
WILLIAM G. BATH 

EVOLUTION AND CHALLENGES 
IN SIGNAL PROCESSING 

Signal-processing theory continues to evolve toward discrete, nonrecursive models and solutions, and 
toward real-time adaptation. Hardware is evolving toward larger building blocks and programmability. 
There are challenges remaining in the areas of throughput, inherently nonlinear problems, and cost reduc­
tion. 

BACKGROUND 

The evolution of signal processing consists of the joint 
evolution of signal-processing theory and the electronic 
hardware used to implement the theory. During World 
War II, the classic work by Wiener on filtering signals 
in noise 1 established the theoretical basis for using sig­
nal and noise models to deduce the optimum filter com­
ponents (that is, the resistance, capacitance, and induc­
tance values for an optimum analog circuit) for what 
was then the state of the art. Wiener's spectral factoriza­
tion method essentially showed how to build a circuit 
whose transfer function (that is, spectral response) 
"matched" the spectrum of the signal one was trying 
to detect. 

Since that time there have been many more rigorous 
mathematical treatments of continuous-time random 
processes. However, electronic technology overtook the 
mathematical evolution. Bipolar and field-effect transis­
tors were used first as discrete components and later 
within integrated circuits to build filters that were more 
reliable and which could realize theory with much finer 
precision. The pioneering work of Nyquist and Shan­
non 2,3 established that any practical continuous-time 
signal could be represented with a finite number of sam­
ples obtainable by sampling at a rate at least twice the 
bandwidth of the analog signal, and then quantizing 
those samples with a sufficient number of levels. Today 
(with a few notable exceptions) signal processing is dig­
ital (that is, signals are represented by discrete samples 
in both time and amplitude). Signal-processing designers 
attempt to sample and quantize signals in the rawest 
form possible. 

The evolution of signal processing brought about by 
digital electronics has greatly simplified the theory of sig­
nal processing, transforming the integral equations that 
Wiener solved into matrix equations and eliminating 
many thorny mathematical questions of existence and 
uniqueness. However, signal-processing theory and the 
electronic hardware continue to evolve. Applications re­
quiring large numbers of computations per unit time and 
the availability of components to do such computations 
have both been an impetus to evolution. 

Initial digital signal-processing approaches were recur­
sive, employing feedback loops, as the analog circuits 
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had. Those recursive approaches were very efficient in 
their use of digital hardware. A considerable body of 
theory was developed to approximate the recursive ana­
log solutions with recursive (that is, infinite impulse re­
sponse) digital solutions. However, as nonrecursive (that 
is, finite impulse response) solutions became technolog­
ically feasible, they rapidly supplanted recursive solutions 
because they were simple, unconditionally stable, and 
frequently better models of real-world signals and noise. 

The basic ideas of signal processing that were derived 
from analog filtering have proven helpful in solving 
signal-processing problems without clear analog roots. 
In solving the inherently nonlinear problems of pattern 
recognition, sorting, and classification, one strives to do 
what the human eye can do, given the right display to 
look at. Those problems too were initially attacked recur­
sively and have evolved to nonrecursive forms. Those 
problems have been a second impetus to the develop­
ment of signal-processing theory and hardware. 

This paper will deal entirely with digital signal pro­
cessing, and principally with nonrecursive models and 
solutions. The principles will be presented in the time 
domain (as opposed to the more classical frequency­
domain presentation) to emphasize the evolution toward 
nonrecursive solutions, and will be presented from a 
statistical point of view to emphasize the importance of 
noise models and adaptation in signal-processing solu­
tions. 

BASIC PRINCIPLES 

Most signal processing can be viewed as digital matched 
ftltering-a digital version of how Wiener viewed it. Con­
sider the measured, sampled time signal x shown in Fig. 
1. That signal is the sum of a signal of interest s and a 
random noise process n-both column vectors of length 
N: 

i = 0, ... , N - 1. (1) 

The matched filter output Ym (a scalar) is formed by 
multiplying the measured signal by the complex con­
jugate of the signal of interest and summing over time: 
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Figure 1-The basis of digital matched-filtering theory is a sig­
nal of interest (a) and noise (b) with known statistical proper­
ties. The sum of signal and noise (c) is sampled (d) and 
processed digitally. 

