
BRUCE I. BLUM and THOMAS P. SLEIGHT

AN OVERVIEW OF SOFTWARE ENGINEERING

Computer software has become an important component of our defense systems and our everyday
lives, but software development is both difficult and costly. This article examines the similarities and
differences between software and hardware development, the essence of software, modern practices used
to support the software process, and the application of government methods. We also consider the role
of standards and technology centers, and conclude with a view into the future.

INTRODUCTION
Software is a part of everyday life at work and at

home. Many things we take for granted are software de­
pendent: watches, telephone switches, air-conditioning/
heating thermostats, airline reservations, systems that de­
fend our country, financial spreadsheets. The discipline
of managing the development and lifetime evolution of
this software is called software engineering.

Software costs in the United States totaled about $70
billion in 1985, of which $11 billion was spent by the
Department of Defense. 1 Worldwide, spending was
about twice that amount-$l40 billion. At a growth rate
of 12070 per year, the United States will spend almost
$0.5 trillion annually on software by the turn of the cen­
tury.

Studies in the early 1970s projected that software
would rapidly become the dominant component in com­
puter systems costs (Fig. 1). The cost of computing hard­
ware over the last few years has fallen dramatically on
a per-unit performance basis. That decrease resulted pri­
marily from the mass production of denser integrated
circuits. Software remains labor intensive, and no com­
parable breakthrough has occurred. Thus, the small in­
creases in software productivity have not overcome the
increased cost of human resources.

There is broad agreement on what is to be avoided
but a diversity of opinions regarding the best way to de­
velop and maintain software. We will examine here why
software development is so difficult, what methods are
currently available to guide the process, how government
methods have responded to those difficulties, and what
roads to improvement are being explored. This article,
oriented to a technical audience with minimal back­
ground in software development, presents a survey of
many different methods and tools, for that is the na­
ture of the state of the art in software engineering.

THE ESSENCE OF SOFTWARE
DEVELOPMENT

The software process, sometimes called the software
life cycle, includes all activities related to the life of a
software product, from the time of initial concept until
final retirement. Because the software product is gener­
ally part of some larger system that includes hardware,

276

U5
0
u
'0
E
<lJ
2
<lJ

a...

100~---------------r---------------'

Hardware
80 development/maintenance

60

40

20

0
1955 1970

Year

Software
maintenance

Figure 1-Hardware-software cost trends.

1985

people, and operating procedures, the software process
is a subset of system engineering.

There are two dimensions to the software process. The
first concerns the activities required to produce a product
that reliably meets intended needs. The major consider­
ations are what the software product is to do and how
it should be implemented. The second dimension ad­
dresses the management issues of schedule status, cost,
and the quality of the software deliverables.

In a large system development effort, we commonly
find the same management tools for both the hardware
and software components. These typically are organized
as a sequence of steps and are displayed in a "waterfall"
diagram. Each step must be complete and verified or
validated before the next step can begin; feedback loops
to earlier steps are included. A typical sequence is shown
in Fig. 2 for software development. The steps are de­
rived from the hardware development model. In fact,
only two labels have been changed to reflect the differ­
ences in the product under development: software cod­
ing and debugging is similar to hardware fabrication,
and software module testing is similar to hardware com­
ponent testing.

fohns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

Analysis 1-

Analysis of _
'- functions

Detailed
design

Code and I-
- debug

'-- Module test 1-

Integration 1_
- test

- System test -

" if

Operations
- and

maintenance

Figure 2- Typical software development steps.

This structural similarity in the flow facilitates the
coordination and management of hardware and software
activities. There are, however, major differences between
hardware and software:

1. Hardware engineering has a long history, with
physical models that provide a foundation for de­
cision making and handbooks that offer guidance.
But software engineering is new; as its name im­
plies, it relies on "soft" models of reality.

2. Hardware normally deals with mUltiple copies.
Thus, the effort to control design decisions and as­
sociated documentation can be prorated over the
many copies produced. In fact, it is common to
reengineer a prototype to include design corrections
and reduce manufacturing (i.e., replication) costs.
Conversely, software entails negligible reproduction
cost; what is delivered is the final evolution of the
prototype.

3. Production hardware is expensive to modify. There
is, consequently, a major incentive to prove the de­
sign before production begins. But software is sim­
ply text; it is very easy to change the physical me­
dia. (Naturally, the verification of a change is a

fohn s Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

complex process. Its cost is directly proportional
to the number of design decisions already made.)

4. Hardware reliability is a measure of how the parts
wear out. Software does not wear out; its reliability
provides an estimate of the number of undetected
errors.

These differences suggest that, even with a strong par­
allel between hardware and software, overcommitment
to a hardware model may prove detrimental to the soft­
ware process. Some common errors are:

1. Premature formalization of the specification. Be­
cause the design activities cannot begin until the
analysis is performed and the specification is com­
plete, there often is a tendency to produce a com­
plete specification before the product needs are un­
derstood fully. This frequently results in an invalid
system. Unlike hardware, software can be incre­
mentally developed very effectively. When a prod­
uct is broken down (decomposed) into many small
components, with deliveries every few months, the
designer can build upon earlier experience, and the
final product has fewer errors. Another develop­
ment approach is to use prototypes as one uses
breadboard models to test concepts and build un­
derstanding. Of course, only the essence of the pro­
totype is preserved in the specification; its code is
discarded.

2. Excessive documentation or control. Software de­
velopment is a problem-solving activity, and docu­
mentation serves many purposes. It establishes a
formal mechanism for structuring a solution, com­
municates the current design decisions, and pro­
vides an audit trail for the maintenance process.
But documentation demands often go beyond
pragmatic needs. The result is a transfer of activity
from problem-solving to compliance with external
standards, which is counterproductive.

3. The alteration of software requirements to accom­
modate hardware limitations. Since software is
relatively easy to change, there is the perception
that deficiencies in hardware can be compensated
for by changes to the software. From a systems
engineering perspective, this strategy obviously is
inappropriate. Although it may be the only reason­
able alternative, it clearly represents an undesirable
design approach.

