WILLARD J. PIERSON, JR.

SOME APPROACHES FOR COMPARING
REMOTE AND IN-SITU ESTIMATES
OF DIRECTIONAL WAVE SPECTRA

Radar imaging systems inherently measure different properties of the spectrum than do the more tradi-
tional directional wave buoys. Analysis of the present methods of measuring heave acceleration, pitch,
and roll on buoys under development by the National Data Buoy Center (NDBC) explains some of the
inconsistencies that have been found not only for NDBC buoys but also for other directional wave buoys.
The methods used for buoys can be extended to airborne and spaceborne systems in order to compare

spectra estimated by the different systems.

INTRODUCTION

Ways to measure the rise and fall of the sea surface
caused by passing waves as a function of time, £(7), have
been developed over the past few decades. The estima-
tion of the frequency spectrum in the form S(f) or S(w)
has become routine. (The circumflexes indicate spectral
estimates.) Donelan and Pierson' have shown that the
sampling variability of estimates of frequency spectra of
wind-generated waves can be described, more or less,
by the available theories that represent waves as a linear
quasi-stationary (in a time series sense) Gaussian process.

Four methods are available for estimating the direc-
tional spectrum of deep-water waves, in which the sea
surface is represented by £(x,y,7). The methods depend
approximately on the assumption for deep water that
the waves are a linear superposition of sinusoids that are
freely propagating linear waves in deep water, i.e., that

k = 0’/g. )

The first of the four methods is the one being devel-
oped for operational use as described by Steele et al.?
for the National Data Buoy Center (NDBC) program.
It has a lengthy history and is based on the theory
described by Longuet-Higgins et al.® For current oper-
ational use, the end product of the measurements of
heave acceleration, pitch, and roll as a function of time
at a fixed point is a partial description of the directional
spectrum, Eq. 2, such that the frequency-dependent
quantities, A4,, 6,, A,, and 6,, estimate the first two
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terms of the angular spread in the direction of travel of
the spectral components.

~ ~ | 1 _ .
SU0) = SUN) - {2 + A, (f;) cos [6 — 6, (/)]

+A:(ﬁ)cosz[0—e}(m]}. )

Both S(f,) for a simple frequency measurement and
S (f;,0) are estimated at a discrete set of frequencies,
fi = i/T, where, say, T = 100 seconds and / ranges
from 0 to 50. A large buoy filters out the waves above
about 0.3 hertz so that only five numbers (or estimates)
for about 30 frequency bands describe the waves for this
method of measurement and analysis.

The complete expression for Eq. 2 would require the
determination of all of the higher harmonics of the an-
gular spreading function, D(f,,6,), in the braces of Eq.
2, i.e.,

D(f.,0,) =

1[1
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The second of the four methods, the surface contour
radar, is described by Walsh et al.* (and by Walsh et
al. elsewhere in this issue). It comes the closest to mea-
suring the function £(x,y) at an instant of time from an
aircraft. Ingenious ways to account for the aircraft ve-
locity vector and the moving waves have been developed
that eliminate the false part of the spectral estimates. In
this system, the spectral estimates are of the form,
S(k,.k,)[dk, dk,], where in a linear system
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The radar ocean-wave spectrometer, the third of the
four methods, is described by Jackson et al.>® and also
by Jackson in this issue. It scans in a circle as an air-
craft flies along and filters out waves traveling at an an-
gle to the direction of the scan. The quantity actually
measured is a filtered version of d&/dr in polar coor-
dinates, and the spectral estimate that is recovered is of
the form S(k,0)[k db dk].

The last of the four methods is described by Beal et
al.” and also by Monaldo elsewhere in this issue. This
technique uses data from a synthetic aperture radar ap-
proximately of the form 9£(x,y)/dx, where x is perpen-
dicular to either an aircraft flight line or a spacecraft
flight line. A spectrum of the form S (k,k,) [dk, dk,]
is recovered. The method does not do as well for high
wavenumbers in the direction of the flight line that are
still of importance in defining the elevation spectrum.