N-I 

Ym = X T S * E S;* Xi (2) 
i= O 

where the superscript T denotes transpose and * indi­
cates complex conjugate. Complex signals arise when the 
analog signal that was sampled is a bandpass signal rep­
resented as a real (in-phase) component and an imagi­
nary (quadrature) component. 

One reason the application of the matched filter is so 
broad is that it is optimum in many senses. Two of the 
most important will be discussed. The fIrst relates to de­
tecting the presence of a signal, a common criterion used 
in surveillance systems. If the signal is deterministic, and 
the noise has a Gaussian probability distribution in (a) 
with zero mean and diagonal constant covariance ma­
trix A: 

x exp{ - Y2 (a - m)T A - I (a - m) *J ,(3) 
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where m = 0 and A = a 21 (I is the N x N identity 
matrix), then the matched filter is optimum. By opti­
mum, it is meant that comparing the scalar Ym to a 
threshold produces the highest probability of detection 
(detecting the presence of the desired signal when it is 
present) for a given probability of false alarm (mistakenly 
detecting the presence of the desired signal when it is 
absent). This fact is a consequence of the Neyman­
Pearson lemma, which states that the optimum test 
statistic is the ratio of the probability densities of the 
measurements with and without the desired signal 
present: 

YOpl = 

(27r) -N!2I A I-N!2exp[ - Yz [(x - s)TA - I(x - s)*]) 

(27r) - N!21 A I -Nl2exp { - Yzx T A - IX* } 

(4) 

A little arithmetic shows that Y Opl and Y m are monoton­
ically related and so they are equivalent for detection 
purposes. Combined with the Gaussian assumption, that 
is a powerful result. As simple as the matched filter is, 
there is no better way of processing x. 

A second sense in which the matched filter is opti­
mum is maximizing the signal-to-noise ratio, a common 
criterion used in guidance or tracking processes where 
one is estimating signal parameters. The matched filter 
is the optimum linear solution in this sense, even when 
the noise is not Gaussian. If one combines the individu­
al measurements linearly to produce a scalar y, then 

(5) 

If one assumes that the noise has zero mean but con­
stant variance (A = a21), then one can define the 
signal-to-noise ratio (S I N) as the ratio of the squared­
mean of Y (which is from the desired signal) to the vari­
ance of Y (which is from the noise): 

SI N 
E[y] 2 

Var (y ) 

w T s 

w T Aw* 
(6) 

Taking the gradient with respect to w gives a maximum 
signal-to-noise ratio (S/ Nma.J of 

i= O 

(7) 
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at w = s*, which is the matched filter. The matched­
filter signal-to-noise ratio is the ratio of the energy Es 
in the signal to the variance of the noise, and complete­
ly determines the detectability of the signal. That is, in 
Gaussian noise all signals of equal energy are equally 
detectable, regardless of shape. 

When the noise is not white, then it is straightforward 
to show that the optimum "colored" filter (in both 
senses of optimality) is 

(8) 

Such a filter can be implemented in two stages-first a 
pre-whitening stage, 

(9) 

followed by the usual matched filter, 

(10) 

This, of course, requires one to know the covariance ma­
trix, A, of the noise (or, equivalently, either its discrete 
spectrum or the power spectral density of the analog 
noise sampled to produce it). 

In some applications the noise is not Gaussian, or in­
stead of being added to the signal it is combined with 
the signal in a more complicated way. Theoretical solu­
tions exist to such problems and those solutions involve 
nonlinear combinations of the data. In most practical 
applications, those nonlinear solutions are approximated 
as adjustments to the linear-matched-filter solution. For 
example, if the signal and noise have been multiplied to­
gether (instead of added) prior to measurement, then one 
may operate on the logarithm of measurements with a 
matched filter (cepstrum processing). The logarithm 
makes signal and noise contributions additive. If the 
noise has a probability density function with longer tails 
than a Gaussian density function (for example, the noise 
occasionally has extremely large values) then a nonlinear 
process may be used to delete or de-emphasize outliers 
that deviate greatly from an estimated signal. 