4. Emphasis on physical products such as program
code. Because code frequently is viewed as a prod­
uct, there is a tendency to place considerable store
in it. The most difficult part of software design,
however, is the determination of what the code is
to implement. In fact, production of the code and
its debugging typically take one-half the time of
its design. Also, most errors are errors in design
and not in writing code. Therefore, managers
should not be too concerned with the amount of
code produced if the design team has a firm un­
derstanding of how they intend to solve the prob­
lem. And programmers should not be encouraged

277

Blum, Sleight - An Overview of Software Engineering

to code before they have worked out the full design
of their target application. (The exception is the
prototype, which is discarded after its lessons have
been assimilated into the design.)

If we examine the essential steps of the software pro­
cess, we see that software development is based on the
same general model as that used to build a bridge, con­
duct a scientific experiment, or manage the development
of hardware:

1. First we determine what is to be done (i.e., anal­
ysis).

2. Next, we determine how to realize the desired be­
havior. This is called design, and it includes the
allocation of functions, detailed design, and cod­
ing. Often this is decomposed into "programming
in the large," which involves the architecture of
the software system, and "programming in the
small," which involves the creation of the code.

3. Following this, we test the product at various levels
of system completeness (units, modules, integrated
components, and, finally, the full system).

4. Finally, we use the software product, which often
changes the environment it was intended to sup­
port, thereby altering its initial specification. Con­
sequently, the software will evolve continuously un­
til its structure degrades to the point where it is less
expensive to retire it than to modify it. We can view
this "maintenance" activity as an iteration of the
preceding steps.

Clearly, we can structure these four steps in a water­
fall organization. But since true system needs often are
not understood without some preliminary experimenta­
tion, we also use other development models wherein soft­
ware evolves from experience with prototypes and earlier
system versions. Boehm's spiral model is one example
of this revised flow; 2 most process models, however,
are built from the four basic activities presented above.

One advantage of the waterfall representation is its
long history of use, which has yielded insightful empirical
data. For example, a major portion of the software cost
is expended on a product after it has been installed. This
is called evolution or maintenance, and it can represent
one-half to three-quarters of the total life cycle cost. For­
ty percent of the development cost is spent on analysis
and design, 20070 on coding, and 40% on integrating and
testing (the "40-20-40 rule"). The writing of program
code is a very small part of the total cost. A distribu­
tion of expenditures for one set of data is shown in Fig.
3. (See the boxed insert for other observations based on
empirical data.)

Our discussion thus far suggests that a good approach
to software development is one that:

1. Identifies and responds to errors as early as possible
in the development cycle.

2. Assumes that there will be continuous change in
the product and anticipates its eventual evolution.

3. Minimizes the importance of code production.
4. Maximizes the importance of people, both by

bringing experienced people to the difficult tasks

278

Operations
and

maintenance
(67%)

Figure 3- Distribution by cost percentage of the software life
cycle. (Zelkowitz, Shaw, and Gannon, Principles of Software En­
gineering and Design, © 1979, p. 9. Reprinted by permission
of Prentice Hall , Inc., Englewood Cliffs, N.J .; adapted version
appeared in Computer, 1984.)

and by building the skills of those with less ex­
perience.

MODERN PRACTICES AND THE
SOFTWARE PROCESS

Given our description of the software process, we now
address the modern practices used to support that pro­
cess. We organize the discussion of methods, tools, and
environments according to their application to the major
process activities of analysis, design (programming in the
large), code (programming in the small), validation and
verification, and management. (We make no attempt to
provide citations for all the tools and methods described.
References can be found in the most modern software
engineering textbooks . 4)

Analysis
The objective of the analysis is to produce a descrip­

tion of what the software system is to do. Naturally, this
will depend on the domain of application. For example,
in an embedded application, the system engineers may
have specified all the software requirements as part of
the system decomposition process; the functions, timing
constraints, and interfaces may already be prescribed,
and the design can proceed. But as often happens with
an information system, the initial intent may be stated
only vaguely, and an analysis of the existing operation,
along with a study of how automation may help, will
follow. The result will be a specification of the product
to be implemented.

Johns Hopkins A PL Technical Digest, Volume 9, Number 3 (1988)

Although the parameters affecting costs, scheduling, and
quality vary from project to project, there are some gener­
ally accepted trends. Boehm recently identified the follow­
ing ten most important industrial software measures or met­
rics: 3

1. Finding and fixing a software problem after delivery
can be up to 100 times more expensive than finding
and fixing it during the phases when the requirements
and early design are determined.

2. You can compress a software development schedule
up to 25070 of nominal, but no more.

3. For every dollar you spend on software development,
you will spend two dollars on software maintenance.
(Other studies have shown that the costs associated
with perfecting the product represent the largest main­
tenance category, and costs associated with making
corrections represent the smallest category. The re­
maining resources are used to adapt the software to
altered requirements. Figure 4 illustrates a typical al­
location of costs among maintenance categories.)

4. Software development and maintenance costs are
primarily a function of the number of source instruc­
tions in the product.

5. Variations between people account for the biggest
differences in software productivity.

6. The overall ratio of computer software costs to hard­
ware costs has gone from 15:85 in 1955 to 85:15 in
1985, and this trend is still growing.

7. Only about 15% of a software product development
effort is devoted to programming.

8. Software systems and software products each typically
cost three times as much per instruction to develop
fully as does an individual software program. Software
system products cost nine times as much.

9. Walk-throughs can catch 60% of the errors.
10. Many software phenomena follow a Pareto distribu­

tion: 80% of the contribution comes from 20% of
the contributors.

A common method of analysis is called "structured
analysis." The operational environment is first modeled
as a network of input-output transformations and docu­
mented in the form of "data flow diagrams" (DFDs).
The nodes in the DFDs represent the transformations,
and the arcs represent the data flowing to and from the
transformations. Each node is given a title suggesting
the activity the transformation represents, and each arc
is given the title of the data in the flow. To convey mean­
ing, abstraction is used to reduce the level of detail. For
increased information content, each node can be expand­
ed as a DFD; the only restriction is that all data flows
to and from that node are retained as inputs to and out­
puts from the lower-level DFD.

