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ELECTROMAGNETIC SCATTERING THEORY 

Various theoretical investigations of electromagnetic scattering are reviewed that illustrate the in­
terplay between basic researches and application needs. Topics covered include stochastic variational 
techniques for vector wave scattering by random systems of general electromagnetic properties, such 
as rough surfaces or chaff clouds; the development of simple but effective trial functions for varia­
tional usage; and the treatment of electromagnetic induction and color vision as vector field scatter­
ing problems. 

INTRODUCTION 
The purpose of this article is to survey selected 

aspects of the basic research program in electromag­
netic scattering theory that is conducted by the Theo­
retical Problems Group of APL's Milton S. Eisen­
hower Research Center. In the process, we shall indi­
cate the interrelations between this research program 
and mission requirements in other departments of 
APL. In general, the interconnections come about 
through collaboration with another department in one 
of two ways. A technical problem may be uncovered 
whose solution requires the development of fundamen­
tal sciences, e.g., the needs for a broadband method 
of analysis of radar scatter by the sea surface and for 
investigation of hydromagnetic signals in the ocean. 
Or a problem may arise whose solution involves sci­
entific techniques developed in other applications, e.g., 
the analyses of the magnetic suspension in satellite dis­
turbance compensation systems (DISCOS) and of ex­
periments in color vision. 

The propagation, scattering, and absorption of elec­
tromagnetic and other waves provide potential tools 
for probing various media, such as the ocean's sur­
face, particulate matter in the ocean, chaff (and oth­
er obscurants), aerosols, bubbles, and military targets. 
These phenomena have been important to the tasks 
of APL since its inception, for the specification, de­
sign, and use of such systems as radar, sonar, al­
timeters, and radio communication links. Also, from 
time to time technologic problems in other areas arise 
at APL or in other Johns Hopkins Divisions, e.g., cor­
neal light scattering, color vision analysis, and elec­
tromagnetic induction effects, which in our experience 
can be attacked fruitfully by vector-field wave scat­
tering techniques. 

Surveying a representative sample of such researches 
entails a rather lengthy article, and its theoretical char­
acter involves considerable mathematics. However, the 
most rigorous section (Eqs. 6 through 22) may be 
skimmed or skipped without impaired understanding 
of subsequent sections. 

OVERVIEW 
Many macroscopic phenomena are manifestations 

of electromagnetic field interactions with inhomogene-
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ous media and discrete bodies, all possessing a vari­
ety of material properties. Such "scattering," in a gen­
eral sense, includes wave reflection, refraction, diffrac­
tion, or absorption phenomena, as well as more slow­
ly varying inductive interactions. In general, the elec­
tromagnetic field varying in space and time can be 
Fourier analyzed into elemental waves over a spectrum 
of frequencies. At frequencies below those at which 
quantum effects dominate, the classical electromag­
netic field theory usually is adequate to describe scat­
tering phenomena. This classical regime can extend 
over 15 decades of frequency in hertz-from the opti­
cal through microwave and radio bands down through 
quasistationary induction to the zero-frequency static 
limit. 

The Group has pursued a long-standing basic re­
search program in the theory of electromagnetic wave 
scattering. Since the electromagnetic field is a vector, 
vector-wave theory is used, but special cases of scalar 
waves also relevant to acoustics have been considered. 
Naturally, much effort has focused on the electromag­
netic wave scattering because of its greater difficulty 
and the importance of optical, radar, and induction 
technology to APL missions. Classical methods of vec­
tor field theory are used, with emphasis on the power­
ful variational technique. 1 

Classical field theories are typically expressed in 
terms of partial differential equations with associated 
boundary conditions. Alternatively, the method of 
Green's functions can be employed to obtain an in­
tegral representation for the field. In the latter, a scat­
tered field is expressed in terms of integrals that depend 
on the unknown field on and within the scatterers. An 
efficient method of solution is to use physical intui­
tion to obtain trial approximations for the fields at the 
scatterers and then calculate the scattered field by eval­
uating the integrals. Of course, any errors in the cho­
sen trial fields will generally result in errors of the same 
relative order in the calculated scattered field. 

The Schwinger variational principle2 is an extreme­
ly important contribution in that it recasts the integral 
representation into an invariant form, that is, an ex­
pression in which first-order errors in the trial fields 
lead only to second-order errors in the calculated scat­
tered field. Thus, this variational principle enables one 
to improve existing approximations. It also facilitates 
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the design of new trial approximations that are effec­
tive and yet simple. However, the absence of first­
order errors in the variational formulation is obtained 
at the cost of replacing a single integral by a quotient 
that involves the product of two such integrals divid­
ed by a third (more complicated) integral. Thus, al­
though the method has been applied to a variety of 
problems,I-8 only limited application9, l0 was made 
relevant to stochastic scattering problems, i.e., random 
ensembles of scatterers such as the ocean's surface or 
rain clouds. 11 The apparent need to evaluate statisti­
cal averages of the quotient of integrals would certainly 
discourage such application. 