UNKNOWNS AND ADAPTATION 
If the simplicity of the matched (and colored) filters 

seems inconsistent with the huge computational resources 
frequently required in signal processors, the reason is 
that, in general, many of the desired signal and noise 
parameters are not known. When such is the case, there 
are two alternatives-enumeration and estimation. One 
enumerates all possible solutions by building matched 
fIlters for all possible values of the unknown signal, pass­
ing the measured signal through each, and selecting the 
largest output (or, equivalently, thresholding all the out­
puts). One classical unknown desired signal characteristic 
is time, in which case one must try each possible time 
and the matched fIlter becomes a finite impulse response 
filter convolved with the measurements: 

N-I 

E Xk-N+nSn* for each possible k (11) 
n=O 
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A second classical unknown desired signal characteristic 
is the frequency, j, of a sinusoidal signal sampled at times 
nT, 

Sn = exp ( - j27rjnT), n = 0, 1, ... , N - 1. (12) 

In that case, if one spaces the frequencies in steps of 
(NT) - I then the matched filters become the discrete 
Fourier transform, 

N-I 

Yk = E Xn exp(-j27rnk/N), 
n=O 

k = 0, 1, ... , N - 1 , (13) 

and the calculation of the N matched filters can be made 
via the fast-Fourier-transform technique. 

The second option for dealing with unknown parame­
ters is estimation, which is usually the case for the noise 
covariance A. If one can obtain a look at the noise un­
contaminated by the signal or with minimal contamina­
tion (for example, a stationary noise sample with length 
much greater than N) then the covariance matrix can 
be estimated by estimating the N(N + 1) /2 unique vari­
ance and covariance elements of which it is comprised 
(Fig. 2a).7 For example, if one obtains M "snapshots" 
of the noise, m i , each of length considerably greater 
than N, then the classical estimate of the covariance ma­
trix of N noise samples AM is 

1 M-I 
A ~ * T AM = - i.J mi mi· 

M i=O 

(14) 

Such a process of estimating the noise properties and 
then adapting to them is termed adaptive filtering, and 
is employed in some degree in almost all signal-process­
ing applications. In many cases one simplifies the prob­
lem and stabilizes the computations by allowing the co­
variance matrix to have only a small (smaller than N) 
number of degrees of freedom. This is done by assuming 
a model such as an autoregressive moving average mod­
el with iess than N(N + 1) /2 parameters. The estima­
ti~n of covariance matrix then consists of fitting the 
model to the measurements mi by methods such as 
maximum entropy5 or maximum likelihood. 6 

In some applications, the noise is colored in a simple 
way with a few degrees of freedom. Further, or~e can 
obtain a look at noise m that is minimally contammated 
by the signal and not only has similar statistics to the 
colored portion of the noise D, but is highly correlated 
with that portion. This situation is common when an 
array of sensors operating together as an antenna aper­
ture experiences colored noise in the form of a small 
number of interfering plane waves. Then one can use 
this auxilIary noise m to reduce the noise power of D 

by subtracting the correlated portion producing Xc, a 
cancelled version of X, 
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Figure 2-Three methods of adapta­
tion in digital signal processing are 
(a) non recursive adaptation to noise 
covariance, (b) nonrecursive cancella­
tion of correlated noise, and (c) recur· 
sive (feedback) cancellat ion of corre· 
lated noise. 
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Xc = X - Wm , (15) 

where the gain matrix W is estimated either in a nonre­
cursive configuration by estimating the cross-covariance 
matrix between X and m (Fig. 2b) or in a recursive con­
figuration by adjustment of W via the Widrow-Hoff 
algorithm 7 modified-steepest-descent method (Fig. 2c). 