To validate the aircraft and aircraft/spacecraft sys-
tems described above, the wavenumber spectra obtained
have been transformed to estimates of Sk (f) and com-
pared to estimates of Sz (f) (Where R means remote,
for aircraft or spacecraft, and B means buoy). Walsh
has compared the spectral estimates obtained by means
of the surface contour radar with the Cartwright® an-
gular spreading function and the coefficients in Eq. 2.
Comparisons of the aircraft and spacecraft systems with-
out the aid of buoy data were also made.

Spectral estimates have an uncertainty that can be
described in terms of a number defining the degrees of
freedom of the estimate for the chi-square distribution.
There is an inherent uncertainty in a spectral estimate
that must be considered in using spectra and in com-
paring different spectra. An apparent advantage of re-
mote sensing systems is that the spectral estimates appear
to have many more degrees of freedom and consequently
are closer to the “‘true’’ value of the spectrum than are
spectra obtained from time histories at a point or points.
It takes a while for the waves to go past a point or an
array of points, whereas they are present on the entire
surface at any moment.

THEORETICAL AND ANALYTICAL
QUESTIONS

Ocean waves are, in fact, not linear and Eq. 1 is, in
fact, an approximation. Ocean waves break; linear waves
cannot. A better equation to enable Eq. 1 to go back
and forth between vector wavenumber k and circular fre-
quency  is not immediately obvious, especially in terms
of mapping S(w,f) into either S(k,0) or S(k,,k,), al-
though some of the studies of Mitsuyasu and his col-
leagues (for example, Mitsuyasu et al.’) and Donelan
et al.'” and other research in progress may be potential-
ly applicable.

Moreover, for its present stage of development, the
NDBC data at times yield values of A, (f,) and
A, (f;) in Eq. 2 that are greater than 1. The data also
suggest a problem with what has been interpreted as in-
creasing ‘‘noise’” at frequencies in the spectral estimates
where a linear theory would not indicate any spectral
activity, as shown in Steele et al.? (see their Fig. 5 and
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associated text). It can be shown that every coefficient
in Eq. 3, which includes A, (f;) and 4, (f;) in Eq. 2,
must be less than 1, since D(f,f) for any f must be every-
where positive and have the property, by definition, that

S D(f,0) db = 1. o)

NDBC is investigating the need to obtain 10-minute
vector averages of the wind speed and direction continu-
ously, except for one 8-minute average each hour to per-
mit data transmission. There are no technological
difficulties in doing this. These would be the only avail-
able data of sufficient quality to validate remote sens-
ing systems that are planned to describe the wind.

In the same sense, aircraft and spacecraft systems to
measure directional wave spectra will need to be vali-
dated against in-situ spectral estimates from NDBC or
other buoys that can provide spectra either in the form
of Eq. 2 or in an improved form following the results
of Long and Hasselmann'' and Long.'> Remote sens-
ing systems and in-situ systems for measuring winds and
waves are not competitive; in fact, they are complemen-
tary. Information from the combined systems is greater
than the information from either system alone.

A MODEL

To compare wave frequency and wavenumber spec-
tra, a model for the sea surface is needed. One possible
model for a linear theory is given in Neumann and
Pierson' (page 339). An equivalent model that better
illustrates some of the features of the analysis methods
presently in use assumes that the variance spectrum,
S(w,), for which derivatives exist for both w and 6, is
zero below some frequency, w,,,, and above some fre-
quency, wnyquist» because of the instrument’s charac-
teristics.

Then let
9j+_\0/2 wj +Aw/2
m; = S S S(w,0)do 6)
0j4A0/2 wj —Aw/2
and form
a; = R, (my;)” 7
and
b; = Ry(my)", ®)

where R, and R, are numbers drawn at random from
a normal probability density function with a zero mean
and a unit variance. With, say, w; — Aw/2 = wyy, w,
+ Aw/2 = wnyquist> and with 6, — Aw/2 = —7 and
0, + A8/2 = 7 as Aw and Af become small and p and
q become very large, the sea surface for a linear model
can be represented by Eq. 9:
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This model occupies the entire domain —o0 < 1 <
o, —o < x < o, and —o < y < oo, which is, of
course, unrealistic because the spectrum of the waves
changes from one place on the ocean to another at any
time and with time at any place on the ocean. Waves
in a poorly defined sense are an evolutive random pro-
cess, and it is necessary to assume that the observations
that are obtained can be represented by something like
Eq. 9 for analytical purposes.

