architectures are more like­
ly to be parallel, classifiers sequential, and post-proces­
sors symbolic. 

We present below two representative examples of ad­
vanced signal and image processing algorithms for mis­
sile guidance. A new approach to ship recognition now 
being applied to monopulse radar-derived range profiles 
will be described. Here, we focus on neural-network­
based classification algorithms. In the area of electro­
optical systems, we present a multiresolution spatial in­
tegration technique for extended target detection and seg­
mentation applicable to imaging infrared seekers. 

NEURAL-NETWORK-BASED TARGET 
RECOGNITION ALGORITHMS 

Current anti-ship missile seekers use conventional 
(real-beam) monopulse radar, which yields range profIles 
(i.e., one-dimensional functions of target radar cross­
section versus range). At longer ranges, inverse synthetic 
aperture radar can be used for stand-off ship classifica­
tion, but its imagery varies considerably over successive 
looks, producing various perspectives such as plan and 
side views. Future anti-ship missile seekers may use syn­
thetic aperture radar or monopulse imaging to generate 
ship images, which essentially are plan views of the radar­
scatterer distribution of the illuminated targets. Using 
any of these sensor options, we envision the need for 
target recognition in future anti-ship missiles. 

For survivability, total look time required for imaging 
and recognition always is limited to durations on the or­
der of the motion cycle of the targets. During terminal 
engagement, radical changes in missile-target geometry 
also occur, and missile ingress relative to target bearing 
varies unpredictably from mission to mission. Thus, tar­
get signatures presented to a typical anti-ship missile will 
vary considerably. Classifier performance, therefore, 
must be robust, and the training of such classifiers must 
include representative looks. APL has developed a sys­
tematic methodology I for classifier training that incor­
porates various databases (both measured and synthetic) 
and several feature extraction and classification algo­
rithms, including traditional (statistical) and neural­
network-based algorithms. 

When using radar-range profiles, the performance of 
conventional classifiers degrades substantially at the 
broadside aspect or near-broadside, since range-only pro­
files (having relatively low spatial resolution) will have 
few range cells on ship targets, especially at broadside. 
Sensitivity to target aspect can be determined by training 
a given classifier at a particular aspect and then testing 
it within an angular sector spanning the training point. 
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The larger the angular sector over which the probability 
of correct classification remains high (~90OJo), the better 
the performance. Also, there will be less data to store in 
the missile-guidance computer memory for real-time 
operation. Increased classifier robustness versus aspect, 
therefore, translates into less training data and smaller 
computer memory needs. Neural networks offer the 
hope that greater robustness can be achieved. 

During times of signal acquisition, targets exhibit vary­
ing signatures. For real-beam radar, which provides 
range profiles, the time interval over which signatures 
must be collected to achieve an adequate signal-to-noise 
ratio for classification (~20 dB) is usually well below 
1 s. But over longer, multilook intervals (> 10 s) re­
quired, for example, for decision integration, variation 
of the range-profile structure can be substantial, as 
shown in Fig. 2. For synthetic aperture radar, image 
frame times are on the order of 1 s, but then target mo­
tion may blur the detailed radar cross-section structure 
of the desired target. Also, look times for inverse syn­
thetic aperture radar required to capture the best repre­
sentative image of a target can easily be lOs or more. An 
effective classifier should accommodate these changes in 
target signature for any possible seeker type within the 
appropriate look time, without substantial performance 
degradation. Hence, the features chosen to enable clas­
sification (i.e., the input to the classifier) should always 
be separable in feature space so that the output decision 
can be made with a high degree of confidence. 

Optimization of classifier performance is an important 
design goal. Performance depends on the spatial resolu­
tion of the sensor, the features extracted from the sig­
natures, the mathematical structure of the classifier, and 
the type of decision-integration scheme used. Perfor­
mance versus resolution is particularly important to tar­
get aspect when using range-only profiles. For feature 
extraction, Fourier harmonics of the range profile are 
typically used, since they reveal how rapidly the radar 
cross section of the target varies and which spectral com­
ponents of the radar are dominant. For neural networks, 
optimizing the network structure in terms of the learning 
algorithm (e.g., backpropagation, as described below) 
and the number of connections is also important. Op­
timization with respect to the choice of a decision­
integration rule is desirable when considering long dwells 
on the intended target. By integrating sequential output 
decisions, greater confidence can be achieved. 

