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AN OVERVIEW OF SOFTWARE ENGINEERING 

Computer software has become an important component of our defense systems and our everyday 
lives, but software development is both difficult and costly. This article examines the similarities and 
differences between software and hardware development, the essence of software, modern practices used 
to support the software process, and the application of government methods. We also consider the role 
of standards and technology centers, and conclude with a view into the future. 

INTRODUCTION 
Software is a part of everyday life at work and at 

home. Many things we take for granted are software de­
pendent: watches, telephone switches, air-conditioning/ 
heating thermostats, airline reservations, systems that de­
fend our country, financial spreadsheets. The discipline 
of managing the development and lifetime evolution of 
this software is called software engineering. 

Software costs in the United States totaled about $70 
billion in 1985, of which $11 billion was spent by the 
Department of Defense. 1 Worldwide, spending was 
about twice that amount-$l40 billion. At a growth rate 
of 12070 per year, the United States will spend almost 
$0.5 trillion annually on software by the turn of the cen­
tury. 

Studies in the early 1970s projected that software 
would rapidly become the dominant component in com­
puter systems costs (Fig. 1). The cost of computing hard­
ware over the last few years has fallen dramatically on 
a per-unit performance basis. That decrease resulted pri­
marily from the mass production of denser integrated 
circuits. Software remains labor intensive, and no com­
parable breakthrough has occurred. Thus, the small in­
creases in software productivity have not overcome the 
increased cost of human resources. 

There is broad agreement on what is to be avoided 
but a diversity of opinions regarding the best way to de­
velop and maintain software. We will examine here why 
software development is so difficult, what methods are 
currently available to guide the process, how government 
methods have responded to those difficulties, and what 
roads to improvement are being explored. This article, 
oriented to a technical audience with minimal back­
ground in software development, presents a survey of 
many different methods and tools, for that is the na­
ture of the state of the art in software engineering. 

THE ESSENCE OF SOFTWARE 
DEVELOPMENT 

The software process, sometimes called the software 
life cycle, includes all activities related to the life of a 
software product, from the time of initial concept until 
final retirement. Because the software product is gener­
ally part of some larger system that includes hardware, 
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people, and operating procedures, the software process 
is a subset of system engineering. 

There are two dimensions to the software process. The 
first concerns the activities required to produce a product 
that reliably meets intended needs. The major consider­
ations are what the software product is to do and how 
it should be implemented. The second dimension ad­
dresses the management issues of schedule status, cost, 
and the quality of the software deliverables. 

In a large system development effort, we commonly 
find the same management tools for both the hardware 
and software components. These typically are organized 
as a sequence of steps and are displayed in a "waterfall" 
diagram. Each step must be complete and verified or 
validated before the next step can begin; feedback loops 
to earlier steps are included. A typical sequence is shown 
in Fig. 2 for software development. The steps are de­
rived from the hardware development model. In fact, 
only two labels have been changed to reflect the differ­
ences in the product under development: software cod­
ing and debugging is similar to hardware fabrication, 
and software module testing is similar to hardware com­
ponent testing. 
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Figure 2- Typical software development steps. 

This structural similarity in the flow facilitates the 
coordination and management of hardware and software 
activities. There are, however, major differences between 
hardware and software: 

1. Hardware engineering has a long history, with 
physical models that provide a foundation for de­
cision making and handbooks that offer guidance. 
But software engineering is new; as its name im­
plies, it relies on "soft" models of reality. 

2. Hardware normally deals with mUltiple copies. 
Thus, the effort to control design decisions and as­
sociated documentation can be prorated over the 
many copies produced. In fact, it is common to 
reengineer a prototype to include design corrections 
and reduce manufacturing (i.e., replication) costs. 
Conversely, software entails negligible reproduction 
cost; what is delivered is the final evolution of the 
prototype. 

3. Production hardware is expensive to modify. There 
is, consequently, a major incentive to prove the de­
sign before production begins. But software is sim­
ply text; it is very easy to change the physical me­
dia. (Naturally, the verification of a change is a 
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complex process. Its cost is directly proportional 
to the number of design decisions already made.) 

4. Hardware reliability is a measure of how the parts 
wear out. Software does not wear out; its reliability 
provides an estimate of the number of undetected 
errors. 

These differences suggest that, even with a strong par­
allel between hardware and software, overcommitment 
to a hardware model may prove detrimental to the soft­
ware process. Some common errors are: 

1. Premature formalization of the specification. Be­
cause the design activities cannot begin until the 
analysis is performed and the specification is com­
plete, there often is a tendency to produce a com­
plete specification before the product needs are un­
derstood fully. This frequently results in an invalid 
system. Unlike hardware, software can be incre­
mentally developed very effectively. When a prod­
uct is broken down (decomposed) into many small 
components, with deliveries every few months, the 
designer can build upon earlier experience, and the 
final product has fewer errors. Another develop­
ment approach is to use prototypes as one uses 
breadboard models to test concepts and build un­
derstanding. Of course, only the essence of the pro­
totype is preserved in the specification; its code is 
discarded. 

2. Excessive documentation or control. Software de­
velopment is a problem-solving activity, and docu­
mentation serves many purposes. It establishes a 
formal mechanism for structuring a solution, com­
municates the current design decisions, and pro­
vides an audit trail for the maintenance process. 
But documentation demands often go beyond 
pragmatic needs. The result is a transfer of activity 
from problem-solving to compliance with external 
standards, which is counterproductive. 

3. The alteration of software requirements to accom­
modate hardware limitations. Since software is 
relatively easy to change, there is the perception 
that deficiencies in hardware can be compensated 
for by changes to the software. From a systems 
engineering perspective, this strategy obviously is 
inappropriate. Although it may be the only reason­
able alternative, it clearly represents an undesirable 
design approach. 