From Eq. 9, two derivatives can be computed as
AE(x,y,1) /0x and 9 (x,y,1)/dy. A data buoy thus obtains
simultaneous time histories of the form £(0,0,7),
9£(0,0,1)/0x, and 9£(0,0,7)/9y since the exact location of
the buoy is not relevant. Also from Eq. 9, the airborne
system of Walsh et al.* and the various synthetic aper-
ture radars obtain data essentially of the form &(x,»,0)
or dé(x,»,0)/dx.

The three functions of time defined above represent
a three-component vector Gaussian process with three
variance spectra, three cospectra, and three quadrature
spectra, as defined, for example, in Steele et al.? and
as based on the original work of Longuet-Higgins et
al.’ and Cartwright.® The resulting nine components
are usually designated S(w), C»(w), Ci(w), Cph(w) =
0, Q;2(w), Ci3(w), O13(w), C3(w), and Oy (w) = 0.

THE SAMPLE AND THE ESTIMATES

For buoy data, the Nyquist frequency is well below
0.5 hertz so that the data can be sampled with a Az of
1 second to obtain a sample of a vector process of the
form £(0), £(pAr) ... E[(N — DAZ], £.(0) ... £[(N —
DAN], £,(0) ... E[(N — 1)Ar)]. There is an obvious ex-
tension to x,y space for two of the remote systems
described in the introduction.

The 3N numbers representing the buoy data then need
to be processed to obtain estimates of the functions of
frequency defined above as in S(w), C» (w), and so
on. There is a parallel extension of these concepts for
the analysis, for example, of £(x,y,0). Depending on the
state of the available theories for the analysis of vector
time series, buoy data have been analyzed by at least
two primarily different methods so as to estimate the
spectra and cross spectra. A third method is now tech-
nologically possible. From these estimates of the spec-
tra and cross spectra, there are, in turn, two different
ways to estimate the quantities A,, A,, 6,, 6, in Eq. 2.

The first method would be to use the theory described
by Tukey,'* as extended to cross spectra and as de-
scribed in detail in Blackman and Tukey.'® This meth-
od will not be discussed, but its use in this particular
application or for the study of £(x,y) probably introduces
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some rather strange effects in the spectral estimates. The
second method is the one described by Harris.'® It was
used for the analysis of the buoy data in Steele (personal
communication, 1985). The third method would be to
apply the concepts in Harris'® to the analysis of all the
3N data values, as described below, perhaps with fur-
ther refinements. This method has become practical only
recently because of the greater speed and memory of
microcomputers. It is not at all difficult, using the al-
gorithms described in Cooley and Tukey,'” for exam-
ple, to do a Fourier transform of, say, 10,000 data points
equally spaced in time by means of the fast Fourier
transform.

THE HARRIS METHOD

To simplify this discussion, a given sample size of 1000
data points 1 second apart for &, d¢/dx, and d¢/dy will
be assumed. Note that not only have the data been sam-
pled only at nAf but also that the sample has been acted
on so that a much longer series of values has been set
to zero outside of a boxcar data window w(r) = 1 for
0 < nAt < (N — 1At

The Harris method consists of breaking up the large
sample of, say, 1000 ( x 3) values into smaller samples
of 100 values and, as in Steele’s analysis (personal com-
munication, 1985), perhaps using 100 value subsamples
overlapping by 50 values, i.e., points 0 to 99, 50 to 149,
and so on. Each sample is jagged at the end points, and
the first and last points usually form a jump discon-
tinuity.

