
BRUCE I. BLUM and VINCENT G. SIGILLITO

AN EXPERT SYSTEM FOR DESIGNING
INFORMATION SYSTEMS

This article discusses the possibility of building an expert system that can design information sys­
tems, thereby automating the software development process. This can be done by means of what we
term the Environment for System Building. First we describe the software process and identify those
areas in which knowledge can be formulated algorithmically and those in which knowledge can best
be processed by an expert system. Next we present an overview of our approach to implementation
and give the current status of our research.

In the mid-1940s, "computer" was the job title of
a person who used an electronic calculator. Today,
that older meaning has become an anachronism. More­
over, computers are no longer restricted to the domain
of mathematical calculation; information systems have
grown out of data processing, and artificial intelligence
is showing us ways to process (symbolic) knowledge. 1

Along with the dramatic successes of computer tech­
nology have come problems in implementation because
systems are more complex, the pool of experienced de­
velopers is limited, and the needs of many users are
poorly articulated. Consequently, it is common for
new books on software engineering or design methods
to have a chapter called "The Software Crisis" or to
explain why all who have not read that particular book
are using the' 'wrong approach." Elsewhere in this is­
sue of the Johns Hopkins APL Technical Digest, the
promise and potential of artificial intelligence have
been presented. This raises the question, Can the phy­
sician heal himself? That is, can we system designers
build a system that captures our expertise in order to
automate the software development process?

We think that the answer is yes, and we call our so­
lution the Environment for System Building. In order
to understand how it is to operate, we must first de­
scribe the process of developing the software. From
this generic model we can identify those areas in which
we can formulate our knowledge algorithmically and
those that can best be expressed in a form that can be
processed by an expert system. Using this framework,
we then can define the Environment for System Build­
ing structure and the status of our research.

THE SOFTWARE PROCESS
If we are to address the issue of system development,

we must first understand what we mean by the soft­
ware process, i.e., the computer software life cycle.
Our view of the process will define to a large extent
the vocabulary that we use in controlling or directing
the process. The most commonly cited view of the soft­
ware process represents it as a cascading sequence of

fohns Hopkins APL Technical Digest, Volume 7, Number 1 (1986)

discrete activities (with feedback and iteration). This
is the so-called waterfall diagram that implies a specific
implementation approach derived from experience
with equipment development. Figure 1 shows a generic
model of the software process that is implementation
independent.

Three transformations are identified:

1. The first transformation maps a set of needs in
the real world onto a set of requirements called
the problem statement (or specification). It is im­
portant to recognize that there are many possi­
ble mappings and that the problem statement is
never complete. As Turski2 points out, a com­
plete specification would imply that all correct
solutions are isomorphic to it and that the users
fully understand their needs. Thus, he uses the
term "permissive" to indicate that the problem
statement specifies only the essential features and
is otherwise incomplete.

Real world

Q)
u
c c Q)

'" C "0 '" 0 0
c Q) '';;
0 c '';; ro
a. ro :'Q u u
'" ~ ;;= ro ~ 0 '~ > 0 Q)

u u >

Figure 1-A generic model of the software process.

23

Blum, Sigillito - Expert System for Designing Information Systems

2. The second maps the problem statement into a
complete and translatable implementation state­
ment. The transformation assumes the presence
of permissive specifications; it adds behaviors
not defined by the problem statement. Many
mappings are available. Over 90 percent of the
software development cycle is concerned with
this transformation and its associated decompo­
sition of the problem into smaller, more manage­
able units.

3. The third produces the system from the im­
plementation statement. This part of the pro­
cess-called compilation, assembly, etc.-is well
understood and fully automated.

Once the system exists, it is embedded in the real
world, thereby modifying the real-world environment
(and perhaps the validity of the problem statement).
Thus, the figure represents only one iteration in the
software process.