4. Emphasis on physical products such as program 
code. Because code frequently is viewed as a prod­
uct, there is a tendency to place considerable store 
in it. The most difficult part of software design, 
however, is the determination of what the code is 
to implement. In fact, production of the code and 
its debugging typically take one-half the time of 
its design. Also, most errors are errors in design 
and not in writing code. Therefore, managers 
should not be too concerned with the amount of 
code produced if the design team has a firm un­
derstanding of how they intend to solve the prob­
lem. And programmers should not be encouraged 
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to code before they have worked out the full design 
of their target application. (The exception is the 
prototype, which is discarded after its lessons have 
been assimilated into the design.) 

If we examine the essential steps of the software pro­
cess, we see that software development is based on the 
same general model as that used to build a bridge, con­
duct a scientific experiment, or manage the development 
of hardware: 

1. First we determine what is to be done (i.e., anal­
ysis). 

2. Next, we determine how to realize the desired be­
havior. This is called design, and it includes the 
allocation of functions, detailed design, and cod­
ing. Often this is decomposed into "programming 
in the large," which involves the architecture of 
the software system, and "programming in the 
small," which involves the creation of the code. 

3. Following this, we test the product at various levels 
of system completeness (units, modules, integrated 
components, and, finally, the full system). 

4. Finally, we use the software product, which often 
changes the environment it was intended to sup­
port, thereby altering its initial specification. Con­
sequently, the software will evolve continuously un­
til its structure degrades to the point where it is less 
expensive to retire it than to modify it. We can view 
this "maintenance" activity as an iteration of the 
preceding steps. 

Clearly, we can structure these four steps in a water­
fall organization. But since true system needs often are 
not understood without some preliminary experimenta­
tion, we also use other development models wherein soft­
ware evolves from experience with prototypes and earlier 
system versions. Boehm's spiral model is one example 
of this revised flow; 2 most process models, however, 
are built from the four basic activities presented above. 

One advantage of the waterfall representation is its 
long history of use, which has yielded insightful empirical 
data. For example, a major portion of the software cost 
is expended on a product after it has been installed. This 
is called evolution or maintenance, and it can represent 
one-half to three-quarters of the total life cycle cost. For­
ty percent of the development cost is spent on analysis 
and design, 20070 on coding, and 40% on integrating and 
testing (the "40-20-40 rule"). The writing of program 
code is a very small part of the total cost. A distribu­
tion of expenditures for one set of data is shown in Fig. 
3. (See the boxed insert for other observations based on 
empirical data.) 

Our discussion thus far suggests that a good approach 
to software development is one that: 

1. Identifies and responds to errors as early as possible 
in the development cycle. 

2. Assumes that there will be continuous change in 
the product and anticipates its eventual evolution. 

3. Minimizes the importance of code production. 
4. Maximizes the importance of people, both by 

bringing experienced people to the difficult tasks 
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Figure 3- Distribution by cost percentage of the software life 
cycle. (Zelkowitz, Shaw, and Gannon, Principles of Software En­
gineering and Design, © 1979, p. 9. Reprinted by permission 
of Prentice Hall , Inc., Englewood Cliffs, N.J .; adapted version 
appeared in Computer, 1984.) 

and by building the skills of those with less ex­
perience. 

MODERN PRACTICES AND THE 
SOFTWARE PROCESS 

Given our description of the software process, we now 
address the modern practices used to support that pro­
cess. We organize the discussion of methods, tools, and 
environments according to their application to the major 
process activities of analysis, design (programming in the 
large), code (programming in the small), validation and 
verification, and management. (We make no attempt to 
provide citations for all the tools and methods described. 
References can be found in the most modern software 
engineering textbooks . 4) 

Analysis 
The objective of the analysis is to produce a descrip­

tion of what the software system is to do. Naturally, this 
will depend on the domain of application. For example, 
in an embedded application, the system engineers may 
have specified all the software requirements as part of 
the system decomposition process; the functions, timing 
constraints, and interfaces may already be prescribed, 
and the design can proceed. But as often happens with 
an information system, the initial intent may be stated 
only vaguely, and an analysis of the existing operation, 
along with a study of how automation may help, will 
follow. The result will be a specification of the product 
to be implemented. 
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Although the parameters affecting costs, scheduling, and 
quality vary from project to project, there are some gener­
ally accepted trends. Boehm recently identified the follow­
ing ten most important industrial software measures or met­
rics: 3 

1. Finding and fixing a software problem after delivery 
can be up to 100 times more expensive than finding 
and fixing it during the phases when the requirements 
and early design are determined. 

2. You can compress a software development schedule 
up to 25070 of nominal, but no more. 

3. For every dollar you spend on software development, 
you will spend two dollars on software maintenance. 
(Other studies have shown that the costs associated 
with perfecting the product represent the largest main­
tenance category, and costs associated with making 
corrections represent the smallest category. The re­
maining resources are used to adapt the software to 
altered requirements. Figure 4 illustrates a typical al­
location of costs among maintenance categories.) 

4. Software development and maintenance costs are 
primarily a function of the number of source instruc­
tions in the product. 

5. Variations between people account for the biggest 
differences in software productivity. 

6. The overall ratio of computer software costs to hard­
ware costs has gone from 15:85 in 1955 to 85:15 in 
1985, and this trend is still growing. 

7. Only about 15% of a software product development 
effort is devoted to programming. 

8. Software systems and software products each typically 
cost three times as much per instruction to develop 
fully as does an individual software program. Software 
system products cost nine times as much. 