With this approach, one typically models the physical
environment and then draws a boundary separating the
automated system from the nonautomated system. Data
flows crossing that boundary represent the application
interfaces. Next, the functions within the boundary are

f ohns Hopkins A PL Technical Digest, Volume 9, N umber 3 (1988)

Blum, Sleight - A n Overview of Soft ware Engineering

Corrective
(20%)

Adaptive
(25%)

Perfective
(55%)

User enhancements (42%)

Documentation

Efficiency

Other

Figure 4- Allocation of system and programming resources
to three maintenance categories (reprinted by permission, "Soft·
ware Engineering: Problems and Perspectives," IEEE Computer,
© 1984, IEEE).

reorganized to provide a more effective implementation
of what previously was a nonautomated process. All
flows (arcs) and actions (nodes) are labeled, and the
nodes are further decomposed into DFDs until each node
is well understood. Because the arcs represent abstrac­
tions of the data in the flow, " data dictionaries" are
created that detail the data organization and content.
There are several variations of structured analysis. In the
method developed by DeMarco and Y ourdon, the low­
est-level nodes are described in process- or minispecs that
use "structured English" to detail the processing that
the transformation must conduct. A sample DFD, dic­
tionary, and minispec are shown in the boxed insert.

Most structured analysis techniques are designed for
information processing applications. The initial goal of
this method was to provide a manual technique that
would allow the analyst to detail his thoughts systematic­
ally and communicate the results to the sponsors and
users. Recently, automated tools have been developed
to assist in drawing the DFD and maintain dictionaries
of the transformations and flows. (Such tools are known
as CASE: computer-assisted software engineering.) Var­
iations of the DFD also have been adopted for use with
real-time systems by adding symbols to model queues
and messages transmitted among nodes .

The requirements analysis is conducted in a top-down
mode. This decomposition approach imposes some de­
sign decisions on the product; for example, the DFD es­
sentially establishes the module structure for the im­
plementation. Some suggest that this is a weakness of such
methods: the analyst must make critical design decisions
when he least understands the problem being solved. The
alternative is a "composition" approach in which one
models portions of the system that are well understood
and builds the system from those components.

279

Blum, Sleight - An Overview of Software Engineering

STRUCTURED ANALYSIS DESCRIPTION

The figure below contains a simple example of the rep­
resentation used during structured analysis. For this data
flow diagram (DFD), we assume that there is a parent DFD,
with at least five bubbles or activities. This diagram is an
expansion of the bubble, 5.0, Determine Schedule, of the
parent activity.

Typically a DFD contains five to nine bubbles, although
only three are shown. Each bubble is labeled with the ac­
tivity it represents; the data flows to and from each bubble
are labeled; and the data stores (i.e., the file containing the
work-breakdown-structure [WBS] data) and external ele­
ments (i.e., the printer) are identified with their special sym­
bols.

5.0 DETERMINE SCHEDULE

Schedule Request

Schedule

Examples of composition techniques include the Jack­
son System Design and object-oriented design ("design"
implying that the process steps have considerable over­
lap). In the Jackson System Design, the target system
is represented as a discrete simulation, and the implemen­
tation is considered a set of communicating sequential
processes; that is, the method allows for the modeling
of the real-world environment as a computer simulation,
which then is transformed into a set of sequential pro­
grams that can operate asynchronously. Conversely, ob­
ject-oriented design first identifies the real-world objects
that the desired system must interact with and then con­
siders how those objects interact with each other. There
are several versions of object-oriented design, but exper­
ience with its use is limited.

Programming in the Large-Design
The design process begins after there is a specification

establishing what functions the software is to provide.
From the discussion of analysis, we see that there is no
precise division between analysis (the decision of what
is to be done) and design (the determination of how to
realize it). There sometimes is a contractual need to es-

280

Because the processing for this DFD is clear, there is no
need to expand it to another DFD level. Bubble 5.2, Define
Schedule, is described in a minispec, which conveys the pro­
cessing while avoiding the detail required of a programming
language. For example, " get and list WBS# and WBS
TITLE" is several instructions, and the reenter statement
after printing the error message implies a GOTO (not
shown).

Finally, the data dictionary defines the major elements
in the data flow. Here, WBS is a table with five columns,
and Task Group is a set of WBS#s. More detailed defini­
tions of the element formats and index schemes may be
delayed until additional information is compiled.

PROCESS (MINI) SPECIFICATION

5.2 Define Schedule Process
for each TASK in TASK GROUP

get and list WBS# and WBS TITLE
enter START date
enter STOP date
if START < STOP then print error and reenter

end

DATA DICTIONARY

WBS = WBS# + Title + Start + Stop + Re­
sources

Task Group = {WBS#}

tablish what the procured software is to provide, so the
specification becomes part of the contract that defines
the deliverable. In the essential model of the software
process, however, there is continuity between analysis
and design activities, and the methods often support both
activities.

The basic process is one of modeling the software sys­
tem and adding details until there is sufficient informa­
tion to convert the design into a realization (i.e., pro­
gram). Design always begins with a specification, which
is a product of the analysis step. At times, the specifica­
tion is a formal document establishing a set of require­
ments. Here, it is important to maintain traceability to
ensure that all design decisions are derived from a re­
quirement and that all requirements are satisfied in the
design (i.e., there are neither extra features nor omis­
sions). At other times (e.g. , in the internal development
of a product), the specification is less formal, and addi­
tional subjectivity is needed to determine that the design
decisions are valid.

For any set of requirements, there are many equally
correct designs. The task of the design team is to select
among the alternatives those system decisions yielding

Johns Hopkin s APL Technical Digest, Volume 9, Number 3 (1988)

a design that is, in some way, expected to be better than
the others. Studies of this activity indicate that consider­
able domain experience is required. Also, the ability and
training of the team members is some two to four times
as important as any other factor in determining the cost
to produce an acceptable product.

Design methods are extensions of analysis methods.
For example, decomposition techniques use the DFD,
and composition methods span the analysis and
programming-in-the-large tasks. With decomposition
techniques, "structured design" is used to model the in­
teractions among software modules. Rules are available
to guide the transition from DFDs to the "structure di­
agrams" depicting module control flow. As with DFDs,
data dictionaries are used to describe the elements in the
data flow, and the functions of the modules are detailed
as "module specs" in structured English.