On the left of the figure are two concepts that mea­
sure the utility of the system. Correspondence mea­
sures how well the system satisfies (corresponds to) the
needs of the real-world environment. It can be evalu­
ated only after the system has been installed. Correct­
ness, on the other hand, measures how well the imple­
mentation statement satisfies the problem statement.
Many different systems can be equally correct with re­
spect to a given problem statement. Correctness and
correspondence are independent of each other; how­
ever, management of the software process links them.

On the right side of Fig. 1 are the two processes that
control correctness and correspondence. Verification
provides the measure of correctness and is initiated
with the first formal specification; its goal is to assure
that all derived products are consistent with the higher
level statements. Validation serves as an estimator for
correspondence. It begins before there are any formal
statements and continues until the implementation
statement is complete. Validation is the process by
which agreement is reached on the problem statement
and the permissible additions to the implementation
statement are accepted. Stated another way, verifica­
tion removes objective errors and validation eliminates
subjective errors. Clearly, only verification can be au­
tomated. However, automated tools can assist in the
management of validation.

Each of the three transformations represents a
problem-solving activity. The first, the problem state­
ment, relies on an understanding of both the applica­
tion domain (in the real world) and the potential
capability of a system. The process is called analysis,
and the activity is essentially a cognitive one. The ma­
jor danger is that the problem statement does not
match the real-world needs. We call this the "appli­
cation risk" -that the correct system will not cor­
respond to the environment's needs. Risk is lowered
by modeling, simulation, prototyping, and analysis.

The second transformation, which produces the im­
plementation statement, entails most of the develop­
ment life-cycle activity: preliminary design, detailed

24

design, code, and test. It can be represented as an iter­
ative sequence of development steps with the output
of each step at another linguistic level, 3 e.g., module
description, detailed design, Program Design Lan­
guage, and, finally, code. Much of the process can be
supported by software tools. The elements of risk here
are that noncorresponding behavior will be introduced
(application risk) or that, because of technical, man­
agement, financial, and/or schedule constraints, it will
not be possible to produce the desired product (im­
plementation risk).4 The final transformation, pro­
duction of the system, is fully automated. (A broader
and more accurate definition would include issues of
training, installation, documentation, etc., which this
model avoids.)

Figure 2 displays the state of the art in terms of the
two elements of risk. Projects high in both dimensions
of risk are beyond the state of the art; simplifying as­
sumptions must be made. When viewed from a prob­
lem-solving perspective, it can be seen that there are
qualitative differences between projects that are high
in one dimension of risk. High application risk projects
involve acquisition of knowledge of the real world and
the structuring of that knowledge to guide the soft­
ware process. This typically involves considerable so­
cial interaction, and natural language is the key
medium for communicating and formalizing knowl­
edge. High implementation risk projects, on the oth­
er hand, begin with well-defined statements of the
problem, e.g., many of the system interfaces are de­
fined. In this case, problem solving relies more on tech­
nical knowledge, and there is a greater reliance on the
abstractions, symbology, and jargon of the area of
technology being targeted.

There are significant differences between products
at the extremes of the two dimensions of risk. It would
serve little purpose, therefore, to consider the prob­
lem of system development without distinguishing be­
tween the two. Since projects of high implementation
risk are deeply embedded in the technological knowl­
edge of their field or domain, development consider­
ations will be closely bound to similar issues that are

c
o

'';::;
(tJ

,~
Q.
Q.

«

Implementation risk

Figure 2-Two dimensions of risk.

Johns Hopkins A PL Technical Digest, Volume 7, Number J (1986)

restricted to that domain. Consequently, in what fol­
lows, we shall limit our discussion to the development
of projects in which application risk is a significant
factor. In particular, we shall consider interactive in­
formation systems. Such systems are characterized by
their reliance on a database, a dependence on user in­
puts and actions, the absence of severe real-time or
computational constraints, and an implementation as
an organic (as opposed to embedded) system using off­
the-shelf equipment and software tools. Their devel­
opment can be characterized as the application of a
well-understood technology and a poorly formulated
methodology.