To improve the analysis, Harris'® describes about 23
data windows by which the 100-point samples in the time
domain can be multiplied so as to attempt to improve
the spectral estimates. Those that have been tried at
NDBC are the parabolic window P(7) and the cosine-
squared window C2(7) such that the three components
of the vector process are each multiplied by either Eq.
10 or 11, where the constants A and B normalize the
window:

P(t) = A{l — [t/(T/D))), (10)
C2(1) = B(cos 27t/2T)° (11)

(for —=T/2 <t < T/2, where T = 50 seconds).
The Fourier transforms of each subsample are then
processed to yield estimates of the spectra and cross spec-
tra at a resolution of 0.01 hertz at the frequencies p/100,
where p varies from 0 to 50. The 19 subsamples are then
pooled at each frequency to obtain the final estimates
of the spectra and cross spectra. )
The original method of Longuet-Higgins et al.”
recovers quantities that in turn vield A,, 6,, 4,, and
6, from equations such as Eqgs. 12 and 13, since A4,

cos(@ — 6) = a, cos § + b, sin 6:
a, (p/100) = g O, (p/100) [(100)%/47°p?], (12)
ay (p/100) = g* (Cy (p/100) — Cs3 (p/100))

x [(100)*/167°p?] , (13)
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and so on, for b, (»/100) and b, (p/100).

From Eq. 1, this is equivalent to multiplying the esti-
mates at w, = 2mp/100 by (wk,)"' and (x/k})"',
where k, = (2mp/100)*/g.

Long'? has proposed an alternative method for re-
covering the same quantities:

a =0y Sy (Cy + Cyy) 7", (14)
a = (Cy — Cy) (Cyn + Cy) ! (15)

(and so on for the other quantities). These do not need
to be multiplied by the values of k& at the resolved fre-
quencies.

If both the method of spectral estimation and the lin-
ear model are correct, the quantity

Wy S
R = ; S(sz o C33) ) (16)

ought to be equal to 1.

A HIGH-RESOLUTION ANALYSIS

In contrast to the Harris procedure, the original three-
component vector process could be analyzed as a single
time series at a resolution of 0.001 hertz or as p/1000
as p varies from 0 to 500, either with a boxcar data win-
dow or perhaps with some more appropriate data win-
dow. The sum over frequency, for example,

. 1 A
$(q/100) = - Y S(p/1000) , (17)

pP=q-5

would then define the spectrum at a resolution of 0.01
hertz with 22 degrees of freedom. Similar operations
would define the cross spectra and the quantities in Eq.
2 by means of an interpretation by Goodman.'®

Donelan and Pierson' have done this analysis for
elevation time histories alone with a boxcar data win-
dow and a resolution of p/1024 hertz (p = 0 to 512).
The results that would be predicted for a stationary
Gaussian process were verified, and the high degree of
sampling variability from one time history to another
was demonstrated.

EXAMPLES

From the limiting process defined earlier, the coeffi-
cients in Eq. 9 are infinitely dense (except where the spec-
trum is zero) over the frequency axis, and care must be
taken in interpreting the summations over /. For the time
series £(0,0,pAf), the Harris method and the higher reso-
lution method can be compared by letting Aw or Af be
finite but small. Figure 1 illustrates the high-resolution
results for a boxcar data window applied to a narrow
band of swell extending from about 0.037 to 0.043 hertz.

Data windows in the time domain produce spectral
windows (the writer prefers to use the term spectral
filters) in the frequency domain, and, for a 0.001-hertz
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Figure 1—Example of high-resolution frequency filters to illus-

trate their effects on an evenly, more highly resolved, narrow
band of swell (see text).

resolution, the spectral filter for the boxcar data win-
dow is given approximately by the solid curve in Fig.
1 for the value that would be recovered for the Fourier
coefficients in the Fourier transform at a frequency of
0.04 hertz. This function is often called the sine-cardinal
function. For example, the value of @(40/1000) is re-
covered by multiplying each of the spikes for ¢ by the
value of the solid curve and summing the values. For
the example, the ¢ are numbers drawn at random
from a unit-normal zero-mean Gaussian distribution.
This weighted sum would be a zero-mean normally dis-
tributed variable with a variance given approximately
(because of leakage in the spectral filter) by

0.0405
S SN df.

0.0395

Also, 5(40/1009) would be found from a similar oper-
ation on the b;,. The variance spectrum is then es-
timated:

$(40/1000) = (a* + b*)/2. (18)

(See Donelan and Pierson' for further details.) The
spectral filters for 0.041 and 0.048 hertz are illustrated
in Fig. 1 by the dashed and dot-dashed curves, respec-
tively.