9. Walk-throughs can catch 60% of the errors. 
10. Many software phenomena follow a Pareto distribu­

tion: 80% of the contribution comes from 20% of 
the contributors. 

A common method of analysis is called "structured 
analysis." The operational environment is first modeled 
as a network of input-output transformations and docu­
mented in the form of "data flow diagrams" (DFDs). 
The nodes in the DFDs represent the transformations, 
and the arcs represent the data flowing to and from the 
transformations. Each node is given a title suggesting 
the activity the transformation represents, and each arc 
is given the title of the data in the flow. To convey mean­
ing, abstraction is used to reduce the level of detail. For 
increased information content, each node can be expand­
ed as a DFD; the only restriction is that all data flows 
to and from that node are retained as inputs to and out­
puts from the lower-level DFD. 

With this approach, one typically models the physical 
environment and then draws a boundary separating the 
automated system from the nonautomated system. Data 
flows crossing that boundary represent the application 
interfaces. Next, the functions within the boundary are 
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Figure 4- Allocation of system and programming resources 
to three maintenance categories (reprinted by permission, "Soft· 
ware Engineering: Problems and Perspectives," IEEE Computer, 
© 1984, IEEE). 

reorganized to provide a more effective implementation 
of what previously was a nonautomated process. All 
flows (arcs) and actions (nodes) are labeled, and the 
nodes are further decomposed into DFDs until each node 
is well understood. Because the arcs represent abstrac­
tions of the data in the flow, " data dictionaries" are 
created that detail the data organization and content. 
There are several variations of structured analysis. In the 
method developed by DeMarco and Y ourdon, the low­
est-level nodes are described in process- or minispecs that 
use "structured English" to detail the processing that 
the transformation must conduct. A sample DFD, dic­
tionary, and minispec are shown in the boxed insert. 

Most structured analysis techniques are designed for 
information processing applications. The initial goal of 
this method was to provide a manual technique that 
would allow the analyst to detail his thoughts systematic­
ally and communicate the results to the sponsors and 
users. Recently, automated tools have been developed 
to assist in drawing the DFD and maintain dictionaries 
of the transformations and flows. (Such tools are known 
as CASE: computer-assisted software engineering.) Var­
iations of the DFD also have been adopted for use with 
real-time systems by adding symbols to model queues 
and messages transmitted among nodes . 

The requirements analysis is conducted in a top-down 
mode. This decomposition approach imposes some de­
sign decisions on the product; for example, the DFD es­
sentially establishes the module structure for the im­
plementation. Some suggest that this is a weakness of such 
methods: the analyst must make critical design decisions 
when he least understands the problem being solved. The 
alternative is a "composition" approach in which one 
models portions of the system that are well understood 
and builds the system from those components. 
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STRUCTURED ANALYSIS DESCRIPTION 

The figure below contains a simple example of the rep­
resentation used during structured analysis. For this data 
flow diagram (DFD), we assume that there is a parent DFD, 
with at least five bubbles or activities. This diagram is an 
expansion of the bubble, 5.0, Determine Schedule, of the 
parent activity. 

Typically a DFD contains five to nine bubbles, although 
only three are shown. Each bubble is labeled with the ac­
tivity it represents; the data flows to and from each bubble 
are labeled; and the data stores (i.e., the file containing the 
work-breakdown-structure [WBS] data) and external ele­
ments (i.e., the printer) are identified with their special sym­
bols. 

5.0 DETERMINE SCHEDULE 

Schedule Request 

Schedule 

Examples of composition techniques include the Jack­
son System Design and object-oriented design ("design" 
implying that the process steps have considerable over­
lap). In the Jackson System Design, the target system 
is represented as a discrete simulation, and the implemen­
tation is considered a set of communicating sequential 
processes; that is, the method allows for the modeling 
of the real-world environment as a computer simulation, 
which then is transformed into a set of sequential pro­
grams that can operate asynchronously. Conversely, ob­
ject-oriented design first identifies the real-world objects 
that the desired system must interact with and then con­
siders how those objects interact with each other. There 
are several versions of object-oriented design, but exper­
ience with its use is limited. 

Programming in the Large-Design 
The design process begins after there is a specification 

establishing what functions the software is to provide. 
From the discussion of analysis, we see that there is no 
precise division between analysis (the decision of what 
is to be done) and design (the determination of how to 
realize it). There sometimes is a contractual need to es-
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Because the processing for this DFD is clear, there is no 
need to expand it to another DFD level. Bubble 5.2, Define 
Schedule, is described in a minispec, which conveys the pro­
cessing while avoiding the detail required of a programming 
language. For example, " get and list WBS# and WBS 
TITLE" is several instructions, and the reenter statement 
after printing the error message implies a GOTO (not 
shown). 

Finally, the data dictionary defines the major elements 
in the data flow. Here, WBS is a table with five columns, 
and Task Group is a set of WBS#s. More detailed defini­
tions of the element formats and index schemes may be 
delayed until additional information is compiled. 

PROCESS (MINI) SPECIFICATION 

5.2 Define Schedule Process 
for each TASK in TASK GROUP 

get and list WBS# and WBS TITLE 
enter START date 
enter STOP date 
if START < STOP then print error and reenter 

end 

DATA DICTIONARY 

WBS = WBS# + Title + Start + Stop + Re­
sources 

Task Group = {WBS#} 

tablish what the procured software is to provide, so the 
specification becomes part of the contract that defines 
the deliverable. In the essential model of the software 
process, however, there is continuity between analysis 
and design activities, and the methods often support both 
activities. 