Adaptive filtering in any form is a delicate process. 
One is inverting a covariance matrix (either directly or 
indirectly) that is frequently nearly singular, then using 
the answer to construct the filter coefficients. Errors of 
a few degrees of phase angle or a fraction of a decibel 
of amplitude can be catastrophic, a consideration that 
influences the design of the signal extraction and analog­
to-digital conversion design, and which frequently re­
quires many checks of reasonableness and stability that 
are tailored to the specific application. Selecting the win­
dow over which adaptation occurs (for example, the 
number of samples used in a feed-forward and prewhit­
ening adaptation or the time constant used in a feed­
back adaptation) is a compromise between precision and 
the ability to adapt to nonstationary noise. 
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IMPLEMENTATION AND COST 
The hardware used to implement digital signal pro­

cessing has evolved toward larger building blocks and 
toward firmware and software rather than hard-wired 
circuits . Registers were used for storage (Fig. 3a) when 
memory was at a premium. Multiplications were con­
served through recursive implementations and shifts 
when possible. With the advent of less expensive high­
speed random-access memory, recent designs (Fig. 3b) 
store data in random-access memory and manipulate it 
prior to passing the answer to the next stage of the pipe­
line. High-speed multiplier-accumulators make nonre­
cursive implementations practical. Coefficients and ad­
dresses can be variable-either downloaded or selected 
from programmable read-only memories via tailored log­
ical operations. 

In many applications the gains of signal processing 
justify a large investment financially as well as in size, 
weight, and power consumption. Despite continued evo­
lution to progressively larger building blocks, a standard 
signal processor-while frequently discussed as a way 
to economize-has proven elusive. One reason is that 
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(a) One stage of a digital recursive filter using discrete components. 
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(b) One stage of a modern digital signal processor. Custom circuit 
multiplexes one or more high-speed multiplier/accumulators plus 
controlled coefficient read-only memories and tailored logic. 

Inputs 

Inputs Outputs 

(c) An array of processors, each with its own random-access memory, 
programmable arithmetic logic unit, and firmware. 

Inputs Outputs 

~ ~ 

f···t~ ~f···~ 
Data Bus 

(d) A bussed array of processors. 

Figure 3-Evolution of signal processing implementations. 

in almost all practical examples there are application­
specific functions that pervade classical processing. For 
example, in a military radar one is likely to have dis­
tributed throughout the signal processor various checks 
to identify deception jammers; such checks are specific 
to the application. A similar reason deals with extreme 
deviations of the noise from the model assumed in for­
mulating the optimum filter. For example, in radar, ra­
dio-frequency interference (from friendly sources) and 
some environmental reflections can be many orders of 
magnitude larger in amplitude than the signal of interest, 
so as to make the signal undetectable. The methods for 
recognizing and confining the effects of such problems 
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are specific to the application as well. These application­
specific functions can require a significant portion of the 
total signal-processing power and are not easily stan­
dardized. 

Standard building blocks may be a more realistic way 
to economize. Arrays of processors (Fig. 3c), with each 
processor being a standard mass-produced (and there­
fore, in theory, more economical) item have been ex­
tensively studied in recent years. Some processing algo­
rithms (such as matrix multiplication, matrix inversion, 
and ordering lists of numbers) have an inherent degree 
of parallelism, which leads to efficient ways to divide 
the tasks among a large number of processors with rela­
tively few interconnections per processor. Research into 
systolic arrays,8 regular iterative algorithm arrays, 9 

wave-front processors,1O and neural networks try to im­
prove efficiency, minimize connectivity, and broaden the 
classes of algorithms that can be attacked in this manner. 

An alternative to ease the connectivity problem is 
"soft" connection via a data bus II (Fig. 30). With a 
data bus, every processor can communicate with every 
other processor. The total volume of communications 
is fixed by the bus hardware, speed of the memory from 
which and to which data is taken off and put on the 
bus, and the method of bus arbitration. 