The development of variational techniques as a cal­
culational tool for stochastic scattering problems has 
been a central goal of the Group's program. A break­
through was achieved when we obtained an alterna­
tive invariant stochastic formulation. 12 Specifically, 
when the integrals appearing in the above-mentioned 
quotient are first averaged and then the quotient is tak­
en, one has an invariant expression for the averaged 
scattered field. This form is inherently simpler to evalu­
ate than the average of the quotient, yet is variation­
ally equivalent to it. As will be discussed, the research 
effort so far has culminated in a general stochastic 
variational principle (SVP) for electromagnetic scat­
tering by arbitrary random distributions of scatterers 
with any linear electric and magnetic properties. 

These wave-scattering studies, initiated in support 
of the submarine security program by R. W. Hart, 
then chairman of the Research Center, led first to a 
scalar form of the SVP. 12 The motive for this re­
search was to facilitate analysis of radar returns from 
sea-surface "scars" left by submarines. Because the 
scars contained roughness scales of the order of radar 
wavelength (as well as larger and smaller scales), it was 
desirable to improve on standard "two-scale" the­
ory.13 That analysis uses a long-wavelength (pertur­
bation) approximation for small vertical roughnesses 
and a short wavelength (Kirchhoff) approximation for 
large horizontal scales (Fig. la). This leaves untreat­
ed the roughness features comparable to wavelength 
in both height and breadth. Thus there was a need to 
develop a fundamental theory that remained valid 
through the transition region. This central omission ' 
has received prominent attention only very recent­
ly,14-17 though still with limitations (e.g., neglect of 
multiple scattering). In contrast, early tests of the sca­
lar SVP showed that it can account largely for multi­
ple scattering well into the transition regime. 18-21 

Subsequent work has been directed toward develop­
ing and testing the SVP as a calculational tool. This 
has been accomplished largely in collaboration with 
the Fleet Systems Department. 19-29 It formed the ba­
sis for a Ph.D. thesis and a post-doctoral research proj­
ect of staff members now in that department. The 
work has produced a dyadic SVP that is applicable to 
vector wave scatterers of arbitrary inhomogeneous and 
anisotropic permittivity, conductivity, and permeabil­
ity, possessing arbitrary random characteristics. The 
dyadic (i.e., vectorvector, or second-rank three-dimen-
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Figure 1-(a) Schematic of rough-surface element. (b) Ray­
leigh model: Circular cylindrical boss (radius a) on a perfect­
ly conducting plane with a plane-wave (vector k i ) incident at 
the angle 0i and scattering into directions Os (defining a scat­
tered wave vector ks ). (c) Relative scattering cross sections 
as functions of the size/wavelength parameter (ka) for the Ray­
leigh model above for 0i = Os = 0 and horizontal polariza­
tion. Curves denote results for perturbation (P) and Kirchhoff 
(K) approximations, for the variational improvement (V) of the 
latter, and for the exact solution (E). Note that whereas P and 
K depart from Eat ka ~ 1 and ka !5 3, respectively, the varia­
tional curve V follows E from large ka nicely through the gap 
(ka - 3 to 1) down to ka = O. Even more accurate broadband 
results have been achieved with novel, yet simple trial func­
tions, as illustrated in Fig. 8. 

sional tensor) formulation is desirable because it al­
lows one to account for the anisotropy of the material 
properties through which an electromagnetic field vec­
tor in one direction can produce polarization, mag­
netization, or current vectors in other directions. The 
dyadic formalism also facilitates the Green's function 
solution of the governing vector equations. Test ap­
plication has shown that the SVP can account for 
polarization, interference, and multiple-scattering 
effects-even with simple trial functions that do not 
yield these effects in standard noninvariant calcula­
tions. 25,26 The tests used trial approximations valid at 
long wavelengths and showed that the variational tech­
nique extended their range of validity to include rough­
ness scales up to the order of the wavelength. 