To understand the full effect of a resolution of 0.001
hertz, the solid curve in Fig. 1 should be considered to
be located sequentially at each tick mark on the frequen-
cy axis. In each position, the values of the spectral filter
multiply the values of the & and the values are
summed. The result is the cosine Fourier component of
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a discretized Fourier analysis for the frequency on which
the filter is centered. Similar results are found for the
sine coefficients. There is some overlap in the use of the
afand b; from 0.036 to 0.044 hertz. The Fourier coeffi-
cients are very small for frequencies below 0.035 hertz
and above 0.045 hertz. The postulated narrow band of
swell is well resolved. For historical interest, see
Munk. "

Figure 2 illustrates the Harris method of analysis for
boxcar, parabolic, and cosine-squared data windows at
a frequency resolution of p/100 hertz as p varies from
0 to 50. Only frequencies from 0.02 to 0.07 are shown.
A hypothetical narrow band of swell is illustrated be-
tween 0.04 and 0.05 hertz at a high resolution along with
the start of a hypothetical wind-wave spectrum, except
that the values for the wind-wave spectrum might need
to be six times higher at the start, tapering off slowly
toward higher frequencies. The various spectral filters
can now be centered sequentially only over the frequen-
cies shown by the ticks on the frequency axis.

The 100-point samples with a boxcar data window
broaden the spectral filter by a factor of 10, with first
zeros at 0.03 and 0.05, instead of at 0.039 and 0.041 as
for a 1000-point sample, for a center frequency of 0.04,
for example. The other windows put the first zeros even
farther from the frequency at which the estimate is sup-
posed to apply.

The estimates with the filters shifted to 0.03 hertz in-
clude terms from the band of swell between 0.04 and
0.05 hertz. Yet, for the example, there is nothing in the
spectrum actually between 0.025 and 0.035 hertz.

Normalized to one for random variables
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Figure 2—Examples of the effects of coarse resolution frequen-
cy filters from three different data windows to illustrate their
effects on a narrow band of swell and the lower frequencies
in wind sea (see text).
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All three filters yield a value for 0.04 hertz, but noth-
ing is there in the example at 0.04 hertz. The boxcar fil-
ter picks up the start of the more highly resolved values
near 0.06 hertz and produces a value at 0.04 hertz that
is somewhat too large for an average over many Monte
Carlo simulations of the model.

At 0.05 hertz, all three filters mix up the sea and the
swell. Because the spectrum of the sea is higher, the terms
that contribute to 0.05 hertz could dominate the swell
even though weighted by a smaller number by the fre-
quency filter.

At 0.06 hertz, the spectral filters begin to respond to
the high-frequency part of the modeled waves, but a
good portion of the band of swell between 0.04 and 0.05
hertz is still included in the Fourier coefficient that rep-
resents conditions at 0.06 hertz.

For this example, and undoubtedly for actual condi-
tions, a 100-second sample operated on by either a para-
bolic window or a cosine-squared window would mis-
locate contributions from the true, but unknown, wave
spectrum by +0.02 hertz at each frequency band that
is resolved by a 100-point fast Fourier transform. For
this example, values would be recovered at 0.03 hertz,
whereas nothing is there. At 0.04 hertz there would be
values, whereas nothing actually exists until slightly
higher frequencies. The values at 0.05 hertz are contam-
inated by 0.06 hertz. The gap between 0.05 and 0.06
hertz never shows up. The values at 0.06 hertz are con-
taminated by values between 0.04 and 0.05 hertz. Clear-
ly, the spectral bands have not been resolved to within
+0.005 hertz.

A spectrum estimated by the above method, using one
of the windows above, is shown in Fig. 3 along with the
estimates of the wave direction. Clearly the low-fre-
quency swell from 0.05 to 0.09 hertz is traveling in a
different direction from the high-frequency wind sea.
The spectral estimates can be interpreted by consider-
ing the effects of the parabolic and cosine-squared data
window and the corresponding spectral filters.

Spectra analyzed this way have to be interpreted cau-
tiously. The values are plotted at 0.01-hertz intervals.
Each point in the plot is influenced by frequencies in
the “‘true’ spectrum as much as +0.02 hertz away.