Neural Network Algorithms 
The neural network approach is based on a metaphor 

of the information processing capacity of the human 
brain (see the articles by Roth and Jenkins elsewhere in 
this issue). Among the many options in neural networks, 
APL is focusing on the multilayer perceptron, or back­
propagation-based algorithm. 2 Although such al­
gorithms take longer to train, the time to classify is 
relatively short. This represents a significant tactical ad­
vantage for a missile having little time to classify multi­
ple targets in a typical war-at-sea scenario. (For current 
missile-engagement planning, which occurs before mis-
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Figure 2-The variation of radar-range profiles for durations 
of (a) 100 ms and (b) 16 s. 

sile launch, the longer time required for training is ac­
ceptable.) Classification time is short for backpropaga­
tion because the algorithm requires only one pass to clas­
sify, rather than an iteration required by other types 
(e.g., the Hopfield net). 3 

The implementation of a multilayer perceptron via 
backpropagation for the recognition of ship radar sig­
natures is shown in Fig. 3. A received ship signature is· 
conditioned, digitized, and fast-Fourier-transformed. 
The first few harmonics of the transform are chosen on 
the basis of the sensor resolution and signal-to-noise ra­
tio. The number of input layers to the perceptron equals 
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the number of harmonics. The hidden layer typically will 
have three times the number of nodes of the input layer, 
enough to allow for effective separation of the classes in 
feature space. The number of output nodes corresponds 
to the number of classes. The connections between nodes 
are weighted. At each node, a summation of the weight­
ed inputs is subjected to a sigmoidal nonlinearity. During 
training, the weights are adapted using a heuristic rule 
derived from the classical Widrow-Hoff technique, 4 

and the weight changes are updated, working backward 
from the output layer to the input layer. Subsequently, 
when classification occurs in real time on board the mis­
sile, the particular output node corresponding to the in­
put class will be activated. 

Comparisons of Classifier Performance 
When comparing neural network classifiers with con­

ventional ones, it is)rriportant to consider a given neural 
net algorithm with its appropriate conventional counter­
part. Lippman suggests that the single-layer perceptron 
is analogous to the Bayesian classifier, and the multilayer 
perceptron is analogous to the k-nearest-neighbor clas­
sifier. 5 Thus, Bayesian and k-nearest-neighbor classifi­
ers become the natural baseline with which to compare 
neural network classifiers. Not surprisingly, most previ­
ous efforts have been devoted to training and testing 
Bayesian and k-nearest-neighbor algorithms. 

Classifiers traditionally are evaluated on the basis of 
a single-look probability of correct classification, a num­
ber derived from a "confusion matrix," for example, 

Testing target 

2 3 ...... 
(l) 
OJ) 

I r" P12 P] ~ ro ...... 
OJ) 2 P21 P22 P23 t:: 
'c 3 P 31 P32 P33 .~ 
~ 

~ 

This matrix contains the probabilities of correctly clas­
sifying (Pii ) and misclassifying (Pi), i ?!: J) a set of tar­
gets. Obviously, we desire unity diagonal terms (correct 
decisions) and zero off-diagonal terms (incorrect deci­
sions) with high confidence. In practice, we must maxi­
mize the trace of the matrix and minimize the sum of 
all off-diagonal terms. A range of cost functions might 
weight off-diagonal terms differently, depending on the 
particular situation. Presently, we cannot assign an ap­
propriate weighting for the off-diagonal terms. The aver­
age probability of correct classification is, therefore, the 
only measure of effective~ss. More importantly, for 
comparing algorithm performance, the average probabil­
ity of correct classification should attenuate as distance 
from the training point increases. This attenuation func­
tion may be more gradual for neural networks than for 
conventional classifiers. 