Other methods begin with models of the data and their
temporal changes, and then derive the processes from
those data structures. The Jackson Program Design, for
example, models the structure of the data and then builds
models of the procedures that reflect that structure. For
data processing applications, there are several methods
used to define the data model. One widely used method
is the entity-relationship model. Here, the entities (e.g.,
employees, departments) and their relationships (e.g.,
works in) are identified and displayed graphically. Rules
then can be applied to convert this conceptual model into
a scheme that can be implemented with a database man­
agement system.

We have identified here many different (and often
mutually incompatible) methods, but the list is incom­
plete. Many of those methods use some form of dia­
gram. Most CASE tools support the DFD, structure dia­
gram, Jackson System Design notation, and entity-rela­
tionship model. There also are proprietary tool sets that
are limited to a single method. One of the benefits that
any good method provides is a common approach for
detailing a solution and communicating design decisions.
Thus, for effective communication, an organization
should rely on only a limited number of methods. The
DFD and the entity-relationship model are the most
broadly disseminated and, therefore, frequently will be
the most practical for the communication of concepts.

Programming in the Small-Coding
Code involves the translation of a design document

into an effective and correct program. In the 1970s, the
concept of "structured programming" was accepted as
the standard approach to produce clear and maintainable
programs. The structured program relies on three basic
constructs:

1. Sequence-a set of statements executed one after
the other.

2. Selection-a branching point at which one of a set
of alternatives is chosen as the next statement to
be executed (e.g., IF and CASE statement).

3. Iteration-a looping construction causing a block
of statements to be repeated (e.g., DO statement).

fohn s Hopkins APL Technical Digest, Volume 9, N umber 3 (1988)

Blum, Sleight - An Overview of Software Engineering

Every program can be written using only these three con­
structs. A corollary, therefore, is that the OOTO state­
ment is unnecessary.

Structured programming introduced other concepts as
well. Programs were limited to about 50 lines (one page
of output). Stepwise refinement was used to guide the
top-down development of a program. When a concept
was encountered during programming that required ex­
pansion, it would be represented as a procedure in the
user program and later refined. This method allowed the
programmer to defer design activities; it also resulted in
programs that were easier to read and understand. To
improve comprehension, indentation and white space
were used to indicate the program's structure. In time,
the flow chart was replaced by the "program design lan­
guage" (e.g., the minispec), which captured the program
structure but omitted many program details.

Another concept introduced in the late 1970s was "in­
formation hiding," which emerged following analysis of
what characteristics should bind together, what functions
are retained in a module (cohesion), and how modules
should interact with each other (coupling). The goal of
information hiding is to yield a logical description of the
function that a module is to perform and isolate the users
of that module from any knowledge of how that func­
tion is implemented. Thus, the designers may alter the
internal implementation of one module without affect­
ing the rest of the program. This concept was refined
and became known as the abstract data type. A data
type defines what kinds of data can be associated with
a variable symbol and what operators can be used with
it. For example, most languages offer an integer, real,
and character-string data type. The operator plus (+)
has a different meaning for each data type.

With an abstract data type, the designer can specify
a new data type (e.g., the matrix) and operators that are
valid for that data type (e .g., multiplication, inversion,
scalar multiplication). Using the terminology of the
Ada 5 programming language, the abstract data type is
defined in a package with two parts. The public part in­
cludes a definition of the data type and the basic rules
for the operations. The private part details how the oper­
ations are to be implemented. To use the abstract data
type, the programmer includes the package by name and
then declares the appropriate variables to be that data
type. This is an example of software "reuse." The data
type operations are defined once and encapsulated for
reuse throughout the software application, thereby re­
ducing the volume of the end product and clarifying its
operation.

Another technique to improve program quality is em­
bodied in the concept of "proof of correctness," mean­
ing that the resulting program is correct with respect to
its specification. There are some experimental systems
that can prove a program to be formally correct. Such
systems have been used to verify key software products,
such as a security kernel in an operating system. But
proof of correctness usually is applied as a less formal
design discipline.

"Fourth generation languages" (40Ls) represent an­
other approach to software development. Here, special

281

Blum, Sleight - An Overview of Software Engineering

tools have been developed for a specific class of appli­
cation (information processing) that facilitate the devel­
opment of programs at a very high level. For example,
one can produce a report simply by describing the con­
tent and format of the desired output; one does not have
to describe procedurally how it should be implemented.
(Thus, 4GLs generally are described as being nonproce­
dural or declarative.)

Validation and Verification
In the traditional descriptive flow for software devel­

opment, the activity that precedes operations and main­
tenance is called "test." Testing is the process of detect­
ing errors. A good test discovers a previously undetected
error. Thus, testing is related to defect removal; it can
begin only when some part of the product is completed
and there are defects to be removed.

The validation and verification activity includes the
process of testing. But it begins well before there is a
product to be tested and involves more than the identi­
fication of defects. Validation comes from the Latin vali­
dus, meaning strength or worth. It is a process of predict­
ing how well the software product will correspond to
the needs of the environment (i.e., will it be the right
system?). Verification comes from the Latin verus,
meaning truth. It determines the correctness of a product
with respect to its specification (i.e., is the system right?).

Validation is performed at two levels. During the anal­
ysis step, validation supplies the feedback to review de­
cisions about the potential system. Recall that analysis
requires domain understanding and subjective decisions.
The domain knowledge is used to eliminate improper
decisions and to suggest feasible alternatives. The rank­
ing of those alternatives relies on the analysts' experience
and judgment. The review of these decisions is a cogni­
tive (rather than a logically formal) activity. There is no
concept of formal correctness; in fact, the software's va­
lidity can be established only after it is in place. (Proto­
types and the spiral model both are designed to deal with
the analyst's inability to define a valid specification.)