EXPERT SYSTEMS
AND KNOWLEDGE DOMAINS

In the early days of artificial intelligence, there was
a hope that the problem-solving process could be un­
derstood and formalized in a general problem solv­
er. 5 In time, it was recognized that the "common
sense" that humans have accumulated and seemingly
use so effortlessly is far too complex to capture with
our current state of understanding. Consequently, at­
tention shifted to deeper and narrower knowledge do­
mains that could be manipulated by an expert
system. 6

Figure 3 is a diagram of a simple expert system. At
the lowest level are a knowledge base and a global
database. The knowledge base contains the knowledge
of the expert domain. In a production rule system, 7

the knowledge is represented as production rules:

if (antecedent l , ... antecedent;) then
(consequencel' ... consequence).

Other types of expert systems model the knowledge
differently as, for example, a semantic network.

The organization of the knowledge base depends on
the problem domain, the state of understanding, the
complexity of the objectives, etc. Whatever its struc­
ture, however, the knowledge base contains the total
domain knowledge available in the system. The glob­
al database, on the other hand, contains all informa­
tion about the problem currently being solved. Thus,
the knowledge base is problem independent and stat­
ic, while the global database is problem specific and
dynamic.

The inference engine is designed to search the knowl­
edge base using information in the global database.
It contains all control decisions. That is, unlike pro­
cedural programming, expert systems attempt to sep­
arate the knowledge from the way in which it will be
used. For example, if there is a rule in a production
rule system that

A land A2 - Cl ,

and if A land A2 are true in the global database,
then the inference engine will establish that Cl is also
true. It will be added to the global database for use
as a fact in subsequent iterations. The inference en­
gine usually has mechanisms to select among com pet-

Johns Hopkins APL Technical Digest, Volume 7, Number 1 (1986)

Blum, Sigillito - Expert System for Designing Information Systems

Experts Users

Figure 3-A simple expert system.

ing rules, deal with incompleteness, and improve
search efficiency. It works by searching the knowledge
base directed by the state of the global database until
it reaches one of its goals (i.e., finds a desired answer)
or determines that a solution cannot be found. In the
latter case, the system may ask the user for more in­
formation.

Because most expert systems store knowledge in
symbolic form, there is general agreement that an ex­
pert system also should be able to explain its reason­
ing and interact with users through a natural language
interface. With the present state of the art, however,
natural language processing is a major research topic
in its own right, and few, if any, expert systems sup­
port language processing beyond simple explanation
facilities. Consequently, most interactions are man­
aged by prompting scenarios that allow the experts to
build the knowledge base and the users to enter data
into the global database and interact with the infer­
ence engine.

Given this brief introduction to expert systems, let
us now consider the knowledge domains appropriate
to information systems development. Two may be
identified:

• Application know/edge, about the application
environment and its needs,

• Transformation know/edge, about the software
process and the transformations used to produce
correct and corresponding systems.

Note that these two domains overlap. Drawing on
his experience in cognitive science, Curtis points out
that' 'programming skill is specific to the application
being considered." 8 That is why developers who
build compilers may do a poor job at building an ac­
counts receivable package and vice versa. Thus, it is
useful to divide application knowledge into two sub­
domains:

1. Application-specific know/edge, knowledge that
defines the specific application and sets it apart
from all others. It is normally formalized as a
requirements specification.

25

Blum, Sigillito - Expert System for Designing Information Systems

2. Generic application knowledge, general knowl­
edge about an application class that provides a
set of default assumptions for each application.
It is normally considered experience or expertise.

One can also divide the transformation knowledge into
two subdomains:

1. Heuristic design knowledge, about transforma­
tions that must be applied heuristically, i.e., the
rules for transformation are not defined explicit­
ly for all cases.

2. Algorithmically prescribed transformation
knowledge, about transformations that are ful­
ly defined by the current state, e.g., the source
code establishes a state that fully defines the
transformations to be used by a compiler in
producing the object code.

Given this decomposition of knowledge, it is clear
that application-specific knowledge is very product de­
pendent. It would be viewed as the global database by
an expert system. The knowledge of algorithmically
prescribed transformations, on the other hand, is well
defined and understood. There is no need to include
this knowledge in an expert system except for reasons
of efficiency.