The basic process is one of modeling the software sys­
tem and adding details until there is sufficient informa­
tion to convert the design into a realization (i.e., pro­
gram). Design always begins with a specification, which 
is a product of the analysis step. At times, the specifica­
tion is a formal document establishing a set of require­
ments. Here, it is important to maintain traceability to 
ensure that all design decisions are derived from a re­
quirement and that all requirements are satisfied in the 
design (i.e., there are neither extra features nor omis­
sions). At other times (e.g. , in the internal development 
of a product), the specification is less formal, and addi­
tional subjectivity is needed to determine that the design 
decisions are valid. 

For any set of requirements, there are many equally 
correct designs. The task of the design team is to select 
among the alternatives those system decisions yielding 

Johns Hopkin s APL Technical Digest, Volume 9, Number 3 (1988) 



a design that is, in some way, expected to be better than 
the others. Studies of this activity indicate that consider­
able domain experience is required. Also, the ability and 
training of the team members is some two to four times 
as important as any other factor in determining the cost 
to produce an acceptable product. 

Design methods are extensions of analysis methods. 
For example, decomposition techniques use the DFD, 
and composition methods span the analysis and 
programming-in-the-large tasks. With decomposition 
techniques, "structured design" is used to model the in­
teractions among software modules. Rules are available 
to guide the transition from DFDs to the "structure di­
agrams" depicting module control flow. As with DFDs, 
data dictionaries are used to describe the elements in the 
data flow, and the functions of the modules are detailed 
as "module specs" in structured English. 

Other methods begin with models of the data and their 
temporal changes, and then derive the processes from 
those data structures. The Jackson Program Design, for 
example, models the structure of the data and then builds 
models of the procedures that reflect that structure. For 
data processing applications, there are several methods 
used to define the data model. One widely used method 
is the entity-relationship model. Here, the entities (e.g., 
employees, departments) and their relationships (e.g., 
works in) are identified and displayed graphically. Rules 
then can be applied to convert this conceptual model into 
a scheme that can be implemented with a database man­
agement system. 

We have identified here many different (and often 
mutually incompatible) methods, but the list is incom­
plete. Many of those methods use some form of dia­
gram. Most CASE tools support the DFD, structure dia­
gram, Jackson System Design notation, and entity-rela­
tionship model. There also are proprietary tool sets that 
are limited to a single method. One of the benefits that 
any good method provides is a common approach for 
detailing a solution and communicating design decisions. 
Thus, for effective communication, an organization 
should rely on only a limited number of methods. The 
DFD and the entity-relationship model are the most 
broadly disseminated and, therefore, frequently will be 
the most practical for the communication of concepts. 

Programming in the Small-Coding 
Code involves the translation of a design document 

into an effective and correct program. In the 1970s, the 
concept of "structured programming" was accepted as 
the standard approach to produce clear and maintainable 
programs. The structured program relies on three basic 
constructs: 

1. Sequence-a set of statements executed one after 
the other. 

2. Selection-a branching point at which one of a set 
of alternatives is chosen as the next statement to 
be executed (e.g., IF and CASE statement). 

3. Iteration-a looping construction causing a block 
of statements to be repeated (e.g., DO statement). 
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Every program can be written using only these three con­
structs. A corollary, therefore, is that the OOTO state­
ment is unnecessary. 

Structured programming introduced other concepts as 
well. Programs were limited to about 50 lines (one page 
of output). Stepwise refinement was used to guide the 
top-down development of a program. When a concept 
was encountered during programming that required ex­
pansion, it would be represented as a procedure in the 
user program and later refined. This method allowed the 
programmer to defer design activities; it also resulted in 
programs that were easier to read and understand. To 
improve comprehension, indentation and white space 
were used to indicate the program's structure. In time, 
the flow chart was replaced by the "program design lan­
guage" (e.g., the minispec), which captured the program 
structure but omitted many program details. 

Another concept introduced in the late 1970s was "in­
formation hiding," which emerged following analysis of 
what characteristics should bind together, what functions 
are retained in a module (cohesion), and how modules 
should interact with each other (coupling). The goal of 
information hiding is to yield a logical description of the 
function that a module is to perform and isolate the users 
of that module from any knowledge of how that func­
tion is implemented. Thus, the designers may alter the 
internal implementation of one module without affect­
ing the rest of the program. This concept was refined 
and became known as the abstract data type. A data 
type defines what kinds of data can be associated with 
a variable symbol and what operators can be used with 
it. For example, most languages offer an integer, real, 
and character-string data type. The operator plus (+ ) 
has a different meaning for each data type. 

With an abstract data type, the designer can specify 
a new data type (e.g., the matrix) and operators that are 
valid for that data type (e .g., multiplication, inversion, 
scalar multiplication). Using the terminology of the 
Ada 5 programming language, the abstract data type is 
defined in a package with two parts. The public part in­
cludes a definition of the data type and the basic rules 
for the operations. The private part details how the oper­
ations are to be implemented. To use the abstract data 
type, the programmer includes the package by name and 
then declares the appropriate variables to be that data 
type. This is an example of software "reuse." The data 
type operations are defined once and encapsulated for 
reuse throughout the software application, thereby re­
ducing the volume of the end product and clarifying its 
operation. 

Another technique to improve program quality is em­
bodied in the concept of "proof of correctness," mean­
ing that the resulting program is correct with respect to 
its specification. There are some experimental systems 
that can prove a program to be formally correct. Such 
systems have been used to verify key software products, 
such as a security kernel in an operating system. But 
proof of correctness usually is applied as a less formal 
design discipline. 