The second level of validation involves decisions made
within the context of the specification produced by the
analysis activity. This specification describes what func­
tions should be supported by the software product (i.e.,
its behavior). The specification also establishes nonfunc­
tional requirements, such as processing time constraints
and storage limitations. The product's behavior can be
described formally; in fact, the program code is the most
complete expression of that formal statement. Nonfunc­
tional requirements, however, can be demonstrated only
when the product is complete.

Validation and verification are independent concepts.
A product may be correct with respect to the contractu­
al specification, but it may not be perceived as a useful
product. Conversely, a product may correspond to the
environment's needs even though it deviates from its
specified behavior. Also, validation always relies on
judgment, but verification can be formalized. Finally,
both validation and verification can be practiced before
there is code to be tested; failure to exercise quality con­
trol early in the development process will result in the

282

mUltiplication of early errors and a relatively high cost
of correction per defect.

Before a formal specification exists (one that can be
subjected to logical analysis), the primary method for
both verification and validation is the review. In the soft­
ware domain, this is sometimes called a walk-through
or inspection, which frequently includes the review of
both design documents and preliminary code. The review
process is intended to identify errors and misunderstand­
ings. There also are management reviews that establish
decision points before continuing with the next devel­
opment step. The two types of reviews have different
functions, and they should not be confused or combined.
Management reviews should occur after walk -throughs
have been completed and technical issues resolved.

Most software tests are designed to detect errors,
which sometimes can be identified by examining the pro­
gram text. The tools that review the text are called "static
analyzers." Some errors they can detect (such as iden­
tifying blocks of code that cannot be reached) can be
recognized by compilers. Other forms of analysis rely
on specialized, stand-alone software tools. "Dynamic
analysis" tests, concerned with how the program oper­
ates, are divided into two categories. "White box" tests
are designed to exercise the program as implemented.
The assumption is that the errors are random; each path
of the program, therefore, should be exercised at least
once to uncover problems such as the use of the wrong
variable or predicate. "Black box" tests evaluate only
the function of the program, independent of its im­
plementation.

As with equipment testing, software testing is organ­
ized into levels. Each program is debugged and tested
by the individual programmer. This is called unit test­
ing. Individual programs next are integrated and tested
as larger components, which are then function tested to
certify that they provide the necessary features. Finally,
the full system is tested in an operational setting, and
a decision is made to deploy (or use) the product. Natu­
rally, if the software is part of an embedded system,
then, at some level, the software tests are integrated with
the hardware tests.

Management
We have so far emphasized the essential features of

software development; that is, what makes the devel­
opment process unique for this category of product.
Some characteristics of the process make it difficult: the
software can be very complex, which introduces the
potential for many errors; the process is difficult to mod­
el in terms of physical reality; there is always a strong
temptation to accommodate change by modifying the
programs; and, finally, the product is always subject to
change. (In fact, the lifetime cost for adaptation and en­
hancement of a software product usually exceeds its de­
velopment cost.)

The management of a software project is similar to
the management of any other technical project. Man­
agers must identify the areas of highest risk and the
strategies for reducing that risk; they must plan the se­
quence of project activities and recognize when devia-

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

tions are imminent; they must budget time, personnel,
and dollar resources and adjust these factors through­
out the process; they must maintain control over the
completed products; and they must establish procedures
to ensure a high level of product quality.

As with any project management assignment, the
manager must understand something about both the do­
main of application and the technology to be applied.
In well-understood problem areas, this knowledge is less
critical because design is reduced to the detailing of some
existing design concept. But in new domains there are
uncertainties, and management must be sensitive to the
early resolution of high-risk problems. (This is one area
in which prototyping can be most effective; another is
the examination of the human interface.)

Although software engineering is a relatively new dis­
cipline, there are many tools available to help support
its management. Cost-projection tools have been pro­
duced that allow a manager to build upon previous ex­
perience to estimate cost and schedule. Commercial
"configuration control" systems manage the software
versions and supply mechanisms to insulate programs
from unauthorized or uncertified changes. Many modem
program-support environments also contain tools that
give management easy access to schedule and status in­
formation.

GOVERNMENT METHODS
APPLIED AT APL

The approaches to software engineering taken by
APL's sponsoring organizations must be considered both
when an operational system is delivered and when a pro­
totype is developed that will evolve into government
specifications and procurements. For many experiments
(e.g., at-sea or space-based), the whole effort is oriented
toward quick deployment of existing or slightly modified
sensors and support for recording, telemetry, and anal­
ysis. There are no sponsor-specified approaches, and
development responsiveness often is the critical compo­
nent. The software becomes a crucial integrating element.
Since existing software must be modified, software en­
gineering techniques are applied less formally.

In its work on Navy tactical systems, however, APL
relies more on the use of standards. The development
and acquisition of mission-critical defense-systems soft­
ware is governed by DOD-STD-2167A,6 a standard
specifying a number of documents that should be gener­
ated during software development. This document-driven
approach has been criticized for the lack of proper docu­
ment selection and tailoring by the government and for
ignoring several modern software processes or develop­
ment strategies as described above. Although this stan­
dard has some drawbacks, it has provided a sound and
consistent basis for software development over many
years. Recently, it was modified (Revision A) to reflect
better the methods available via the Ada language. This
standards approach is not new; the DOD standard origi­
nated in earlier internal Navy standards. 7

,8 The other
main component in the Navy's approach is the use of
specific programming languages. The Navy has attempt-

fohns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

Blum, Sleight - An Overview of Software Engineering

ed for many years to standardize languages, beginning
with CS-I in the 1960s, through the CMS-2 and the in­
troduction of Ada.

The Navy also has standardized computer hardware,
in particular, the AN/UYK-20, and more recently the
AN/UYK-44 and AN/ AYK-14, which are the 16-bit
common instruction set standards. The AN/UYK-7 is
upward-compatible with the newer 32-bit AN/UYK-43
standard computer. For the Navy to support those com­
puters with the new Ada language, the Ada Language
System/Navy project is tasked to develop production­
quality Ada translators (first released in June 1988) for
the AN/UYK-44, AN/A YK-14, and AN/UYK-43. Con­
siderable emphasis has been placed on the support of
fast interrupts, a requirement of many Navy embedded
systems. Within a common command language frame­
work, there are tools for version and database main­
tenance, software-problem-report tracking, documen­
tation updating, and report generation.