A SIGNAL PROCESSING CHALLENGE­
ALL-DIGITAL RADAR WITH THREE­
DIMENSIONAL MATCHED FILTERING 

An example of a challenging signal-processing prob­
lem that is technologically unwieldy today is that of a 
complex radar system having a large number of array 
elements, a large signal bandwidth, and open-loop adap­
tation in which all processing is done digitally. Concep­
tually, one could organize the measurements in a three­
dimensional array such as that in Fig. 4. One dimension 
represents space (NA array elements or subarray out­
puts), another dimension represents time or range (NR 
range elements), and the third dimension represents iter­
ations (for example, N[ coherent dwells). One could 
then view the length of a matched filter as the entire 
three-dimensional array N = NRN[NA and perform 
matched filtering across all three dimensions simulta­
neously. That has been done with simple experiments 
or in real high-frequency radar systems in which both 
NA and the signal bandwidths are small. Today's high­
bandwidth radar developments generally decouple the 
problem into, at most, three uncoupled or loosely cou­
pled problems-beam forming (analog in the spatial di­
mension), pulse compression (analog or digital in the 
range dimension) and Doppler fIltering (digital in the iter­
ation dimension). Coupling, when it occurs, is very struc­
tured; for example, extra pulse-compression channels to 
correct for range-Doppler coupling effects in phase­
coded or nonlinearly frequency-coded signals. Significant 
coupling of even two dimensions, such as the range­
Doppler coupling in synthetic-aperture radar, is a chal­
lenge today in real time. The three-dimensional problem 
would require orders of magnitude more complex mul­
tiplies per second than one can currently obtain. The dig-
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Figure 4-Conceptual data array for all·digital , fully coupled, ra· 
dar signal processor. 

ital beam-forming problem itself is formidable. Consider 
a l000-element array with a 10-MHz signal bandwidth. 
The number of complex multiplies for the most straight­
forward implementation would be 10 10 per second. 
This problem is likely to be attacked gradually, fIrst with 
the develpment of practical subarray digital beam form­
ing and then with progressively more complex coupling 
of the spatial processing with the range and Doppler 
dimensions and with progressively more degrees of free­
dom in the estimation of the noise covariance. The spa­
tial dimension is potentially amenable to distributed pro­
cessing in the form of a processor at each array element 
with interconnections to adapt and couple with other 
dimensions. 

As with most of today's signal-processing problems, 
the theoretical foundations are well established. Many 
of the challenges are in systems engineering, which de­
velops the goals and constraints on the signal-processing 
problem and with the components used to build the sig­
nal processor. 

A SIGNAL-PROCESSING CHALLENGE­
NONRECURSIVE MATCHED FILTERING 
OF EVENTS 

Considerable challenges remain in signal processing 
that is inherently nonlinear. When the signal of interest 
is a set of events that must be sorted from a larger col­
lection of signal and noise events, the theory is more 
complex but many of the same principles apply. Figure 
5 shows a one-dimensional event signal buried in noise. 
Most people quickly identify it with their eye after be­
ing told in very general terms what constitutes a desired 
signal. Here it is a line of dots (rising from left to right 
at the top). Developing and building a processor to do 
the same may at first seem unrelated to matched filter­
ing, but the event-matched filtering problem can be for­
mulated and solved in a similar (though not a linear) 
manner. 

In general, the axis x is a vector and contains all the 
information measured about an event occurring at time 
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Figure 5-An event signal in noise (one·dimensional coordinate). 

ti • Thus a signal (event chain) of interest can be repre­
sented by a set of ordered pairs s = {(Si' t i ): 

i = 0, ... , N - I} indicating the event coordinates and 
time. The measured set of events, Xi' at each ti is the 
union of randomly detected desired-signal events with 
coordinate noise added and extraneous events: 

Xi = with probability p 

1 
{x : x = Sl + n} U {fj : j = 0, ... , Nri 1 

(fl) : j = 0 .. . , Nfl} with probability 1 - p , 

(16) 

Where n is noise with zero mean and covariance matrix 
A, and fi are random coordinates. 

The event-matched filter is 

Ye 

N -J 

1: Si /\ Xi 
i=O 

(17) 

where Ye is a scalar and /\ is the proximity sort opera­
tion. The /\ operator looks through the entire set Xi for 
any coordinate matching the desired signal coordinate 
Si' A common form of the proximity sort is a statistical 
distance sort, 

5; fI X; = g [ min ( 5; - x) T A -1 (5; - X).] , 
all x E x. 