Typical radar-range profiles for a decommissioned 
U.S. naval combatant are displayed in Fig. 2, and a rep­
resentative set of features is shown as an input to the 
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Figure 3-lnformation processing flow, showing range profile, feature extraction, and neural network architecture. 

schematic of the neural network of Fig. 3. When this and 
several other combatants are used for training and test­
ing, the average probability of correct classification is 
derived from the single-look confusion matrices. Results 
for Bayesian, nearest-neighbor, and backpropagation­
based algorithms at various aspects are then compared, 
and the degradation of those single-look results versus 
distance from the training point is determined. Those 
results suggest that neural networks may perform very 
well in some cases, but we cannot draw any firm con­
clusions, because the algorithm, features, and decision­
integration rule have not been optimized. 

The algorithms described above have been applied to a 
very limited closed-set classification problem, so more 
extensive data sets must be used for training. One ap­
proach for generating such data sets (now undergoing 
validation at APL) is a synthetic radar-signatures simu­
lation model developed by Georgia Tech Research In­
stitute. 6 With such a tool, we can accomplish extensive 
optimization of classical as well as neural network algo­
rithms. These algorithms also can be extended to synthet­
ic aperture radar, inverse synthetic aperture radar, and 
monopulse imaging radar. 

EXTENDED TARGET DETECTION 
AND SEGMENTATION 

In addition to radio-frequency seekers, infrared seek­
ers are being considered for current and future missile­
guidance roles. Expected missions include both anti-sur­
face and land-strike warfare. 

Advantages of infrared technology for anti-ship mis­
sile application include passive operation, good resistance 
to jamming, and high spatial resolution. The need for the 
latter follows from potential operational requirements for 
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target classification; assuming an adequate signal-to­
noise ratio (S/ N), high classification accuracy requires 
high spatial resolution, whether the imagery is interpreted 
by a human 7 or processed by a computer. 8 Perhaps the 
key drawback of infrared anti-ship missile seekers is 
limited range performance under conditions of poor at­
mospheric visibility. The purpose of the signal processor 
described below 9 is to optimize the detection range of 
infrared sensors against ship targets. 

The single-frame signal processing approach we have 
developed for maximizing infrared sensor S/ N is com­
plementary to earlier approaches for S/ N optimizations, 
such as waveband optimization, advanced infrared de­
tector developments, and multiframe image processing. 

Human Vision System Model 
The idea for our new signal processing concept was 

anticipated by a brief study indicating that detection 
ranges obtained by human observers of visual displays 
could, under a broad variety of conditions, greatlyex­
ceed ranges obtained by a hot-spot detection algorithm. 
Thus, the predicted performance of an archetypal human 
observer became the standard against which to gauge 
the performance of proposed ship-detection algorithms. 

Seeker spatial resolution, or "pixel size," is important 
in determining both acquisition range against ship tar­
gets and classification accuracy. The S/ N (and, hence, 
detection range) is maximized by matching the pixel size 
to the target size. But high classification accuracy (as­
suming an adequate signal-to-noise ratio) requires mak­
ing the pixel size much smaller than the target size. If 
the pixel size is chosen to maximize detection range, the 
resolution will be inadequate for classification; if the pix­
el size is made as small as possible to facilitate accurate 
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classification, the initial detection range will be very poor. 
Clearly, spatial resolution requirements for detection are 
in conflict with those for classification. 

These conflicting requirements have been resolved by 
image processing methods based on a model of the hu­
man vision system that in the past has been used widely 
by electro-optics engineers to predict the performance 
of human operators of thermal imaging equipment and 
televisions. 7 The model comprises an infinite-dimen­
sional bank of spatial filters, with each filter in the array 
corresponding to a possible target shape. Every possible 
shape is represented in the filter bank, as well as all var­
iants of each shape obtainable by the processes of trans­
lation, rotation, and scaling. 