"Fourth generation languages" (40Ls) represent an­
other approach to software development. Here, special 
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tools have been developed for a specific class of appli­
cation (information processing) that facilitate the devel­
opment of programs at a very high level. For example, 
one can produce a report simply by describing the con­
tent and format of the desired output; one does not have 
to describe procedurally how it should be implemented. 
(Thus, 4GLs generally are described as being nonproce­
dural or declarative.) 

Validation and Verification 
In the traditional descriptive flow for software devel­

opment, the activity that precedes operations and main­
tenance is called "test." Testing is the process of detect­
ing errors. A good test discovers a previously undetected 
error. Thus, testing is related to defect removal; it can 
begin only when some part of the product is completed 
and there are defects to be removed. 

The validation and verification activity includes the 
process of testing. But it begins well before there is a 
product to be tested and involves more than the identi­
fication of defects. Validation comes from the Latin vali­
dus, meaning strength or worth. It is a process of predict­
ing how well the software product will correspond to 
the needs of the environment (i.e., will it be the right 
system?). Verification comes from the Latin verus, 
meaning truth. It determines the correctness of a product 
with respect to its specification (i.e., is the system right?). 

Validation is performed at two levels. During the anal­
ysis step, validation supplies the feedback to review de­
cisions about the potential system. Recall that analysis 
requires domain understanding and subjective decisions. 
The domain knowledge is used to eliminate improper 
decisions and to suggest feasible alternatives. The rank­
ing of those alternatives relies on the analysts' experience 
and judgment. The review of these decisions is a cogni­
tive (rather than a logically formal) activity. There is no 
concept of formal correctness; in fact, the software's va­
lidity can be established only after it is in place. (Proto­
types and the spiral model both are designed to deal with 
the analyst's inability to define a valid specification.) 

The second level of validation involves decisions made 
within the context of the specification produced by the 
analysis activity. This specification describes what func­
tions should be supported by the software product (i.e., 
its behavior). The specification also establishes nonfunc­
tional requirements, such as processing time constraints 
and storage limitations. The product's behavior can be 
described formally; in fact, the program code is the most 
complete expression of that formal statement. Nonfunc­
tional requirements, however, can be demonstrated only 
when the product is complete. 

Validation and verification are independent concepts. 
A product may be correct with respect to the contractu­
al specification, but it may not be perceived as a useful 
product. Conversely, a product may correspond to the 
environment's needs even though it deviates from its 
specified behavior. Also, validation always relies on 
judgment, but verification can be formalized. Finally, 
both validation and verification can be practiced before 
there is code to be tested; failure to exercise quality con­
trol early in the development process will result in the 
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mUltiplication of early errors and a relatively high cost 
of correction per defect. 

Before a formal specification exists (one that can be 
subjected to logical analysis), the primary method for 
both verification and validation is the review. In the soft­
ware domain, this is sometimes called a walk-through 
or inspection, which frequently includes the review of 
both design documents and preliminary code. The review 
process is intended to identify errors and misunderstand­
ings. There also are management reviews that establish 
decision points before continuing with the next devel­
opment step. The two types of reviews have different 
functions, and they should not be confused or combined. 
Management reviews should occur after walk -throughs 
have been completed and technical issues resolved. 

Most software tests are designed to detect errors, 
which sometimes can be identified by examining the pro­
gram text. The tools that review the text are called "static 
analyzers." Some errors they can detect (such as iden­
tifying blocks of code that cannot be reached) can be 
recognized by compilers. Other forms of analysis rely 
on specialized, stand-alone software tools. "Dynamic 
analysis" tests, concerned with how the program oper­
ates, are divided into two categories. "White box" tests 
are designed to exercise the program as implemented. 
The assumption is that the errors are random; each path 
of the program, therefore, should be exercised at least 
once to uncover problems such as the use of the wrong 
variable or predicate. "Black box" tests evaluate only 
the function of the program, independent of its im­
plementation. 

As with equipment testing, software testing is organ­
ized into levels. Each program is debugged and tested 
by the individual programmer. This is called unit test­
ing. Individual programs next are integrated and tested 
as larger components, which are then function tested to 
certify that they provide the necessary features. Finally, 
the full system is tested in an operational setting, and 
a decision is made to deploy (or use) the product. Natu­
rally, if the software is part of an embedded system, 
then, at some level, the software tests are integrated with 
the hardware tests. 

Management 
We have so far emphasized the essential features of 

software development; that is, what makes the devel­
opment process unique for this category of product. 
Some characteristics of the process make it difficult: the 
software can be very complex, which introduces the 
potential for many errors; the process is difficult to mod­
el in terms of physical reality; there is always a strong 
temptation to accommodate change by modifying the 
programs; and, finally, the product is always subject to 
change. (In fact, the lifetime cost for adaptation and en­
hancement of a software product usually exceeds its de­
velopment cost.) 

The management of a software project is similar to 
the management of any other technical project. Man­
agers must identify the areas of highest risk and the 
strategies for reducing that risk; they must plan the se­
quence of project activities and recognize when devia-
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tions are imminent; they must budget time, personnel, 
and dollar resources and adjust these factors through­
out the process; they must maintain control over the 
completed products; and they must establish procedures 
to ensure a high level of product quality. 

As with any project management assignment, the 
manager must understand something about both the do­
main of application and the technology to be applied. 
In well-understood problem areas, this knowledge is less 
critical because design is reduced to the detailing of some 
existing design concept. But in new domains there are 
uncertainties, and management must be sensitive to the 
early resolution of high-risk problems. (This is one area 
in which prototyping can be most effective; another is 
the examination of the human interface.) 