Recent effort has focused on trial-function selection 
and design to achieve accurate but tractable broadband 
scattering calculation. 27-3o The initial work again con­
cerned long wavelengths. 27 Then, as a next step to­
ward variational improvement of "two-scale" theory, 
variational treatment of a short wavelength (Kirchhoff) 
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trial field was carried out for a test surface. As illus­
trated in Fig. la, a rough surface is described by ver­
tical deviation as a function of horizontal dimensions, 
which includes height, slopes, curvatures, and higher 
variations. A tractable test model for analysis is Ray­
leigh's classic surface-scattering model, a circular 
hemicylindrical boss on a perfectly conducting plane, 
as depicted in Fig. lb. For that model, all the vertical­
horizontal variation scales are represented just by the 
boss radius, a. Thus a unique size/wavelength ratio 
parameterizes the model, viz., ka, where k = 27r/A 
is the wavenumber of the incident radiation of wave­
length A. More importantly, the model has a tracta­
ble exact solution to which we may compare different 
approximate solutions. This is important because it is 
the only ironclad way to assess the accuracy of approx­
imation methods. Such a comparison is displayed in 
Fig. Ic for the initial case we treated-backscatter of 
normally incident, horizontally polarized waves. One 
sees from this graph (with the exact solution, curve 
E, as benchmark) that the long-wave perturbation re­
sult (curve P) is satisfactory for small ka but fails badly 
for ka ~ I, while the short-wave Kirchhoff result 
(curve K) may be acceptable for large ka but fails badly 
at ka $ 2. In contrast, the variational result (curve 
V) shows good agreement at all wavelengths, i.e., not 
only from high frequencies into the transition region, 
as hoped, but all the way through to the low-frequency 
(Rayleigh) limit. 28 (Other examples of this all­
frequency variational improvement at different angles 
and polarization are shown in Figs. 6 and 7.) 

Although detailed analysis for this model over all 
polarizations and angles showed that the all-frequency 
improvement was not fully satisfactory, 30 these 
studies encouraged subsequent attempts to design new 
trial functions for accurate broadband scattering cal­
culations. 28

,29 For perfect conductors, we modified 
the long-wavelength trial fields so that they became 
capable of satisfying the boundary conditions. At least 
for simple test models, this approach has yielded ex­
tremely accurate all-frequency variational results. 29 

(An example is displayed in Fig. 8.) Presently, in col­
laboration with the Space Department, similar meth­
ods are being tried on models for ocean surface radar 
scatter. Future studies will be directed at surfaces with 
arbitrary electromagnetic properties, where the fields 
penetrate the surface. 

Most of this article will be devoted to elaborating 
on the SVP theory and its applications. However, we 
also present brief descriptions of some of the other 
electromagnetic scattering research that the Group has 
done in collaboration with colleagues from other APL 
departments or from other divisions of Johns Hop­
kins. In long-standing biomedical research collabora­
tion with the Johns Hopkins Medical Institutions, a 
major eye corneal structure program has investigated 
both visible light scattering and infrared absorption 
in the cornea. An intricate interplay between experi­
ment and theory led to the development of light scat­
tering as a tool to probe the ultrastructure of the 
cornea and yielded an explanation of infrared dam-
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age to corneal cells. These studies of electromagnetic 
interactions with biological tissue were surveyed recent­
ly in the Johns Hopkins APL Technical Digest, 31 and 
extensions of the infrared studies are described in the 
article by McCally et al. elsewhere in this issue. In an­
other biomedical effort with the Johns Hopkins Med­
ical Institutions, early APL vision research eventuated 
in a general vector field theory of vision, considered 
as the "scattering" process first defined and investigat­
ed by Maxwell: electromagnetic field absorptions at 
the retina transmuting into a brightness-color spatio­
temporal sensation field. 32

,33 Concomitant electro­
physiological studies with APL's Biomedical Programs 
Office suggested a novel electroretinographic analy­
sis technique. 34 

Finally, various problems in electromagnetic induc­
tion that have concerned different departments of APL 
have been attacked via vector-field methods with con­
siderable success. Thus, analyses of hydro magnetism 
induced by ocean motion across the geomagnetic field, 
initiated for the SSBN security program, yielded many 
useful numerical estimates, proved a new eddy the­
orem, identified the phenomenon of sonomagnetic 
pseudowaves (hydro magnetic fields propagated via 
acoustic radiation), and determined their scattering by 
the air-sea surface. 35

-
38 For the Space Department, lev­

itational force-torque in the magnetic suspension of 
the disturbance compensation system (DISCOS), now 
deployed in NOVA satellites, was analyzed to aid in 
malfunction diagnosis and design optimization for 
DISCOS. The power of vector field analysis is exem­
plified by the fact that the analysis produced both sig­
nificant practical design simplification and new con­
tributions to magnetic levitation theory. 39-41 

STOCHASTIC VARIATIONAL PRINCIPLES 
General features of variational principles that make 

them invaluable as calculation tools are reviewed brief­
ly in this section. The generic form of the Schwinger­
type variational principle is discussed, without mak­
ing explicit the integrals that compose it; these are giv­
en in the next section. After pointing out the difficulty 
of applying the Schwinger form to stochastic scat­
terers, the APL-developed stochastic version of this 
principle is presented and discussed. 