The lowest point appears to be 0 at 0.02 hertz. There
may have been nothing in the ‘‘true’” spectrum at 0.03
and 0.04 hertz. The value at 0.04 hertz may have come
from 0.06 and 0.07 hertz. The value at 0.06 hertz (as
well as at 0.07, 0.08, and, perhaps, 0.09 hertz) may have
been the first band that would have contained a part of
the “‘true’ spectrum at a higher resolution. The values
at 0.10, 0.11, and 0.12 hertz may really be 0, with the
spectral filter including the lower frequency swell in the
calculation for 0.10 hertz, both sea and swell being in-
cluded at 0.11 hertz, and the sea being included at 0.12
hertz. A 1000-point fast Fourier transform could easily
resolve a possible on/off property of the swell and lo-
cate the start of the wind-sea spectrum.

The situation becomes even worse as soon as pitch and
roll spectral estimates and spectra and cross spectra be-
come involved. There are spectral estimates at some fre-
quencies for which there is actually no contribution at
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Figure 3—Sea plus swell spectral estimates and direction of
travel (from Fig. 8 of Ref. 2).

those frequencies from the true spectrum. Actual frequen-
cy components in the true spectrum are not centered at
the frequency of the estimated spectrum. Frequencies
from as far away as +0.02 hertz are in the sum that de-
termines the spectral estimate for a given frequency.

The computation of the quantities needed in Egs. 2,
12, and 13 requires that various spectral estimates be
divided by either w’/g or w*/g>. The coefficients for,
say, 0.04 hertz are contaminated by contributions of an
unknown amount (usually) from 0.06 hertz. If the con-
tributions from 0.06 hertz as computed from the analy-
sis procedure were actually at 0.04 hertz, one should
really have divided by 3.6 x 10 * instead of by 1.6 x
10 * (each multiplied by (27)*/g), with even larger
differences for k°. In the extreme, large errors are pos-
sible at low frequencies. The unknown error is, of
course, somewhat less and is a function of the true but
unknown spectrum.

Presently available frequency spectra of ocean-wave
time histories that resolve the total variance into frequen-
cy bands at various resolutions appear to have the gener-
al property for a linear model that there is a sharp rise
beginning at some low frequency to a poorly defined
spectral peak (see Pierson®’), followed by a more grad-
ual decrease toward low values at the high-frequency part
of the spectrum. The overall shape of the spectrum has
been smoothed somehow by weighted averages over
some band of more highly resolved frequency bands.
These bands disguise the extreme variability of the spec-
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tral estimates that would have been obtained by a Fou-
rier transform at its maximum resolution having a chi-
square distribution with two degrees of freedom.

As wind seas grow with increasing wind speed toward
lower frequencies, the present method of buoy analysis
at NDBC puts these frequencies at 0.03 hertz and can
help explain the increase in noise level found by Steele
et al.? at the low frequencies.

For this coarse resolution and using the Harris meth-
od, neither the method originally proposed by Longuet-
Higgins et al.® nor the more recent Long'? method can
provide reliable estimates of A, (f;) and A4, (f;) in Eq.
2. For example, the earlier method gives values of
A, (f,) and A, (f;) that are greater than 1 if the true
spectrum has values above f; = p/100, but none below
it, and a frequency of p/100 is used to calculate the
wavenumber. Similarly, the Long method typically gives
values of R in Eq. 16 that are less than 1 below the spec-
tral peak and greater than 1 above the spectral peak.
A report by Barstow et al.?' shows this effect. The re-
sult is an artifact of the analysis method and not proof
that Eq. 1 is inapplicable. Other analyses for wind waves
as in Donelan et al.'” show that the phase speed is
closely related to the linear value and thus that Eq. 1
is fairly accurate.

THE DIRECTIONAL SPREAD

The estimates of A4, and A, in Eq. 2 have been used
in an attempt to define the full angular spreading func-
tion as in Eq. 3 by assuming various functional forms
for D (f,8). A coarse frequency-resolution analysis of
buoy data will usually not provide unbiased estimates
of A, and A,, no matter which estimation method is
used. The angular spreading functions that have been
obtained result in part from the systematic biases in the
estimates. The situation becomes even worse in attempt-
ing to analyze cloverleaf buoy data as in Mitsuyasu et
al.? since calculations involving &* and &* are involved.