Although software engineering is a relatively new dis­
cipline, there are many tools available to help support 
its management. Cost-projection tools have been pro­
duced that allow a manager to build upon previous ex­
perience to estimate cost and schedule. Commercial 
"configuration control" systems manage the software 
versions and supply mechanisms to insulate programs 
from unauthorized or uncertified changes. Many modem 
program-support environments also contain tools that 
give management easy access to schedule and status in­
formation. 

GOVERNMENT METHODS 
APPLIED AT APL 

The approaches to software engineering taken by 
APL's sponsoring organizations must be considered both 
when an operational system is delivered and when a pro­
totype is developed that will evolve into government 
specifications and procurements. For many experiments 
(e.g., at-sea or space-based), the whole effort is oriented 
toward quick deployment of existing or slightly modified 
sensors and support for recording, telemetry, and anal­
ysis. There are no sponsor-specified approaches, and 
development responsiveness often is the critical compo­
nent. The software becomes a crucial integrating element. 
Since existing software must be modified, software en­
gineering techniques are applied less formally. 

In its work on Navy tactical systems, however, APL 
relies more on the use of standards. The development 
and acquisition of mission-critical defense-systems soft­
ware is governed by DOD-STD-2167A,6 a standard 
specifying a number of documents that should be gener­
ated during software development. This document-driven 
approach has been criticized for the lack of proper docu­
ment selection and tailoring by the government and for 
ignoring several modern software processes or develop­
ment strategies as described above. Although this stan­
dard has some drawbacks, it has provided a sound and 
consistent basis for software development over many 
years. Recently, it was modified (Revision A) to reflect 
better the methods available via the Ada language. This 
standards approach is not new; the DOD standard origi­
nated in earlier internal Navy standards. 7

,8 The other 
main component in the Navy's approach is the use of 
specific programming languages. The Navy has attempt-
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ed for many years to standardize languages, beginning 
with CS-I in the 1960s, through the CMS-2 and the in­
troduction of Ada. 

The Navy also has standardized computer hardware, 
in particular, the AN/UYK-20, and more recently the 
AN/UYK-44 and AN/ AYK-14, which are the 16-bit 
common instruction set standards. The AN/UYK-7 is 
upward-compatible with the newer 32-bit AN/UYK-43 
standard computer. For the Navy to support those com­
puters with the new Ada language, the Ada Language 
System/Navy project is tasked to develop production­
quality Ada translators (first released in June 1988) for 
the AN/UYK-44, AN/A YK-14, and AN/UYK-43. Con­
siderable emphasis has been placed on the support of 
fast interrupts, a requirement of many Navy embedded 
systems. Within a common command language frame­
work, there are tools for version and database main­
tenance, software-problem-report tracking, documen­
tation updating, and report generation. 

The Ada language has matured, and the translators 
are rapidly becoming viable production tools. Some re­
cent benchmark programs executing on the MC 68020 
processor indicate that the Ada code is almost as fast 
as code generated by popular C-Ianguage translators. 
Ada is now a workable language for military use, and 
the benefits of the object-oriented approach can be ob­
tained from specification through operational code and, 
most important, during evolution and maintenance. 
APL has explored Ada applications for several tactical 
systems. Whenever a mature Ada translator and target 
run-time system have been available, the projects have 
been successful. One example is the redesign and reimple­
mentation of a simplified version of the Aegis Command 
and Decision System. 9 This project, while successful, 
also identified several problems with the 1985 Ada tech­
nology. Many of those problems have disappeared with 
more mature Ada products. In follow-on projects, the 
reuse of both internally developed and externally avail­
able Ada modules has been successful. Also, Ada mod­
ule integration has been faster, and fewer errors were 
detected than with other languages. 

Most software development at APL involves the sup­
port of experimental or "one of a kind" systems. Al­
though these systems frequently require the proper use 
of software engineering techniques, they typically are not 
controlled by the sponsor as is a mission-critical Navy 
system (i.e., DOD-STD-2167A). This offers an oppor­
tunity to try new techniques. For example, in some sat­
ellite altimeter work for NASA, the DeMarco and Your­
don methodology, with Ward/Mellor real-time exten­
sions,1O is being successfully applied using new CASE 
tools. The recent APL projects requiring Ada have used 
the Bahr object-oriented design approach, II which 
(with some modification) has been particularly useful 
when the target language is known to be Ada. Some pro­
jects derived their approach from a combination and tail­
oring of DOD-STD-2167A and emerging IEEE software 
standards. This approach provides guidelines and tem­
plates, and helps to alleviate problems arising from staff 
reassignment and short corporate memory. 
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ROADS TO IMPROVEMENT 
There are many possible roads to improvement for 

the software engineering process, with numerous feeders 
and intersections, and some dead ends. Three promising 
routes are standards and guidelines, technology centers, 
and research. We focus below on the first two. (Research 
is covered in the next section.) 

Standards and Guidelines 
The primary roles of international standards and 

guidelines in the software arena are to provide a~plica­
tion portability by defining interfaces and to defme t~e 
state of practice. The international standards process IS 
well established. Standards usually deal with what should 
be done, not how. This is sometimes expressed as the 
public view (not the private view). When standards deal 
with interfaces, the "how" often is stated, simply be­
cause it is a necessary part of the public view. 

Establishing international standards is a time-con­
suming process that depends on the interplay among in­
dustry, government, and professional societies. In the 
national and international forum, it is a consensus-build­
ing process. A typical IEEE standard takes about five 
years to progress through its various stages. Since most 
standards are based on experience, the impression fre­
quently is created that standards institutionalize past 
practices and stifle new technology. Exclusive of military 
environments, the major players in international software 
standards development are the IEEE, the International 
Standardization Organization, and the American Nation­
al Standards Institute. It is not possible in this article 
to describe all the international software standards efforts 
and their interactions. A summary of 11 IEEE standards 
and 13 standards projects is available, however. 12 Sig­
nificantly, software standards play an ever-increasing role 
in establishing the state of software engineering practice 
and in interfacing various software processes. 