Although the original human vision system model 
(Fig. 4) is not directly amenable to digital realization, 
APL developed a suboptimal image processing architec­
ture called the multiresolution spatial integrator (MRSI), 
which approximates the human vision system in per­
forming detections of targets seen against uncomplicated 
(uncluttered) backgrounds, such as those likely to occur 
at sea. 10 

MRS I Performance 
Like the human vision system model that preceded it, 

the MRSI detection algorithm comprises a bank of spa­
tial filters tuned for maximum response to objects of var­
ious sizes and shapes. Recalling that the human model is 
infinite-dimensional, and, therefore, nonrealizable, a key 
challenge in designing the MRSI was to achieve detection 
performance comparable to the human system, with a 
low-dimensional filter bank. 
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Figure 4-A conceptual model of the human vision system 
detection process, based on an infinite·dimensional array of 
spatial matched filters. 

Since the noise-reducing characteristics of MRSI pro­
cessing are generally impossible to calculate analytical­
ly, a computer program was developed for numerically 
evaluating the effectiveness of the processor. 

Initial computer simulations used measured ship im­
agery as input. The results were very encouraging (e.g., 
Fig. 5) but not always easy to interpret, since the ship 
images were recorded under uncertain conditions. Most 
calculations were performed subsequently using artificial 
black/white silhouettes, 8 which, while deficient in cer­
tain real-world characteristics, were obtained under com­
pletely controlled conditions. 

The probability of detection (FD ) versus S/ N for 
three ship profiles was determined using computer simu­
lation. We found that the S/ N improvement provided 
by MRSI processing can be estimated as G = O.8YA, 

Figure 5-lnitial qualitative evi· 
dence of correct simulation perfor· 
mance. A measured ship image 
with high SIN (top) was degraded to 
SIN = 0.2 (center) to simulate ob­
servation in a less favorable atmos­
phere. To the right of these images 
are scan lines obtained at the ele­
vation indicated by the horizontal 
arrows. The degraded image (bot­
tom) was input to FORTRAN simu­
lation, and the ship was subse­
quently detected and sized (range 
to ship = 13.5 nmi). 
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where A is the area of the target (in pixels). Our main 
results are shown in Fig. 6 as plots of PD versus 
SINdep where SINdet = G SIN. 

The symbols on Fig. 6 were obtained from our com­
puter simulations of the MRSI processor; the curve is an 
analytical fit to experimental psychovisual data 7 (i.e., 
experiments performed with human operators of televi­
sion displays). We see from this figure that MRSI per­
formance is nearly invariant with aspect angle and in 
close agreement with the psychovisual data. 

Experiments applying the MRS I iteratively suggest that 
multiple passes through the algorithm result in the ex­
traction of a series of rectangles that may be assembled 
into a ship-like composite (Fig. 7). A simple classification 
algorithm can then help to ensure against false alarms 
induced by cloud reflections from the sea. 

SUMMARY 

Advances in autonomous target recognition algorithm 
development will enhance our use of current and future 
missile radars and infrared seekers. More optimal and 
robust approaches based on neural networks and mul­
tiple spatial resolution may be developed. The trend to 
significantly more parallel digital signal processing will 
encourage this development. 

The ultimate system envisioned for missile signal pro­
cessing could have multiple sensors integrated via sensor 
fusion techniques based on artificial intelligence princi­
ples. Here, the organization of the brain will likely have 
an impact on the system architecture design. Within this 
organization, algorithms for target recognition based on 
neural networks will probably be the most natural and 
robust approach. 

To complement radar sensor imaging, infrared sensors 
also will be used. MRSI processing is one approach based 
on a model of the human vision system that is applicable 
to image detection and segmentation. It can be developed 
for different anti-ship missile concepts: completely au­
tonomous seekers or man-aided image processing. In the 
man-in-the-Ioop system, MRSI processing could perform 
target cueing, which would relieve the human image in­
terpreter from the need to search visually over a wide 
field of view. In combination with neural-network-based 
recognition schemes, MRS I processing could well be­
come a missile signal processor entirely based on the hu­
man intelligence paradigm. 
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