I (18) 
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where g(x) is an influence function selected to weight 
the individual contributions. That sort can be shown 
(again through the Neyman-Pearson lemma) to be the 
most powerful (in a probability-of-detection and false­
alarm sense) proximity sort when the random coordi­
nates are uniformly distributed over some range and 
g(x) is chosen to be the identity function . 

An event-matched filter requires a number of compu­
tations that are quadratic in the size of Xi' The coeffi­
cient of the quadratic term can be minimized by pre­
sorting the data into sectors. Generally, each sector con­
stitutes a linked list through the data base. 

As in the linear matched fllter, most of the complexity 
of event filtering comes from not knowing the signal s 
in advance. Referring to Fig. 5, consider all the possible 
signals that the human eye could recognize when they 
are immersed in random events. As in the linear case, 
the two basic approaches are enumeration and estima­
tion. One case of considerable practical interest is an 
event with coordinates varying linearly with time, 

(19) 

where the t i are equally spaced, and where a is con­
strained in D dimensions, 

i = 0, ... , D - 1 , (20) 

and where Si is constrained to lie in a region of D-di­
mensional space with volume G, and the expected num­
ber of random events at any ti is N R • 

This problem has been extensively studied in its recur­
sive formulation. Recursive solutions try to identify can­
didate signal starts, then bootstrap the problem by es­
timating derivatives with respect to time, predicting the 
future coordinates using those derivatives, and associat­
ing coordinates with those predictions (Fig. 6a). Many 
real-time processing systems to automate the detection 
of signal events have been built on such principles. 

As with the linear flltering problems, processing tech­
nology has made nonrecursive solutions practical. A 
nonrecursive solution takes the enumeration approach 
rather than the estimation approach (Fig. 6b). One can 
think of constructing event-matched filters for all pos­
sible circumstances. With the event coordinates varying 
linearly with time, this would require s vectors covering 
all allowable slopes and intercepts with granularity 
matched to the noise covariance A. One would sort the 
data with respect to each possible s vector to find and 
threshold the largest y c ' This is an enormous process­
ing task. Fortunately, the sparseness of the matrix in Fig. 
5 can be exploited to make the problem practical. R. 
J. Prengaman of the Applied Physics Laboratory de­
veloped the retrospective processing technique 12 that 
solves this massive sorting problem in an efficient man­
ner. Initial real-time implementation on a Motorola 6800 
microprocessor \3 demonstrated the efficiency and prac­
ticality of the nonrecursive solution. 

The recursive and nonrecursive solutions can be shown 
to be nearly equivalent when the density of extraneous 
events is small enough. 14 As the density of extraneous 
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Figure 6-Solutions to the event-detection problem using the 
proximity-sort operator. A recursive solution (a) bootstraps the 
problem. A nonrecursive solution (b) implements all possible 
event matched filters (at least functionally). 

events increases, the recursive solution begins to experi­
ence ambiguities in the association process and must be 
made more complex by propagating multiple hypotheses. 
It is in these situations that the nonrecursive solutions 
are more powerful, because decisions do not have to be 
made piecemeal. 

In most practical event-filtering problems, the coor­
dinates do not fit a linear model. This poses little in­
crease in complexity if one knows what model the coor­
dinates do fit. More often, one knows less and the coor­
dinate constraint contains several unknown parameters. 
For example, in Fig. 5, suppose the signal could be any 
smooth curve, where one can postulate various defini­
tions of smooth that would produce a number of un­
known parameters between 2 and N. The number of 
event-matched filters immediately grows by several or­
ders of magnitude. Practical nonrecursive event flltering 
with many unknown signal parameters is a challenging 
problem that will require further evolution of both the­
ory and implementations. 