Many physical problems can be expressed in terms 
of a set of field functions, ir, that obey certain field 
equations. Often, primary interest is not so much in 
accurate calculations of ir, but in some related quan­
tity, F(e.g., scattering cross section), that can be writ­
ten as a functional of the field functions, F(ir) , in 
various ways. A particular functional is said to be a 
variational principle if it is invariant for ir approach­
ing the exact solution irE, i.e., if aF(ir) = F(irE + air) 
- F(irE) = 0 to first-order in small variations, air. 
When F is formulated such that the invariance (Eul­
er) equations reproduce the original field equations, 
aF = 0 represents a compact statement equivalent to 
the original problem. Further, since the form of F is 
chosen such that F(irE) represents a desired result in 
the problem, the variational principle offers a power-
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ful method of approximately calculating that result 
from reasonably accurate approximate values of the 
field if. The variational method may be used either 
to improve an existing approximation or to fashion 
efficient new trial approximations. In either case, by 
virtue of the variational invariance, small errors in the 
trial functions for the field if lead to much (quadrati­
cally) smaller errors in the calculated quantity, F. In­
deed, judicious selection of trial fields if such that they 
can mimic exact behavior where important, viz., in F, 
no matter how poorly they may behave elsewhere, will 
be seen to yield efficient and accurate approximations. 

An attractive form of variational principle is the 
Schwinger type, which is a ratio of functionals that 
is independent of the overall amplitude of the trial 
function. For example, consider scalar wave problems 
consisting of a plane wave of amplitude A, frequency 
w, and wave vector k;, viz., A exp[i(k; -r - wt)], in­
teracting with a scatterer to produce a superposition 
of harmonic waves, say 1/;(r) exp(-iwt). The field dis­
tribution near the scatterer may be quite intricate, but 
interest often centers on the far field (r ~ scatterer 
size), where the scattered waves reduce to a spherical 
wave whose amplitude varies with scattering direction 
denoted by unit vector ks • Thus, the field 1/;(r) be­
comes asymptotically the sum of incident plane and 
scattered spherical fields, 

1/;(r) ::::: A exp(ik; -r) + T(ks ,k;) - A exp(ikr)/r , (1) 

where k denotes wave vector magnitude Ik; I, and ks 
== k ks • The key ingredient in Eq. 1 is T, the relative 
amplitude of the scattered wave, whose determination 
represents a complete solution for the far-field scat­
tering. For example, the differential cross section is 
given by 1112. 

The Schwinger variational principle for scatter am­
plitude T is obtained by considering the adjoint field 
distribution, ;j;(r), which describes the reciprocal prob­
lem of a plane wave with wave vector -ks scattering 
into the direction -k; (i.e., transforming ks +-+ -k; in 
the original problem). As will be illustrated by the 
general vector derivation given in the next section, one 
way to derive Schwinger's expression is to use ;j; to 
eliminate the incident amplitude A and thereby obtain 
the homogeneous, symmetric variational principle for 
the scatter amplitude, 

This functional TV of the field functions 1/;,;j; possess­
es the valuable invariance properties discussed above 
(identify if as 1/;,;j; and F as TV), provided the func­
tionals N} , N 2 , and D in Eq. 2 are appropriately de­
fined. This will be seen in detail for the general vector 
case in the next section, where N} , N 2 , and D are ex­
hibited to be integrals over the field distribution at the 
scatterer. The integral N} (1/;) is proportional to a 
known noninvariant expression for T, while N2 (;j;) is 
the analogous expression in the adjoint problem. The 
denominator D(1/;,;j;) is a double integral whose in-
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tegrand contains the fields and the Green's function 
[G(r,r')] appropriate to the scattering problem. 

The form of Eq. 2 shows that variational invariance 
is obtained at the extra cost of evaluating the integrals 
N2 and D, once the noninvariant solution N} is 
known. Because ;j; is the solution to the adjoint prob­
lem in which ks +-+ -k;, it is convenient to use trial 
fields for the reciprocal problem, ;j;1, that are ob­
tained from the trial field for the original problem, 
1/;1, also by the transformation ks +-+ -k;. In that case, 
not only is it true that N2 ( ;j;) = N} (1/;), but also that 
N2(;j;/) = Nt (1/;/), so that the only additional cost of 
invariance is to evaluate D. Several specific examples 
of invariant formulations of scalar problems are giv­
en in Ref. 1 (pp. 1128-1134), and a few are presented 
in the next section. 