The Ada language has matured, and the translators
are rapidly becoming viable production tools. Some re­
cent benchmark programs executing on the MC 68020
processor indicate that the Ada code is almost as fast
as code generated by popular C-Ianguage translators.
Ada is now a workable language for military use, and
the benefits of the object-oriented approach can be ob­
tained from specification through operational code and,
most important, during evolution and maintenance.
APL has explored Ada applications for several tactical
systems. Whenever a mature Ada translator and target
run-time system have been available, the projects have
been successful. One example is the redesign and reimple­
mentation of a simplified version of the Aegis Command
and Decision System. 9 This project, while successful,
also identified several problems with the 1985 Ada tech­
nology. Many of those problems have disappeared with
more mature Ada products. In follow-on projects, the
reuse of both internally developed and externally avail­
able Ada modules has been successful. Also, Ada mod­
ule integration has been faster, and fewer errors were
detected than with other languages.

Most software development at APL involves the sup­
port of experimental or "one of a kind" systems. Al­
though these systems frequently require the proper use
of software engineering techniques, they typically are not
controlled by the sponsor as is a mission-critical Navy
system (i.e., DOD-STD-2167A). This offers an oppor­
tunity to try new techniques. For example, in some sat­
ellite altimeter work for NASA, the DeMarco and Your­
don methodology, with Ward/Mellor real-time exten­
sions,1O is being successfully applied using new CASE
tools. The recent APL projects requiring Ada have used
the Bahr object-oriented design approach, II which
(with some modification) has been particularly useful
when the target language is known to be Ada. Some pro­
jects derived their approach from a combination and tail­
oring of DOD-STD-2167A and emerging IEEE software
standards. This approach provides guidelines and tem­
plates, and helps to alleviate problems arising from staff
reassignment and short corporate memory.

283

Blum, Sleight - An Overview of Software Engineering

ROADS TO IMPROVEMENT
There are many possible roads to improvement for

the software engineering process, with numerous feeders
and intersections, and some dead ends. Three promising
routes are standards and guidelines, technology centers,
and research. We focus below on the first two. (Research
is covered in the next section.)

Standards and Guidelines
The primary roles of international standards and

guidelines in the software arena are to provide a~plica­
tion portability by defining interfaces and to defme t~e
state of practice. The international standards process IS
well established. Standards usually deal with what should
be done, not how. This is sometimes expressed as the
public view (not the private view). When standards deal
with interfaces, the "how" often is stated, simply be­
cause it is a necessary part of the public view.

Establishing international standards is a time-con­
suming process that depends on the interplay among in­
dustry, government, and professional societies. In the
national and international forum, it is a consensus-build­
ing process. A typical IEEE standard takes about five
years to progress through its various stages. Since most
standards are based on experience, the impression fre­
quently is created that standards institutionalize past
practices and stifle new technology. Exclusive of military
environments, the major players in international software
standards development are the IEEE, the International
Standardization Organization, and the American Nation­
al Standards Institute. It is not possible in this article
to describe all the international software standards efforts
and their interactions. A summary of 11 IEEE standards
and 13 standards projects is available, however. 12 Sig­
nificantly, software standards play an ever-increasing role
in establishing the state of software engineering practice
and in interfacing various software processes.

The primary Defense Department standard for soft­
ware development is DOD-STD-2167A. The IEEE and
other military standards cover similar subjects (e.g.,
documentation, quality assurance, audits). One major
distinction exists. The military standard deals mainly with
contract deliverables; thus, document content is empha­
sized. The IEEE standards capture more of the essence
of the software development process. Additional Navy
standards traditionally have been stated in different
terms-the use of standard, government-furnished
equipment and software.

Technology Centers
Technology centers such as the Software Engineering

Institute (SEI) and the Software Productivity Consor­
tium (SPC) have been established by the government and
industry to improve software engineering technology
transition. A third center, the Microelectronics and Com­
puter Technology Corporation (MCC), has a broader
mission that also includes software engineering.

The SEI is a federally funded research and develop­
ment center operated by Carnegie-Mellon University un­
der contract with the U.S. Department of Defense. Its
mission is to (1) bring the ablest professional minds and

284

the most effective technology to bear on rapidly improv­
ing the quality of operational software in mission-critical
computer systems; (2) bring modern software engineer­
ing techniques and methods into practice as quickly as
possible; (3) promulgate the use of modern techniques
and methods throughout the mission-critical systems
community; and (4) establish standards of excellence for
software engineering practice.

Software technology transition is SEI's major focus.
Unlike industrial consortiums, software engineering re­
search is not a significant part of its mission. The institute
has convened several workshops over the last few years,
and many organizations (including APL) in industry,
academia, and government have affiliated with it. As
a result, SEI has projects in several areas, including tech­
nology surveys, course and textbook development, soft­
ware reliability techniques, uniform communication
medium for Ada programs, documentation and report­
ing conversion strategy, software process modeling, soft­
ware maintenance, human interface technology, legal is­
sues, environments, and pilot projects.

Several course modules for undergraduate and gradu­
ate software engineering courses have evolved from the
institute's software engineering education program. The
recently introduced master's degree course entitled "Pro­
jects in Software Engineering" at the APL Center of
The Johns Hopkins University Continuing Professional
Programs is based on SEI material. A full description
of the university'S professional computer science curric­
ulum was presented at a recent SEI education work­
shop. 13 Besides interesting technical and education ma­
terial, the institute has produced guidelines for program
managers on the adoption of Ada 14 and a method for
evaluating an organization's software engineering capa­
bility.

The SPC was formed in 1984 by 14 companies to close
the mission-critical software gap between defense and
aerospace system hardware and the availability of soft­
ware to drive those systems. Its goal is to build the soft­
ware tools and techniques needed to accelerate the soft­
ware engineering cycle, improve the quality and function­
ality of the final software product, and make major sys­
tems software easier and less expensive to maintain.