If the coordinate constraint is locally linear, and the 
density of false alarms low enough, one can use a cas­
caded processor 14 that consists of a short-time-base 
nonrecursive processor (working on a linear constraint) 
followed by a recursive processor (estimating unknown 
parameters and extrapolating). 
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SUMMARY 

The declining cost, weight, size, and power consump­
tion of digital processing and random-access memory, 
combined with signal-processing applications in which 
the desired signal and interfering-noise characteristics 
must be estimated in realtime, have caused signal pro­
cessing to evolve toward digital, nonrecursive solutions. 
These solutions are typically based on a priori or esti­
mated statistical models. Signal-processing implementa­
tions have evolved toward larger building blocks and to­
ward firmware and software rather than hard-wired cir­
cuits. Considerable challenges remain in obtaining the 
digital throughput required for high-bandwidth, many­
channel systems; in developing approaches for inherently 
nonlinear problems; in further reducing cost by stan­
dardizing building blocks; and in the systems engineer­
ing necessary to match signal-processing technology to 
req uiremen ts. 

REFERENCES 
I N. Wiener, Extrapolation, Interpolation and Smoothing oj Stationary Time 
Series, Wiley, ew York (1949). 

2H. Nyquist, "Certain Topics in Telegraph Transmission Theory," Trans. Am. 
Inst . Electr. Eng. 47, 617-644 (1928). 

3c. E . Shannon, "Communication in the Presence of Noise," Proc. Inst. Ra­
dio Eng. 37, 10-21 (1949). 

4S. P. Applebaum, "Adaptive Arrays," IEEE Trans. Antennas Propag. AP-24, 
585-598 (1976). 

5 J . P . Burg, "Maximum Entropy Spectral Analysis, " in Proc. 37th Meeting 
Society oj Exploration Geophysicists (1976) . 

6J. Capon, "High-Resolution Frequency-Wavenumber Spectral Analysis," Proc. 
IEEE 57, 1408-141 8 (1969) . 

7B. Widrow, P. E. Mantey, L. J . Griffiths, and 8. 8. Goode, "Adaptive An­
tenna Systems," Proc. IEEE 55, 2143-2159 (1967) . 

8H . T. Kung and C. E. Leiserson, "Systolic Arrays for VLSI," in Sparse Ma­
trix Proc. , Society of Industrial and Applied Mathematics, pp. 245-282 (1978) . 

268 

9S. K. Rao and T. Kailath, "Regular Iterative Algorithms and Their Implemen­
tation on Processor Arrays," Proc. IEEE 76, 259-269 (1988). 

lOS. Y. Kung, "Wavefront Array Processors," Computer 20, 18-33 (1987). 
II H . M. South, " Digital Recording and Signal Processing Systems for Hydro­

phone Arrays," The Johns Hopkins APL Tech . Dig. 4, 212-218 (1983). 
12R. J . Prengaman, R. E . Thurber, and W. G . Bath, " A Retrospective Detec­

tion Algorithm for Extraction of Weak Targets in Clutter and Interference 
Environments," in Proc. 1982 lEE Internal. Radar Con! , London, pp. 341- 345 
(1982). 

I3W. G. Bath, L. A. Biddison, and R. E. Thurber, "Noncoherent Subclutter 
Visibility through High-Speed Contact Sorting," in Proc. 1984 Mililary Micro­
waves Con!, London, pp. 621-624 (1984) . 

14W. G. Bath, M. E . Baldwin, and W. D. Stuckey, "Cascaded Spatial Tem­
poral Correlation Processes for Dense Contact Environments," Proc. 1987 lEE 
Internat. Radar Con!, London, pp. 125-129 (1987) . 

THE AUTHOR 

WILLIAM G. BATH received 
B.E.S. and Ph.D. degrees in electri­
cal engineering from The Johns 
Hopkins University in 1974 and 
1980, respectively. Since 1974, Dr. 
Bath has been employed by APL, 
working in the areas of systems anal­
ysis, signal-processing techniques, 
and information-processing algo­
rithms for Navy radars. His experi­
ence includes the development of 
automatic detection and tracking al­
gorithms, evaluation of the effective­
ness of various deployed Navy radar 
systems, development and testing of 
techniques for multiple platform ra­
dar integration, and research into c0-

herent and noncoherent signal processing to enhance detection in clutter 
and interference. He is supervisor of the Engineering Analysis Group 
at APL. 

fohn s Hopkin s APL Technical Digest , Volume 9, Number 3 (1988) 