The primary Defense Department standard for soft­
ware development is DOD-STD-2167A. The IEEE and 
other military standards cover similar subjects (e.g., 
documentation, quality assurance, audits). One major 
distinction exists. The military standard deals mainly with 
contract deliverables; thus, document content is empha­
sized. The IEEE standards capture more of the essence 
of the software development process. Additional Navy 
standards traditionally have been stated in different 
terms-the use of standard, government-furnished 
equipment and software. 

Technology Centers 
Technology centers such as the Software Engineering 

Institute (SEI) and the Software Productivity Consor­
tium (SPC) have been established by the government and 
industry to improve software engineering technology 
transition. A third center, the Microelectronics and Com­
puter Technology Corporation (MCC), has a broader 
mission that also includes software engineering. 

The SEI is a federally funded research and develop­
ment center operated by Carnegie-Mellon University un­
der contract with the U.S. Department of Defense. Its 
mission is to (1) bring the ablest professional minds and 
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the most effective technology to bear on rapidly improv­
ing the quality of operational software in mission-critical 
computer systems; (2) bring modern software engineer­
ing techniques and methods into practice as quickly as 
possible; (3) promulgate the use of modern techniques 
and methods throughout the mission-critical systems 
community; and (4) establish standards of excellence for 
software engineering practice. 

Software technology transition is SEI's major focus. 
Unlike industrial consortiums, software engineering re­
search is not a significant part of its mission. The institute 
has convened several workshops over the last few years, 
and many organizations (including APL) in industry, 
academia, and government have affiliated with it. As 
a result, SEI has projects in several areas, including tech­
nology surveys, course and textbook development, soft­
ware reliability techniques, uniform communication 
medium for Ada programs, documentation and report­
ing conversion strategy, software process modeling, soft­
ware maintenance, human interface technology, legal is­
sues, environments, and pilot projects. 

Several course modules for undergraduate and gradu­
ate software engineering courses have evolved from the 
institute's software engineering education program. The 
recently introduced master's degree course entitled "Pro­
jects in Software Engineering" at the APL Center of 
The Johns Hopkins University Continuing Professional 
Programs is based on SEI material. A full description 
of the university'S professional computer science curric­
ulum was presented at a recent SEI education work­
shop. 13 Besides interesting technical and education ma­
terial, the institute has produced guidelines for program 
managers on the adoption of Ada 14 and a method for 
evaluating an organization's software engineering capa­
bility. 

The SPC was formed in 1984 by 14 companies to close 
the mission-critical software gap between defense and 
aerospace system hardware and the availability of soft­
ware to drive those systems. Its goal is to build the soft­
ware tools and techniques needed to accelerate the soft­
ware engineering cycle, improve the quality and function­
ality of the final software product, and make major sys­
tems software easier and less expensive to maintain. 

The objective of SPC's technical program is to create 
a dramatic increase in the software productivity of mem­
ber companies. Over the next five years, the consortium 
will develop and provide members with a range of soft­
ware engineering products and technologies for an inte­
grated development environment. The 14 partners receive 
exclusive rights to products, technologies, research, and 
support services developed by SPC. 

The products will exploit three key concepts: symbolic 
representation, prototyping, and reusable components. 
Symbolic representation makes the process of develop­
ing software a "tangible" activity by representing soft­
ware life-cycle objects in more "natural" ways to the 
working engineer. (The concepts of prototyping and re­
usable components are discussed elsewhere in this arti­
cle.) Within the context of an integrated development 
environment and project libraries, SPC will develop tools 
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for building requirement and design specifications and 
related code, synthesizing prototypes, performing dy­
namic assessments, and managing software development 
projects. At a recent meeting of companies developing 
and marketing CASE tools, SPC launched an initiative 
to establish an industrywide consensus on effective tool­
to-tool interface standards. Those standards will repre­
sent the fIrst steps in building an integrated environment. 

MCC was established by 21 shareholder companies 
in 1983. The consortium has several research programs, 
ranging from semiconductor packaging to software tech­
nology. Each program is sponsored by a subset of par­
ticipating shareholder companies. 

The software technology program focuses on the front 
end, upstream in the software cycle, where little research 
has been performed. This program has created a com­
puter-aided software design environment call Leonardo. 
The environment is to concentrate on requirements cap­
ture, exploration, and early design. Academic research 
has focused on downstream activities, where formalism 
and automation are more obvious. MCC's research em­
phasis is on defining and decomposing a large problem 
into smaller problems and on selecting algorithms, and 
is geared to teams of professional software engineers 
working on large, complex systems. Researchers are 
working on Leonardo architecture, and three compo­
nents: complex design processes, a design information 
base, and design visualization. 

The corporation does not consider its research com­
plete until it is put to use by the sponsoring companies. 
Also, MCC believes it is easier to transfer and establish 
tools and make them consistent than to transfer method­
ologies and methods. 

A VIEW TO THE FUTURE 
We began this article with a review of how software 

differed from hardware and noted that-once the tech­
nical manager understands the software process-the 
management of software is much like that of hardware. 
We then described the software process, characterized 
more by variety than by clarity and consistency. Despite 
our signifIcant accomplishments with software, there re­
main conflicting methods, limited formal models, and 
many unsubstantiated biases. But we present below some 
significant trends in the field. 