The remaining two knowledge subdomains, gener­
ic application knowledge and heuristic design knowl­
edge, represent the types of knowledge ideally suited
to an expert system's knowledge base.

1. Each is relatively narrow in scope;
2. No closed, formal representations of the knowl­

edge already exist;
3. There is a degree of uncertainty in the use of the

knowledge;
4. The knowledge base is incomplete and can be

built and refined over time.

The following section describes how the four sub­
domains are being integrated into an environment to
build information systems.

THE ENVIRONMENT
FOR SYSTEM BUILDING

The previous two sections reviewed the software
process and the architecture of expert systems. Three
transformations and two categories of knowledge were
identified. They may be combined as follows:

26

1. Problem statement definition, a transformation
from the application-specific knowledge domain
into a specification. It is a problem-solving ac­
tivity that varies with each project.

2. Implementation statement definition, a transfor­
mation from an initial specification into a specifi­
cation that can be implemented as executable
code. There is generality across applications, and
the design judgments depend on generic appli­
cation knowledge and heuristic design knowl­
edge.

3. Implementation transformation, a transforma­
tion of the implementation statement into ex­
ecutable code. It may be done by an assembler,
a compiler, or a program generator. The higher
the linguistic level for the input, the more com­
plex this transformation and the less complex the
previous transformation. In any case, the trans­
formations are well defined in the domain of al­
gorithmically prescribed knowledge.

Clearly, the first two transformations are domain de­
pendent, and any approach to automating the process
will require different environments for different ap­
plication classes.

The Environment for System Building (ESB) is be­
ing developed for a single application class: the inter­
active information system. This target class was se­
lected because (a) the transformations used in imple­
mentation are relatively well understood,9 (b) there is
a good understanding of database technology 10 and
modeling, 11 (c) an implementation tool with a high­
level specification language is available to manage the
implementation transformation, 12, 13 and (d) most
products have a high application risk, a fact that makes
them well suited to a dynamic, interactive development
environment.

As the previous analysis suggests, ESB is organized
as three modules:

1. The definition module, tools to capture the
specification. These tools are an example of an
interactive information system and should be im­
plementable with ESB.

2. The transformation module, an expert system to
transform the specification into an executable
specification.

3. The generation module, a program generator to
transform the executable specification into an
operational program.

The definition module captures the knowledge of the
application domain that establishes the behavior of the
target product. It is viewed as a conceptual modeling
tool for designers and analysts. The transformation
module is an expert system that uses the database creat­
ed by the first module as its global database. Its knowl­
edge base is limited to the technology domain as
augmented by some generalized application domain
knowledge from the interactive information system.
The generation module relies on an existing tool with
a specific very-high-level language.

Figure 4 shows how these modules are integrated in
ESB. The designer interacts with the definition mod­
ule to produce an initial specification. As segments of
the specification become complete, they are processed
by the transformation module. This is an expert sys­
tem that uses a transformation knowledge base to act
on the knowledge structured in the application knowl­
edge base; the output is an executable specification.
The generation module translates the executable spec­
ification into an operational product. The initial gener­
ations serve as prototypes that provide feedback to the

Johns Hopkins A PL Technical Digest, Volume 7, Number 1 (1986)

Final product

Application­
specific
dataIae

The Environment for System Building

Figure 4-Functional diagram of the Environment for Sys­
tem Building.

designer. (Not shown in the figure is backtracking to
resolve issues of incompleteness or contradiction.) A
validated version of the generator output serves as the
operational product.

Note that the user is consistently referred to as a
designer or analyst. This implies that the goal of ESB
is to produce interactive information systems that are
more complex than those generated by the application
development products intended for naive users. (Since
there are many commercial products that support the
latter process, there are few research issues associated
with such a limited goal.) The use of the terms designer
and analyst also implies that ESB is not concerned with
programming. All ESB user activities involve the build­
ing or evaluation of an application-specific knowledge
base. Programming is relegated to the generation mod­
ule. In this sense, ESB differs from expert systems de­
signed to act as a programmer's apprentice.