NONLINEAR WAVE PROPERTIES

The analysis methods described above result in a
strange paradox. Theories and analysis methods based
on a linear model for the waves seem to work fairly well
after a fashion. Yet a wind-generated sea is clearly about
as nonlinear as waves can be. Artifacts in the estima-
tion of wave spectra appear to mask the true nonlinear
properties of waves. Those artifacts need to be elimi-
nated, and we must find ways to study the nonlinear
properties of waves at sea.

ADDITIONAL CONSIDERATIONS

Even for simple spectra, the same data can be pro-
cessed in different ways to obtain a wide range of spec-
tral estimates, which, at successive frequencies, may or
may not be independent in the probability sense.

It is often difficult to determine the details of the pro-
cedure used to estimate a particular spectrum and the
characteristics of the frequency-smoothing filter that
were used to increase the degrees of freedom at each fre-
quency of the estimated spectrum at the expense of reso-
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lution. The confidence intervals for the estimated
significant wave height are also difficult to determine.

At a conference many years ago, a speaker compared
high-resolution and low-resolution spectral estimates of
swell. The estimates were quite different, and the speaker
concluded that using spectra was not a good way to study
waves. At another conference, a speaker claimed to have
developed a different way to recover spectra from
records 772 seconds long that had the same properties
as spectra from records that were 7 seconds long. Nei-
ther speaker was correct. For a given sample, high reso-
lution can only be obtained at the expense of increased
sampling variability. Conversely, sampling variability can
be reduced only at the expense of high resolution. '
Spectral filters are involved in such a way that different
values can be obtained for the spectral estimates, even
at the same resolution.

In order to compare spectra estimated from data from
the aircraft and spacecraft systems described in the be-
ginning of this paper with each other and with spectra
estimated from buoy data, the details of the spectral es-
timation procedure must be provided for each system.

The transformation of wavenumber spectra, obtained
in either Cartesian or polar form, to frequency-direction
spectra, even for a linear model, is not simple. Knowl-
edge is needed of the combined effect of the two-
dimensional spectral filters that were involved in both
data recording and data processing.

It is possible for the two spectra being compared to
appear to disagree with each other and yet actually to
have been correct insofar as their interpretation in terms
of the spectral filters that were applied is concerned.

Buoy data do not provide all the information needed
to estimate all the properties of a directional spectrum.
They can keep track of some features of how the waves
are changing at, perhaps, half-hour intervals continu-
ously. The spectra are always available for comparison
with other kinds of spectra.

The smaller the angular spread, the larger the num-
ber of terms in the Fourier series needed to come close
to approximating the angular spreading function. For
an angular width of 20 degrees, or 7/18 radians, the first
few Fourier coefficients at a fixed frequency in Eq. 3
are approximately in proportion to 0.9949, 0.9790,
0.9549, 0.9207, and so on to the eighteenth harmonic,
which is zero, and so on to negative values.

There are at least two ways to compare spectral values
provided by a buoy with spectral values from one of the
other systems. One can transform the wavenumber spec-
tra from the second system into an appropriate form that
would allow a direct comparison, frequency by frequen-
cy, with the buoy data, as in Eq. 2. There is no need
either to postulate some form of the angular spreading
function or to require that the square bracket in Eq. 2
be positive everywhere. The sampling variability of the
terms in the square bracket of Eq. 2 needs to be better
understood.

Second, one can make sure that the buoy data are
reported in a form amenable to the application of the
theoretical results of Long and Hasselmann'' and
Lawson and Long.? The use of the “‘minimum nasti-
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ness’’ method requires a ““first guess’’ input for the an-
gular spread at each frequency. That input could be the
estimated form of the angular spreading function from
the aircraft or spacecraft system. The buoy data could
then be used iteratively as a check. The use of this ‘‘boot-
strap”’ method would require additional study before im-
plementation, but it could be very powerful.
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