Vector wave (electromagnetic) scattering has a vari­
ational principle of the same generic form as Eq. 2, 
with 1/; now the electromagnetic field represented by E: 

where T is any component of the vector scatter am­
plitude. The adjoint field E and the integrals Nt , N 2, 
and D are identified in the next section. Here we only 
note that the integrals are more complex than in the 
scalar case because their integrands involve dyadic 
operations on the vector E,E field. Like the scalar wave 
principle (Eq. 2), the vector wave principle (Eq. 3) was 
initially derived for deterministic scatterers in which 
the scatterers have no element of randomness. Of 
course, there are important applications (such as sea 
surface or chaff cloud scattering) in which the scat­
tering system is necessarily treated as a random ensem­
ble of scatterers (of sea waves or chaff particles), i.e., 
as a stochastic scatterer. 

Stochastic scattering presented a seemingly insuper­
able difficulty for the Schwinger-type variational prin­
ciples (Eqs. 2 and 3). When a scatterer is characterized 
by randomness in its geometrical or material proper­
ties, the quantity of interest is a statistical moment of 
T or of the differential cross section, 1112. Even the 
first moment of Eqs. 2 and 3 involves averaging a quo­
tient of complicated integrals, 

(4) 

which is generally intractable and deterred application. 
But this impasse is broken by the work at APL report­
ed in Ref. 12, which demonstrates that, for arbitrary 
scatterer statistics, the integrals Nt, N2, and D in Eq. 
2 can be individually averaged and then recombined to 
form an invariant ratio for the averaged amplitude. 
Subsequent work at APL has extended this result to 
the vector case, Eq. 3, and to all higher moments. 
22,23,29 Thus, in lieu of Eq. 4 a general stochastic vari-
ational principle for mean amplitude is 

(5) 

in the sense that (T) v is exact when exact fields are 
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used to evaluate it and that o(T) v = 0 to first order 
(cf. above). Note that this is not a claim that Eq. 5 
is equal to Eq. 4 (except for exact fields), but simply 
variationally equivalent to it in that first-order terms 
vanish; the nonvanishing higher order terms in Eq. 5 
differ from those in Eq. 4. Analogous variational ex­
pressions hold for higher statistical moments, e.g., 
(l1l 2n) V = (1N1 12n)(1N2 12n)/(47r)2n(/D12n). 

These SVPs rest on the sole assumption that the in­
cident amplitude, A, is not stochastic, whence their 
proof follows by manipulation 12,22 of the general re­
lations T = NI/47rA and D = N2 e A, which obtain 
in the derivation of deterministic Schwinger principles 
(e.g., Eqs. 12 and 14 below). The SVP, Eq. 5, is in­
herently more tractable than Eq. 4, since evaluating 
a quotient of averages is less difficult than evaluating 
averages of quotients. A special case of Eq. 5 was given 
passing notice (but with neither proof nor subsequent 
generalization or application) in an early rough-surface 
scattering theory.9 Sample results of our SVP appli­
cations will be given shortly, but first we will outline 
the derivation and some important aspects of the 
general vector variational principle. 

VARIATIONAL EXPRESSIONS FOR 
GENERAL SCATTERING PROBLEMS 

The application of variational principles to scatter­
ing problems requires explicit expressions for the in­
tegrals N 1 , N 2 , and D. This section presents these 
expressions for several cases and reviews the deriva­
tion of the vector variational principle. These mathe­
matical considerations are the foundation for appli­
cations and for the analyses of test cases described in 
the next section. The comparisons there between the 
exact and variational results for these test cases pro­
vide a measure of the potential utility of variational 
methods. That section and all subsequent ones have 
been written in such manner that they can be read with­
out an appreciation for the mathematical foundations 
presented in this section. 