The objective of SPC's technical program is to create
a dramatic increase in the software productivity of mem­
ber companies. Over the next five years, the consortium
will develop and provide members with a range of soft­
ware engineering products and technologies for an inte­
grated development environment. The 14 partners receive
exclusive rights to products, technologies, research, and
support services developed by SPC.

The products will exploit three key concepts: symbolic
representation, prototyping, and reusable components.
Symbolic representation makes the process of develop­
ing software a "tangible" activity by representing soft­
ware life-cycle objects in more "natural" ways to the
working engineer. (The concepts of prototyping and re­
usable components are discussed elsewhere in this arti­
cle.) Within the context of an integrated development
environment and project libraries, SPC will develop tools

Johns Hopkin s APL Technical Digest, Volume 9, Number 3 (1988)

for building requirement and design specifications and
related code, synthesizing prototypes, performing dy­
namic assessments, and managing software development
projects. At a recent meeting of companies developing
and marketing CASE tools, SPC launched an initiative
to establish an industrywide consensus on effective tool­
to-tool interface standards. Those standards will repre­
sent the fIrst steps in building an integrated environment.

MCC was established by 21 shareholder companies
in 1983. The consortium has several research programs,
ranging from semiconductor packaging to software tech­
nology. Each program is sponsored by a subset of par­
ticipating shareholder companies.

The software technology program focuses on the front
end, upstream in the software cycle, where little research
has been performed. This program has created a com­
puter-aided software design environment call Leonardo.
The environment is to concentrate on requirements cap­
ture, exploration, and early design. Academic research
has focused on downstream activities, where formalism
and automation are more obvious. MCC's research em­
phasis is on defining and decomposing a large problem
into smaller problems and on selecting algorithms, and
is geared to teams of professional software engineers
working on large, complex systems. Researchers are
working on Leonardo architecture, and three compo­
nents: complex design processes, a design information
base, and design visualization.

The corporation does not consider its research com­
plete until it is put to use by the sponsoring companies.
Also, MCC believes it is easier to transfer and establish
tools and make them consistent than to transfer method­
ologies and methods.

A VIEW TO THE FUTURE
We began this article with a review of how software

differed from hardware and noted that-once the tech­
nical manager understands the software process-the
management of software is much like that of hardware.
We then described the software process, characterized
more by variety than by clarity and consistency. Despite
our signifIcant accomplishments with software, there re­
main conflicting methods, limited formal models, and
many unsubstantiated biases. But we present below some
significant trends in the field.

Formalization
Some new paradigms extend the formalism of the

programming language into an executable specification.
A specification defines the behavior for all implementa­
tions. An executable specifIcation does not exhibit the
intended behavior effIciently, but a program is an imple­
mentation of that behavior, optimized for a specifIc com­
puter. We see this because there are systems that we
know how to specify exactly, but we do not know how
to implement them efficiently. For example, one can
specify what a chess-playing program should do without
being able to describe an efficient implementation. The
hope is that the executable specification will supply a
prototype for experimentation that ultimately can be
transformed into an effIcient program. But the concept

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

Blum, Sleight - An Overview of Software Engineering

has not been demonstrated outside the laboratory, and
it is not clear how this process model can be managed.

Automatic Verification
In the discussion of validation and verification, we

noted that proofs (verification) could be objective only
when the parent specification was clear (formal). There
is, therefore, considerable interest in working with
mathematically formal specifications at an early stage
in the design process, since it then would be possible to
prove that each detailing step was correct with respect
to this high-level source. A theorem prover could be used
to automate the process. Testing then would not be
necessary, because no errors would exist. Naturally, vali­
dation still would be required.

Automated Tools and Environments
There is considerable interest in the use of CASE tools

and in program support environments. Unlike the for­
malisms addressed above, most tools and environments
are commercial products that implement techniques de­
veloped in the mid-1970s. Thus, these tools and environ­
ments respond to a marketplace demand and provide
a means for making the application of current practice
more efficient. Their primary benefit is one of reducing
the manual effort and thereby the number of errors in­
troduced. As new paradigms are introduced, this focus
may limit their use or force changes in the approaches
taken.

Artificial Intelligence and Knowledge
Representation

Although there are many definitions of artificial in­
telligence and debates about what it accomplishes, it has
had an impact on our perceptions of what computers
can do and how to approach problems. The software
process is one of representing knowledge about a prob­
lem in a way that facilitates its transformation (detail­
ing) into an implementable solution. Thus, there are
many software engineering methods and tools that owe
their origins to artifIcial intelligence. Some projects, such
as the development of object-oriented programming,
have been successful and are available to developers;
many others still are in the research stage. One can ex­
pect that a knowledge orientation to the problem of soft­
ware design will have considerable impact.

New High-Order Languages
The major advances of the 1960s can be attributed

to the use of high-order languages, but it is doubtful that
current language improvements will have much impact
on productivity. Many proven modern programming
concepts have been incorporated into Ada, and the com­
mitment to this language clearly will familiarize de- .
velopers with those concepts and thereby improve both
product quality and productivity. At another extreme,
4GLs offer tools to end users and designers that, for a
narrow application domain, yield a tenfold improvement
in productivity at a price in performance. Still, neither
high-order languages nor 4GLs can match the improve­
ments we are witnessing in hardware cost performance.

285

Blum, Sleight - A n Overview of Software Engineering

Software Reuse
The concept of software reuse was first perceived in

the context of a program library. As new tools have been
developed, the goal of reusable components has expand­
ed. For example, Ada packages that encapsulate ab­
stracted code fragments can be shared and reused. The
artificial-intelligence-based knowledge perspective also
suggests ways to reuse conceptual units having a gran­
ularity finer than code fragments and program libraries.
Finally, the extension of 4GL techniques provides a
mechanism for reusing application-class conventions with
a natural human interface.