We now examine each module in further detail.

The Definition Module
The purpose of the definition module is to capture

the users' understanding of what the target system is
to do. It is a passive module in that it does not per­
form any decision making; it simply supports the user
during the definition process. To be effective, the defi­
nition module must

1. Maintain a structure that contains a natural (with
respect to the application class of an interactive
information system) model of the target system;

fohns Hopkins APL Technical Digest, Volume 7, Number 1 (1986)

Blum, Sigillito - Expert System for Designing Information Systems

2. Provide easy-to-use tools for entry or perusal of
information about the target system;

3. Impose consistency checks and minimize the
need for redundant entry.

In order to understand how the definition module per­
forms these tasks, one must first consider how the tar­
get application is modeled.

Each target system involves three levels as shown
in Fig. 5. The top level is descriptive. This implies that
it is informal and not machine interpretable. The
knowledge contained in the descriptive level is intended
to assist the designers in organizing their thoughts; feed
back preliminary system descriptions to other users;
and establish a road map to the system that can be used
during design and, more importantly, during evolu­
tion (Le., maintenance). The second level contains con­
ceptual models to be used in creating the target system.
These represent the formal specifications in which the
knowledge of the target system is organized as con­
ceptual objects; where objects overlap, the designer is
provided different views of the object for each con­
text. The third, and lowest, level contains the imple­
mented objects. As shown, there are algorithms and
data structures within programs as well as data struc­
tures within the database. Also indicated in the figure
is the fact that all interactive information systems must
manage user interactions and concurrency.

At the descriptive level, three objects have been iden­
tified:

1. Requirements, a statement of what the target sys­
tem is to do;

2. Data groups, generic descriptions of the major
entities that are to be represented by data stored
in the database;

3. Processes, generic descriptions of user interac­
tions, data transformations, or system outputs.

Most interactive information system development
methods assume that the requirements are prepared
first and that the data groups and processes are de­
rived from them. 14 In high application risk projects,
however, the requirements may not be known. In
many cases, development begins with only some of the
general system objectives established. In those situa­
tions, it may be appropriate to bypass the requirements
and begin to define the data groups and processes in
the application domain. While such an approach may
be anathema to the conventional software engineer­
ing process, it nevertheless represents a realistic ap­
proach for binding the designer's understanding of the
application domain. 15 It is also consistent with the
use of a fully automated environment for managing
the application knowledge.

The requirements, data groups, and processes are
represented as hierarchies with the nodes ordered at
each level. This facilitates their listing in outline form.
The goal of defining the requirements, data groups,
and processes is not to establish the system's structure;
rather, it is to provide an informal method for iden­
tifying potential system components. Each item may

27

Blum, Sigillito - Expert System for Designing Information Systems

Descriptive

Data groups ____ -+4

Executable

• • •

Data
structures Algorithms

User
interface

Concurrent
operations

• • /.

Users

Figure 5-Representations of an interactive information
system.

be linked to items in another category. For example,
data flow is represented as interactions between data
groups and processes. Requirement tracing is per­
formed by tracing links from a requirement to data
groups and processes; every data group and process
(or its antecedent) must be linked to a requirement
node. Obviously, the full network of hierarchies and
links is too complex to list; however, local views are
available on demand.

Because the descriptive statements are informal text
statements, a more precise definition is required to pro­
duce an application knowledge base that can be con­
verted into an operational system. This is the function
of the conceptual level of the model. Again, two im­
plementation objects are defined: data and programs.
Current thinking about conceptual models suggests
that there are three basic approaches to the develop­
ment of "descriptions of a world/enterprise/slice of
reality which correspond directly and naturally to our
own conceptualizations of the objects of these descrip­
tions." 16 These are:

• Knowledge representation (artificial intelligence)
• Semantic data models, e.g., the entity-relation­

ship model 17

• Program specification, e.g., abstraction

The choice of technique will depend on how well struc­
tured our knowledge of the domain is.