Scalar wave scattering is applicable to acoustics and 
to electromagnetics with special geometries. As dis­
cussed in Ref. 1, scattering from a perfectly conduct­
ing cylinder leads to 

N J (,p) = 1 dS ,p(r) x !D ± (n) X exp(-ik, .r); 

D(,p,if;) = 1 dS 1 dS' ,p(r) if;(r') (6) 

and reciprocity as indicated earlier yields N2 (~) 
NI (t/;). In Eq. 6, S denotes scattering surface, 5) ±(n) 
denotes normal derivate a/an operating to the right 
( + ) or left (-) for vertical or horizontal polarization, 
respectively, and G(r,r') is the Helmholtz Green's 
function exp(iklr' -rl)/47rlr' -rl. For the acoustic prob­
lem, hard (soft) scatterers correspond to vertical (hor­
izontal) polarization, and scatterer geometry is arbi-

62 

trary. For another example, in the case of a lossy di­
electric body with complex index of refraction, m, 

N J (,p) 1 dV exp( -ik, ·r) u(r) ,p(r) • 

D(,p,if;) 1 dV u(r) ,p(r) (7) 

X (if;(r) - 1 dV'G(r,r') u(r') if;(r')] , 

where V is the scatterer volume and u(r) == k 2(m 2 
-

1), assuming m = 1 (i.e., u = 0) outside V, and, again, 
N2 (~) = NI (t/;). The scalar principle discussed in Ref. 
1 is sufficient for the geometries of simple test prob­
lems, but practical applications will require the more 
general vector principle about to be discussed. 

Scattering from an object or surface with general 
electric and magnetic properties (Fig. 2) is described 
by the vector time-harmonic wave equation for the 
electric field, 

V x V x E - k 2E = BeE , (8) 

where k is the wavenumber of an incoming plane wave 
Ej = Aej exp(ik j er) of amplitude A, propagating in 
the direction k j with linear polarization ej, and the 
dyadic operator 0 characterizes the geometric and ma­
terial properties of the scatterer. For notational sim­
plification, arguments of functions will be omitted 
when no confusion can arise. The explicit form of o e E for general inhomogeneous and anisotropic scat­
terers with tensor permeability II, permittivity E, and 
conductivity (1, is 

BeE = DeE + V x [pe[V X E]] , (9) 

where, with I the unit dyadic, 

U == k2[r + (47ril w)u - I] , (9a) 

es component of the scattered wave 

I ncident wave 

€(r},cr(r),ji(r) 

Figure 2-Vector wave scattering from volume Vo, bound­
ed by surface So, of material with inhomogeneous anisotrop­
ic p~rmittivity, conductivity, and permeability tensors (E(r),O(r), 
and ji(r)). 
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(9b) 

The permittivity and permeability have been normal­
ized by those of the homogeneous background medi­
um in which the scatterers are assumed embedded, and 
the superscript -1 indicates matrix inversion. 

A careful application of Green's theorem yields the 
integral equation 42,43 

E(r) = Ej(r) + i dV' Go (r,r') • [O(r') • E(r')] , 

Vo (10) 

where Vo is the volume of the scatterer and the in­
finite space Green's dyadic is given by43 

...... 2 exp Uk Ir - r' I ) 
P.V. (I + VVlk) -----

47r lr - r ' l 

1 ...... 
- - Lo(r - r') 

k 2 ' 
(11) 

where the symbol P. V. implies a principal value when 
the term in brackets in Eq. lOis integrated and L is 
the depolarization tensor 44 appropriate to the exclud­
ed volume used to define the principal value. The in­
finite-space Green's dyadic reduces to the usual free 
space Green's dyadic42 if the field point r lies outside 
the source region Vo, since o(r - r') = 0, and the prin­
cipal value designation is unnecessary in that event. The 
form of the infinite-space Green's dyadic can be de­
rived by using the free-space Green's dyadic and 
Green's vector theorem to derive an integral equation 
for the field within the source region. The singular na­
ture of V V (1 I Ir - r ' I) requires that the point r = r ' 
be excluded from the region to which Green's theorem 
is applied. Removal of an infinitesimal region about 
r = r' yields the principal value integral, and the resul­
tant integral over the surface enclosing this excluded 
volume yields the Lo(r - r') term. 43,45 

The component of the scattering amplitude pola­
rized along a direction es is obtained from the asymp­
totic form of Eq. 10 on letting r -00 in Eq. 11, and 
one finds 

1 
-N 
47rA I 

(12) 

where as before k s = k k s with k s rs I lrs I, and we 
have defined es such that es eks = 0 in the far field 
limit. The form of the scattering amplitude given in 
Eq. 12 is noninvariant, in the sense that first-order er­
rors made in approximating the field E in Eq. 13 lead 
to first-order errors in the approximation for T. 

