
ALAN J. PERLIS

THE PROGRAMMING LANGUAGES OF THE FUTURE
WILL BE STRANGER THAN WE CAN IMAGINE

ROLE OF LANGUAGE IN PROBLEM SOLVING-I
Robert Jernigan, Bruce W. Hamill, and David M. Weintraub
(Editors), The Johns Hopkins University
Applied Physics Laboratory
Published by North-Holland Publishing Co., Amsterdam, 1985,
405 pp. , $55.50

This book contains the edited proceedings of a meet­
ing whose concern was that of the book's titl:. The
meeting, sponsored by APL, concentrated at~entlon ~n
computer programming languages and ~h:Ir ~oles III

solving problems on computers. The specializatlon was
crucial and everything in the volume must be evaluated
relativ~ to it. There has already appeared in this jour­
nal an excellent review of the meeting, listing the titles
and intents of the individual presentations and panel
meetings (B. W. Hamill, "Symposium on the Role of
Language in Problem Solving," Johns Hopkins A:L
Tech. Dig. 6, 149-158 (1985». Therefore, my reVIew
need not include the customary listing of contributors
and summaries of their papers.

In the book, a number of important questions are
raised treated and debated. In this reviewer's opinion,
most ~ere not clarified. It is unlikely that a reader in­
terested in the burning issue of the conference will fInish
the book and say, "Aha, now I know the question and .
I have seen the answer." The book is not likely to be­
come an oft-cited reference, but it is worth reading be­
cause it epitomizes the insights that most programming
language people have on the topic. Furthermore, scat­
tered throughout the book are a number of pithy nug­
gets about programming languages that are worth re­
membering.

While all languages have some common properties,
natural and programming languages are profoundly dif­
ferent. Programming languages may ape English, but
in no way, constructive or observable, are they evolv­
ing toward English or French or Hindi. The difference
between programming language and natural language
arises from that between sender and receiver when one
is human and the other is machine: Our computers
don't have enough state to capture the dynamics of our
thoughts as we progress through the exercise of prob­
lem solving (let alone the heroics of dissecting emo­
tions). Since programming languages are meant to be
processed on computers, they must share the latter's
limitations. Sadly, programming languages do affect
the way we solve problems. One participant kept insist-

Professor Perlis is the Eugene Higgins Professor of Computer Sci­
ence at Yale University.

234

ing that we need to make our programming languages
more like natural languages. We do, but the debate
should limit itself to the nature of the approximation
and not confuse aping with infancy.

Programming languages are far from useless. As the
book testifies eloquently, an enormous range of our
thinking does fmd natural expression in these languag~s,
often in ways superior to those we would have used III
purely human commerce. Programming languages are
evolving and improving. They are far more than nota­
tions and we have a variety to choose from when prob­
lem ;olving. In many cases, the choice of language. is
dominated by social and economic issues more than lin­
guistic ones. People being what they are, hi.story and
traffic have created an honest-to-goodness tnbal struc­
ture partitioned by zealous worship of our own pro­
gramming language. This book contains the usual chest­
beating chants (expressed in intellectual terms, to be
sure) asserting the superiority of my language over
yours. FORTRAN, APL, LISP, Ada, COBOL, and
PROLOG are all mentioned fondly, and the reader who
seeks knowledge of their advantages at the problem­
solving level will find the book a good source.

When we solve problems, we do so within the frame­
work of a symbolic model that may emerge as part of
the solution or, as is usually the case, may be one that
is already established within the community. The latter
is usually preferred because some of the work of tra~s­
lation can be bypassed. In his paper, Carlton-Foss il­
lustrates some of the models employed in physics. Inso­
far as the computer is used in problem solving within
a model, we seek programming languages that fit the
model's computational needs. Physics supports so many
rich models that FORTRAN has gained wide accept­
ance among physicists, not because it affects our think­
ing but because it doesn't-it is neutral and primitive.
Thoughts are not communicated in FORTRAN, bu~ the
translation into FORTRAN programs of computatIOns
arising from within models is usually straightforward
though tedious. There is a dark side to this "thought­
less" use of FORTRAN: It has prevented the diffusion
into physics of the models arising from the complexity
of computation itself. Only within the last half decade
have such models become a major tool in the study of
collective phenomena. Complexity itself is everyWhere
in science, and the computer, host to an expanding uni­
verse of communicating programs, is the natural en­
vironment for its study.

If dependency on FORTRAN is harmful, what is
beneficial? In his paper, Boudreaux reveals his discov­
ery of LISP in terms much like Balboa's on seeing the

Johns Hopkins APL Technical Digest, Volume 7, Number 2 (1986)

Pacific: He sees it as the water of a vast ocean of pro­
gram possibilities so free of currents that exploration
is isotropic! Of course, he is aware that 11100 (binary)
years before, an entire culture set sail on that ocean in
search of an artificial intelligence. Colonies have been
planted and subcultures established on islands in a vast
megalonesia. On visiting these islands (see the papers
by Amarel, Carbonell, Rada, Rich, and Temin), a tour­
ist is not tortured, eaten, or killed; he is rewarded with
maps and maps of maps and maps of ... and then sent
out to sea on a spinning top. The natives are not vicious,
just wistful; it is the nature of that ocean to drown one
in possibilities a mere few feet offshore of one's goal.
Still, anyone who studies seriously the development of
programming languages must support these explora­
tions. LISP is the best programming language yet de­
veloped in which to absorb cognitive skills that we
understand well enough to describe operationally. Ar­
tificial intelligence is the search for cognitive skills; thus,
it is the richest source of stimuli for programming lan­
guage evolution. The papers mentioned above are a few
examples of the inevitable symbiosis between program­
ming languages and artificial intelligence.

The reader would do well to treasure some of the
nuggets scattered throughout the book. A new tool does
not solve all problems; it merely frees us to concentrate
on other ones (Hirshfield). What then must a student

Johns Hopkins APL Technical Digest, Volume 7, Number 2 (1986)

of programming know in order to structure a problem?
Simply stated, a student must have an appreciation of
what the machine can do (Hirshfield). Little is to be
gained by building a machine that causes users to suf­
fer the delusion that they are addressing members of
their own species (Boudreaux). Though several patterns
of programming language development emerge, one is
quite striking: Each succeeding generation transfers one
or more difficult cognitive skills from the programmer
to the computer (Boudreaux).

The text of J. W. Carr's banquet address hammers
home an important truth about programming languages
-and everything else associated with our use and ap­
preciation of computers: Hardware drives the field.
Very-large-scale integrated circuits will have a greater
effect on the future of programming languages than all
the languages we have used so far. Fortunately, many
of our great programming languages (APL, LISP,
PROLOG, FORTRAN) have been created by a few
people each, so one has reason to hope that the 64000
processor machine and gigabyte memories will stimu­
late the creation of new languages that process many
more of our cognitive skills.

To paraphrase a great English physicist of the last
century, the computer and the programming languages
of the future will not only be stranger than we imagine,
but stranger than we can imagine.

235