In the case of the interactive information system,
the activities of the target system can be viewed as a
set of interactions with the users and the database. The

28

structure of the database should be derived from (a)
a model of entities for which it will provide surrogates
and (b) the externally defined interfaces that the sys­
tem must satisfy. The processes then can be abstract­
ed as (c) algorithms that transform data (e.g., compute
a FICA deduction), (d) interactions with users (e.g.,
dialog management, screen generation), or (e) non­
procedural definitions of complete outputs (e.g.,
reports, graphic displays). These five conceptual ob­
jects define a generalized model of an interactive in­
formation system. 18

Definition of objects at the conceptual level requires
navigating through the descriptive level in order to pro­
vide traceability. However, once at the conceptual lev­
el, the designer can-and usually will-produce (per­
missive) details that were not implied at any higher lev­
el. Consequently, ESB must provide an environment
in which the designer may record any information
about the behavior of the target system at any level
of detail without regard to the uniformity of descrip­
tions across levels. In the context of a top-down de­
sign discipline, this may appear to be chaotic, but in
the ESB view, the definition/modeling process is seen
as a binding of real-world desires and constraints. Con­
sistent with the ESB philosophy, this binding is seen
as a cognitive process that ought to apply a cognitive,
and not a data processing model. 19

The Transformation Module
The transformation module is an expert system. It

differs from most expert systems in that it is not de­
signed to interact with users to guide them in making
more expert decisions. Rather, it interacts with the
specification (i.e., application knowledge base) con­
structed by the definition module. It uses the expert
knowledge residing in the transformation knowledge
base to produce executable specifications and feedback
requests for additional specification information.
PUFF is an example of an operational expert system
that performs in this closed loop fashion; in this case,
the inputs are physiological performance data from
sensors, and the output is a pulmonary function re­
port. 20 ESB is far more complex than PUFF because
its global database is considerably larger and it must
be retained over a much longer period, years rather
than minutes.

The definition module collects both the system's
conceptual data model and its processing flows. It is
organized, however, to allow the designer to consider
the system in small, local views. It is the responsibili­
ty of the transformation module to confirm consisten­
cy, determine global requirements, and resolve internal
clashes. For example, in business systems, employees
are viewed as different entities by the payroll depart­
ment, the benefits office, and their managers. For each
view, the designer may produce different definitions
in the semantic data model. These definitions may re­
use existing terminology, e.g., EMPLOYEE.NUM­
BER and EMPLOYEE.NAME, but they will not be
constrained by alternate views. If there is consisten­
cy, e.g., all views require an employee number, name,

Johns Hopkins APL Technical Digest, Volume 7, Number 1 (1986)

age, sex, job title, and years of service, then there will
be a high confidence in the resulting entity definition.
On the other hand, where there are attributes associat­
ed with only one view, there is a strong indication that
an entity (or group of attributes) must be defined for
that specific view (or set of functions).

The availability of global knowledge also aids in the
definition of an efficient prototype. To illustrate, as­
sume that we have an EMPLOYEE attribute that is
keyed by NUMBER. Moreover, we have processes that
include the statement

Find EMPLOYEE using NAME.

These facts, when guided by the proper heuristics, im­
ply the need for:

• An inverted file on EMPLOYEE by NAME
• A file management program to maintain the in­

verted file
• A program to accept a partial name, scan

through the inverted file, and, on successful com­
pletion, return the NAME and NUMBER

The availability of global knowledge also allows for
global consistency checks. For example, chains of utili­
zation may suggest that EMPLOYEES and WORK­
ERS are the same (or similar) entities. Questions would
then be framed to the designer so that additional in­
formation would be added to resolve the uncertainty.

The output of the transformation module is a for­
mal specification that can be used by a program gener­
ator. The format is consistent with that of the semantic
data model and program specifications. It differs from
them in that it is complete with respect to implemen­
tation. That is, permissible behaviors have been add­
ed and all implementation decisions have been made
at this point; the operational product will be deter­
mined fully by the executable specifications. Some of
the executable specifications will be transparent trans­
lations of the user's definitions; other portions of the
specifications will have been created as the result of
applying the rules in the knowledge base.