An invariant form for T is obtained by using proce­
dures analogous to those employed by Levine and 
Schwinger46 for the scalar case. In particular, a sec-

Johns Hopkins APL Technical Digest, Volume 7, N umber 1 (1986) 

Bird, Farrell - Electromagnetic Scattering Theory 
..... 

ond field, E, and an associated operator, 0, a;:e in-

troduced, Eq. 10 is multiplied by the product (OeE), 
and the result is integrated over the volume of the scat­
terer to obtain 

(14) 

Here the integrals N2 and Dare 

D 

N 2 = r dV (geE) e [ei exp(ik i er)], (15) J Vo 

(16) 

Using Eq. 14 to replace II A in Eq. 12 leads finally to 

(17) 

the form advertised earlier in Eqs. 2 and 3. Compari­
son of Eqs. 7 above with Eqs. 13, 15, and 16 shows 
the similar form, but more complex construction, of 
the NI , N 2 , and D here. 

The requirement that Eq. 17 be stationary with re­
spect to variations about the exact fields E and E 
results in separate integral equations (the Euler equa­
tions) for E and E. (These equations assume that the 
inverse, 0-1

, exists. 23) The variational requirement 

suggests the choice g = ot, where the adjoint ot is 
defined by 1 dV E e [ot eE] == 1 dV [OeE] e E. The 
Euler equation for E is Eq. 10. The equation for E 
is similar to Eq. 10 except that it describes a plane wave 
of linear polarization es and amplitude A = D / NI 
incident along -ks being scattered by an object char-

acterized by 0+. With these identifications, the field 
E is usually called the adjoint field. This reciprocity 
relationship between E and E suggests that a similar 
relationship should be imposed on the trial approxi­
mations for these fields, which are used in perform­
ing variational calculations via Eq. 17. 

The dyadic Green's function formalism was con­
venient for deriving the above vector variational ex­
pressions 22,23 and for discussing general properties of 
the variational principle. However, evaluation of the 
integral D defined in Eq. 16 requires the infinite-space 
Green's dyadic Go within the source region where the 
depolarization tensor term, Lo(r - r'), of Eq. 11 is non­
zero. Straightforward evaluation of this depolariza­
tion tensor and the corresponding principal value 
integral proved to be difficult. To remedy this, we used 
some results from Yaghjian 43 to reexpress D in terms 
of the scalar Helmholtz Green's function G introduced 
in Eq. 6 and the text following. The double volume 
integral in D then becomes 24 
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1 - ] - k 2 (OeE) + SVo ' (18) 

where SVo is a surface integral over the boundary, 
So, of tIie scatterer involving G and the normal 
derivative aGlan. In particular, 

r dS' ( OeE) x (v'G XIlk2) J So 

where superscript Tr denotes matrix transpose. Each 
integral of the right side of Eq. 18 contains integrable 
singularities of the form II R and II R 2

-
e

, € > O. 
These should, therefore, be simpler to evaluate than 
the principal value integral and the depolarization ten­
sor required by the nonintegrable II R3 singularity of 
Go. Thus, Eq. 18 offers a practical method for evalu­
ating the required variational expression (Eq. 16). 

Vector variational expressions were also obtained 
for perfectly conducting objects. 8,22 The integrals in 
this case have the form 

NI ~ So 
exp(-iks er) (es eK) dS , (20) 

N2 ~ So 
CRee;) exp(iki er) dS , (21) 

D=~ dS K 0 ~ dS' GoK' , (22) 
So So 

where the surface integrals are over the scatterer sur­
face So, K and K are the original and Adjoint surface 
currents, respectively, and in this case G is the reduced 
form of Eq. 11 for r ¢ r'. This free-space dyadic 
Green's function can be shown to be appropriate from 
the limits taken in Green's theorem at the surface of 
a perfect conductor. As a result, Din Eq. 22 is evalu­
ated by first performing the r' integration with r above 
So and then letting r approach So to perform the r in­
tegration. I,22 For two-dimensional systems, Eqs. 20 
through 22 may be reduced to the scalar wave Eqs. 
6 above. 

STOCHASTIC VARIATIONAL TEST 
APPLICATIONS 

To assess the accuracy and efficacy of the SVP, we 
have tested it on idealized random models that are 
complex enough to exhibit cooperative phenomena 
such as interference and multiple scattering, as well 
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as polarization effects for vector waves. But the test 
models that are chosen are also simple enough to ad­
mit exact solutions, at least for some cases. This is im­
portant, since only by knowing exact results can one 
truly judge the accuracy of approximations. Thus, the 
models considered are constructed from infinite cir­
cular cylinders, which play the role of test model here 
much like the hydrogen atom in quantum mechanics. 
We first summarize some results for scalar wave scat­
tering from a classic rough-surface model 47 and then 
outline both the approach and the results for vector 
wave scattering from a random dielectric-body mod­
el. These examples involve small scatterer-size/wave­
length ratios; larger size-parameters are considered in 
the next section. 