Training and Domain Specialization
All software development requires some domain

knowledge. In the early days of computing, the program­
mer's knowledge of the new technology was the key, and
the domain specialist explained what was needed. To­
day, almost every recent college graduate knows more
about computer science than did those early program­
mers. Thus, there is an emphasis on building applica­
tions. As more tools become available, one can expect
software developers to divide into two classes. The soft­
ware engineer will, as the name implies, practice en­
gineering discipline in the development of complex soft­
ware products, such as embedded applications and com­
puter tools for end users. The domain specialists will use
those tools together with the domain knowledge to build
applications that solve problems in their special environ­
ment. We can see this trend in the difference between
Ada and the 4GLs. Ada incorporates powerful features
that are not intuitively obvious; the features are built on
a knowledge of computer science and must be learned.
The 4GLs, however, offer an implementation perspec­
tive that is conceptually close to the end user's view. The
software engineer builds the language; the domain spe­
cialist uses it.

WHAT OTHERS SAY
What do the experts in software engineering say about

the future of this discipline and the hope for significant
improvements in productivity? In explaining why the
Strategic Defense Initiative is beyond the ability of cur­
rent (and near-term) software practice, Parnas 15 offered
a negative critique of most research paths. He said that
the problem involves complex real-time communication
demands, adding that there is limited experience in
designing programs of this architecture and magnitude
and that there is no way to test the system thoroughly.
No ongoing approach, he concluded, could overcome
these difficulties.

286

Boehm, I in an article on improving productivity, was
more positive. Speaking of state-of-the-art software ap­
plications, he offered this advice: write less code, reduce
rework, and reuse software-especially commercially
available products, where possible.

Brooks 16 discusses the possibility of improving soft­
ware productivity. He has catalogued research directions
in some detail and concluded that the biggest payoff
would come from buying rather than building, learning
by prototyping, building systems incrementally, and­
most important to him-training and rewarding great
designers. Of those four recommendations, the first
reflects the spinning off of tools that can be used by do­
main specialists, and the next two relate to the need to
build up knowledge about an application before it can
be implemented. The last of Brooks's positive approach­
es recognizes that software design (like every other crea­
tive activity) depends on, and is limited by, the individu­
al's ability, experience, understanding, and discipline.

REFERENCES and NOTES
lB. W. Boelun , " Improving Software Productivity," IEEE Computer 20, 43- 57
(1987).

2B. W. Boelun, "A Spiral Model of Software Development and Enhancement, "
IEEE Computer 21 , 61-72 (1 988).

3B. W. Boehm, " Industrial Software Metrics Top 10 List," IEEE Software,
84-54 (Sep 1987).

4Two books that are highly recommended are R. Fairley, Software Engineer­
ing Concepts, McGraw-Hill , New York (1985) and R. Pressman, Software
Engineering: A Practitioner's Approach, 2nd ed ., McGraw-Hill , New York
(1 987).

5 Ada is a registered trademark of the U.S . Government, Ada Joint Project
Office.

6DOD-STD-2 167A, "Military Standard Defense System Software Develop­
ment," (29 Feb 1988).

7MIL-STD-1 679 (Navy), "Military Standard Weapon Software Development,"
(I Dec 1978).

8SEC AVINST 3560.1, "Tactical Digital Systems Documentation Standards,"
(8 Aug 1974).

90 . F. Sterne, M. E. Schmid, M. J . Gralia, T. A. Grobicki, and R. A. R.
Pearce, "Use of Ada for Shipboard Embedded Applications," Annual Wash­
ington Ada Symp., Washington, D.C. (24-26 Mar 1985).

lOS. J. Mellor and P . T. Ward, Structured Development for Real-Time Systems,
Prent ice-Hall, Englewood Cliffs, N.J. (1986).

II R. J. A. Bahr, System Design With Ada, Prentice-Hall, Englewood Cliffs,
N.J . (1984).

12G. Tice, "Looking at Standards from the World View," IEEE Software 5,
82 (1988).

l3V. G. Sigillito, B. I. Blum, and P . H . Loy, "Software Engineering in The
Johns Hopkins University Continuing Professional Programs," 2nd SEI Conf.
on Software Engineering Education, Fairfax, Va. (28- 29 Apr 1988).

14 J. Foreman and J . Goodenough, Ada Adoption Handbook: A Program
Manager's Guide, CMO/ SEI-87-TR-9, Software Engineering Institute (May
1987).

15 D. L. Parnas, "Aspects of Strategic Defense Systems," Commun. A CM 12,
1326- 1335 (1 985).

16F. P . Brooks, "No Silver Bullet," IEEE Computer 20, 10-19 (1 987).

ACKNOWLEDGMENTS-The authors gratefully acknowledge the very
helpful suggestions of J . E. Coolahan , M. J . Gralia, R. S. Grossman, and J . G .
Palmer.

f ohns Hopkins A PL Technical Digest, Volume 9, N umber 3 (1988)

THE AUTHORS

BRUCE I. BLUM was born in New
York City. He holds M.A. degrees
in history (Columbia University,
1955) and mathematics (University of
Maryland, 1964). In 1962, he joined
APL, where he worked as a pro­
grammer in the Computer Center.
During 1967- 74, he worked in pri­
vate industry, returning to APL in
1974. His special interests include in­
formation systems, applications of
computers to patient care, and soft­
ware engineering. From 1975-83, he
served as director of the Clinical In­
formation Systems Division, Depart­
ment of Biomedical Engineering,
The Johns Hopkins University.

Johns Hopkins APL Technical Digest, Volume 9, Number 3 (1988)

Blum, Sleight - An Overview of Software Engineering

THOMAS P . SLEIGHT received
his Ph.D. from the State University
of New York at Buffalo in 1969. Be­
fore joining APL, he spent a year
as a postdoctoral fellow at Leicester
University, England. At APL, Dr.
Sleight has applied computers to sci­
entific defense problems. He has
served as computer systems techni­
cal advisor to the Assistant Secretary
of the Navy (R&D) and on the Bal­
listic Missile Defense Advanced
Technology Center's Specification
Evaluation Techniques Panel. He
has participated in the DoD
Weapons Systems Software Manage­
ment Study, which led to the DoD

directive on embedded computer software management. Dr. Sleight served
as supervisor of the Advanced Systems Design Group from 1977-82 in
support of the Aegis Program and the ANIUYK-43 Navy shipboard
mainframe computer development and test program. Since 1982, he has
served in the Director's Office, where he is responsible for computing
and information systems.

287