The Generation Module
ESB uses TEDIUM*, which is an environment for

implementing interactive information systems, as the
program generator. It has been described and evalu­
ated elsewhere. 12,13 It will be sufficient to note here
that it has been in use since 1980 and has been used
to implement several sophisticated clinical information
systems, as well as itself. The largest system developed
with this tool operates at the Johns Hopkins Oncolo­
gy Center, where it runs on networked PDP-1l/70s,
supports 60 clinical terminals, manages a database of
a quarter million therapy days, and actively assists in
the clinical management of 2000 patients at anyone
time. 21 ,22,23 The generated system contains 5000 pro­
grams and the data model is defined by 1000 relations.

There have been several evaluations of TEDI­
UM. 13 ,24,25 It has been demonstrated that TEDIUM

-TEDIUM is a registered trademark of Tedious Enterprises, Inc.

fohns Hopkins APL Technical Digest, Volume 7, Number 1 (1986)

Blum, Sigillito - Expert System for Designing Information Systems

applications are about four times more compact than
those written in MUMPS and 20 times more compact
than those in COBOL. A frequently cited one-semester
problem (requiring from 325 to 771 hours of effort)
was implemented in 28 hours using TEDIUM. Other
studies have shown that the TEDIUM specification
language is expressive and stable; i.e., it requires very
few iterations to arrive at the desired design.

If TEDIUM is an efficient, robust environment for
designing interactive information systems, then what
is the need for ESB? Although TEDIUM is an order­
of-magnitude improvement over some development
environments, the user still must make all design de­
cisions. In the ESB framework, however, the user is
asked to view the definition only in the application do­
main. The expert system (transformation module) will
resolve the lower level design decisions and produce
TEDIUM specifications. This should result in more
consistent designs, less manipulation of detail, fewer
errors, and a formalization of the design decision pro­
cess. All of this is outside the scope of TEDIUM.

STATUS AND CONCLUSION
Work on the ESB project started at the end of 1984.

The initial work included concept formalization and
manual simulations. Several papers 4,18,19,25 were pre­
pared that defined the software process, the concep­
tual modeling of systems, and the structure of ESB
and the tools it will use. A prototype of the implemen­
tation module was also produced.

Weare now refining the implementation module and
working on prototypes of the transformation module
(i.e., the expert system). We expect that ESB will soon
be complete and robust enough to generate nontrivial
interactive information system applications. If we are
successful in that, we will have produced a research
environment for testing and evaluating alternate par­
adigms for software development. While it is prema­
ture to speculate about where such ESB research might
lead, we note that, if the concepts can be demonstrat­
ed in the interactive information systems application
area, they may be tested on other application classes
such as mission-critical embedded systems.

In summary, we again emphasize that ESB is a re­
search project. At the very least, it provides an en­
vironment in which to learn more about the software
process and design heuristics. However, it also offers
a potential tool that may improve productivity in soft­
ware development dramatically. Work to date has been
encouraging, but the project is far too young to make
any predictions of its ultimate success.

REFERENCES

1 P . H. Winston, Artificial Intelligence, 2nd ed., Addison-Wesley (1984) .
2 W. M. Turski, "Completeness and Executability of Specifications: Two

Confusing Notions," Software Process Workshop, IEEE Compo Soc.
Press, pp. 155-156 (1984).

3M. M. Lehman, v. Stenning, and W. M. Turski, "Another Look at Soft­
ware Design Methodology," ACM SIGSOFT SEN 9, 38-53 (1984).

4B. I. Blum, "On How We Get Invalid Systems," Workshop on Software
Specification and Design, IEEE Compo Soc. Press, pp. 20-21 (1985).

5 A. Newell and H. A. Simon, "GPS, A Program that Simulates Human

29

Blum, Sigillito - Expert System for Designing Information Systems

Thought," in Computers and Thought, Feigenbaum and Feldman, eds.
(1983).

6F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, eds., Building Expert
Systems, Addison-Wesley (1983).