Formalization 
Some new paradigms extend the formalism of the 

programming language into an executable specification. 
A specification defines the behavior for all implementa­
tions. An executable specifIcation does not exhibit the 
intended behavior effIciently, but a program is an imple­
mentation of that behavior, optimized for a specifIc com­
puter. We see this because there are systems that we 
know how to specify exactly, but we do not know how 
to implement them efficiently. For example, one can 
specify what a chess-playing program should do without 
being able to describe an efficient implementation. The 
hope is that the executable specification will supply a 
prototype for experimentation that ultimately can be 
transformed into an effIcient program. But the concept 
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has not been demonstrated outside the laboratory, and 
it is not clear how this process model can be managed. 

Automatic Verification 
In the discussion of validation and verification, we 

noted that proofs (verification) could be objective only 
when the parent specification was clear (formal). There 
is, therefore, considerable interest in working with 
mathematically formal specifications at an early stage 
in the design process, since it then would be possible to 
prove that each detailing step was correct with respect 
to this high-level source. A theorem prover could be used 
to automate the process. Testing then would not be 
necessary, because no errors would exist. Naturally, vali­
dation still would be required. 

Automated Tools and Environments 
There is considerable interest in the use of CASE tools 

and in program support environments. Unlike the for­
malisms addressed above, most tools and environments 
are commercial products that implement techniques de­
veloped in the mid-1970s. Thus, these tools and environ­
ments respond to a marketplace demand and provide 
a means for making the application of current practice 
more efficient. Their primary benefit is one of reducing 
the manual effort and thereby the number of errors in­
troduced. As new paradigms are introduced, this focus 
may limit their use or force changes in the approaches 
taken. 

Artificial Intelligence and Knowledge 
Representation 

Although there are many definitions of artificial in­
telligence and debates about what it accomplishes, it has 
had an impact on our perceptions of what computers 
can do and how to approach problems. The software 
process is one of representing knowledge about a prob­
lem in a way that facilitates its transformation (detail­
ing) into an implementable solution. Thus, there are 
many software engineering methods and tools that owe 
their origins to artifIcial intelligence. Some projects, such 
as the development of object-oriented programming, 
have been successful and are available to developers; 
many others still are in the research stage. One can ex­
pect that a knowledge orientation to the problem of soft­
ware design will have considerable impact. 

New High-Order Languages 
The major advances of the 1960s can be attributed 

to the use of high-order languages, but it is doubtful that 
current language improvements will have much impact 
on productivity. Many proven modern programming 
concepts have been incorporated into Ada, and the com­
mitment to this language clearly will familiarize de- . 
velopers with those concepts and thereby improve both 
product quality and productivity. At another extreme, 
4GLs offer tools to end users and designers that, for a 
narrow application domain, yield a tenfold improvement 
in productivity at a price in performance. Still, neither 
high-order languages nor 4GLs can match the improve­
ments we are witnessing in hardware cost performance. 
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Software Reuse 
The concept of software reuse was first perceived in 

the context of a program library. As new tools have been 
developed, the goal of reusable components has expand­
ed. For example, Ada packages that encapsulate ab­
stracted code fragments can be shared and reused. The 
artificial-intelligence-based knowledge perspective also 
suggests ways to reuse conceptual units having a gran­
ularity finer than code fragments and program libraries. 
Finally, the extension of 4GL techniques provides a 
mechanism for reusing application-class conventions with 
a natural human interface. 

Training and Domain Specialization 
All software development requires some domain 

knowledge. In the early days of computing, the program­
mer's knowledge of the new technology was the key, and 
the domain specialist explained what was needed. To­
day, almost every recent college graduate knows more 
about computer science than did those early program­
mers. Thus, there is an emphasis on building applica­
tions. As more tools become available, one can expect 
software developers to divide into two classes. The soft­
ware engineer will, as the name implies, practice en­
gineering discipline in the development of complex soft­
ware products, such as embedded applications and com­
puter tools for end users. The domain specialists will use 
those tools together with the domain knowledge to build 
applications that solve problems in their special environ­
ment. We can see this trend in the difference between 
Ada and the 4GLs. Ada incorporates powerful features 
that are not intuitively obvious; the features are built on 
a knowledge of computer science and must be learned. 
The 4GLs, however, offer an implementation perspec­
tive that is conceptually close to the end user's view. The 
software engineer builds the language; the domain spe­
cialist uses it. 

WHAT OTHERS SAY 
What do the experts in software engineering say about 

the future of this discipline and the hope for significant 
improvements in productivity? In explaining why the 
Strategic Defense Initiative is beyond the ability of cur­
rent (and near-term) software practice, Parnas 15 offered 
a negative critique of most research paths. He said that 
the problem involves complex real-time communication 
demands, adding that there is limited experience in 
designing programs of this architecture and magnitude 
and that there is no way to test the system thoroughly. 
No ongoing approach, he concluded, could overcome 
these difficulties. 
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Boehm, I in an article on improving productivity, was 
more positive. Speaking of state-of-the-art software ap­
plications, he offered this advice: write less code, reduce 
rework, and reuse software-especially commercially 
available products, where possible. 

Brooks 16 discusses the possibility of improving soft­
ware productivity. He has catalogued research directions 
in some detail and concluded that the biggest payoff 
would come from buying rather than building, learning 
by prototyping, building systems incrementally, and­
most important to him-training and rewarding great 
designers. Of those four recommendations, the first 
reflects the spinning off of tools that can be used by do­
main specialists, and the next two relate to the need to 
build up knowledge about an application before it can 
be implemented. The last of Brooks's positive approach­
es recognizes that software design (like every other crea­
tive activity) depends on, and is limited by, the individu­
al's ability, experience, understanding, and discipline. 
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