7 G. B. Buchanan and E. H. Shortliffe, eds., Rule-Based Expert Systems,
Addison-Wesley (1984).

8 B. Curtis, "Fifteen Years of Psychology in Software Engineering: Individu­
al Differences and Cognitive Science," in Proc. 7th Int. Con! on Soft­
ware Engineering, IEEE Compo Soc. Press, p. 100 (1984).

9E. Horowitz, A. Kemper, and B. Narasimhan, "A Survey of Application
Generators," Software 2, 40-54 (1985).

lOG. Wiederhold, Database Design, 2nd ed., McGraw-Hill (1983).
11 M. L. Brodie, J. Mylopoulos, and J . W. Schmidt, eds., On Conceptual

Modeling, Springer-Verlag (1984).
12B. I. Blum, "A Tool for Developing Information Systems," in Automat­

ed Toolsfor Information System Design, H. J. Schneider and A. I. Was­
serman, eds., North-Holland, pp. 215-235 (1982).

13 B. I. Blum, "Experience with an Automated Generator of Information
Systems," in Int. Symp. on New Directions in Computing, IEEE Compo
Soc. Press, pp. 138-147 (1985).

14 R. S. Pressman, Software Engineering: A Practitioner's Approach,
McGraw-Hill (1982).

ISB. I. Blum, "The Life Cycle-A Debate Over Alternate Models," ACM
SIGSOFT SEN 7, 18-20 (1982).

THE AUTHORS

BRUCE I. BLUM (right) is a mathematician in the Milton S. Eisen­
hower Research Center. Born in Brooklyn in 1931, he obtained a
B.S. degree from Rutgers University (1951), an M.A. degree in his­
tory from Columbia University (1955), and an M.A. degree in
mathematics from the University of Maryland (1964). He joined
APL in 1962, where he was assigned to the Computing Center. Dur­
ing 1967-74, he worked in private industry, and in 1974 he joined
APL's Fleet Systems Department. From 1977-83, he worked full
time at the Johns Hopkins School of Medicine as director of the
Clinical Information Systems Division. In 1986, he tranferred to
the Research Center, where he is working on projects in software
engineering and artificial intelligence.

VINCENT G. SIGILLITO's biography can be found on p. 18.

30

16Brodie et al., op cit., pp. 11-12.
17p. Chen, "The Entity-Relationship Model: Toward a Unifying View of

Data," Trans. Data Sys. 1, 9-33 (1976).
18B. I. Blum and V. G. Sigillito, "Knowledge-Directed System Develop­

ment," in Proc. 24th Annual Technical Symp., Washington Chapter ACM,
pp. 97-102 (1985).

19B. I. Blum and V. G. Sigillito, "Some Philosophic Foundations for an
Environment for System Building," in ACM Annual Conference, pp.
516-524 (1985).

20 J . S. Aikins, J. C. Kunz, E. H. Shortliffe, and R. J. Fallat, "PUFF: An
Expert System for Interpretation of Pulmonary Function Data," Compo
Biomed. Res. 16, 199-208 (1983).

21 R. E. Lenhard, Jr., B. I. Blum, J. M. Sunderland, H. G. Braine, and R.
Saral, "The Johns Hopkins Oncology Clinical Information System," J.
Med. Sys. 7, 147-174 (1983).

22R. E. Lenhard, Jr., and B. I. Blum, "Practical Applications of OCIS, A
Clinical Information System for Oncology," Compo Bio. Med. 14, 15-23
(1984) .

23B. I. Blum, "Information Systems at the Johns Hopkins Hospital," Johns
Hopkins APL Tech. Dig. 4, 104-117 (1983).

24B. I. Blum, "MUMPS, TEDIUM, and Productivity," in Proc. MED­
COMP, IEEE Compo Soc. Press, pp. 200-209 (1982).

2S B. I. Blum, "Iterative Development of Information Systems: A Case
Study," in Software Practice and Experience (in press).

Johns Hopkins APL Technical Digest, Volume 7, Number 1 (1986)