Scalar Test Problem 
Our first application of the SVP involved calculat­

ing the averaged differential cross section, (111 2), for 
the scattering of a scalar plane wave by a model rough 
surface where homogeneous (Dirichlet) boundary con­
ditions are obeyed, i.e., where the wave function van­
ishes at the surface. The surface consists of a large 
number, N, of parallel, nonoverlapping hemicylindri­
cal bosses of equal radius randomly distributed on a 
plane, and the wave is incident normal to the hemicyl­
inders' axes (Fig. 3). The equivalent electromagnetic 
problem is the scattering of a horizontally polarized 
wave by an embossed, perfectly conducting plane. We 
computed the first -order perturbational approximation 
to (1112) and compared it to the stochastic variation­
al improvement of the perturbation approxi­
mation. 18,20,21 

In the low-frequency (Rayleigh) limit, both the vari­
ational and perturbational approximations were found 
to be of the form 

(23) 

to first order in v, the "packing density" or area frac­
tion of the plane occupied by the hemicylinders. In 
both cases the constant C in Eq. 23 is N times the cross 
section for an isolated hemicylinder. However, the pa­
rameter Ci is equal to 2 for the perturbational approx­
imation and 4.08 for the variational result. 

Figure 3-Classic rough-surface scattering model: a stochas­
tic array of the Rayleigh surface elements of Fig. 1 b. 
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In order to investigate the discrepancy beween these 
two results, we considered a special case of this sur­
face with only two hemicylinders present. 19,20 We ob­
tained the exact solution, as well as the first-order 
perturbational approximation and its variational im­
provement. Again we found the result Eq. 23, where 
now the parameter a equals 1.89 for the exact solu­
tion, 2.04 for the variational approximation, and 1 for 
the perturbational approximation. The variational re­
sult is thus the more accurate of the two approxima­
tions. A careful examination of these solutions for two 
hemicylinders revealed that the variational approxima­
tion accounts for multiple scattering, but the first­
order perturbation approximation, which it clearly im­
proves upon, does not. 19 

Vector Test Case with Inhomogeneous 
Boundary Conditions 

To assess the more general vector SVP, we applied 
it to a random model of sufficient complexity to ex­
hibit polarization effects, as well as interference and 
multiple scattering, but again, simple enough to ad­
mit an exact solution. Our previous experience led us 
to consider a random assembly that consists of an en­
semble of systems, each of which is a pair of infinite­
ly long, parallel dielectric cylinders of radius a and 
index of refraction m (Fig. 4). The cylinder separa­
tion varies randomly from ensemble member to en­
semble member, except that the cylinders are restricted 
to be nonoverlapping and to have a maximum sepa­
ration L. (Of course, L must be much smaller than the 
distance to a field point in order that the asymptotic 
field and therefore the scattering amplitude is well de­
fined.) The cylinders are illuminated by a plane elec­
tromagnetic wave of wavenumber k propagating in the 
direction kj with linear polarization ej, and we exam­
ine the component of the scattered field propagating 
in the direction ks with polarization es. 

The scattering configuration in Fig. 4 is the N = 
2 case of the generic problem of scattering by N ran­
domly separated Rayleigh cylinders. Eventual interest 
resides in the limit of large N and small packing den­
sity, JI = N2al L. For this reason, the solutions are ex­
pressed in powers of packing density, and only linear 
terms are retained. The N = 2 system has the virtue 
of admitting an exact solution to test the vector sto­
chastic variational results. 

The exact field for each cylinder is expressed in stan­
dard fashion 19,47,48 as a series of cylindrically outgo­
ing waves centered on the axis of that cylinder. An 
addition theorem 49 for Bessel functions is then used 
to translate the waves centered on the axis of one cyl­
inder to a coordinate system centered on the other cyl­
inder. The boundary conditions on the surface of each 
cylinder can then be easily satisfied and the expansion 
coefficients in the series determined. This procedure 
gives a series expansion of the scattering amplitude, 
and in the small (i.e., Rayleigh) cylinder limit only the 
leading term contributes. 

The variational approximation to the scattering am­
plitude is obtained by choosing trial functions for the 
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Figure 4-Scattering configuration for two parallel dielectric 
cylinders with randomly variable separation. 

fields E and E inside the scatterer. The analysis sim­
plifies in the case of Rayleigh dielectric cylinders, for 
which ka ~ 1 and mka ~ 1. Then the fields inside 
the cylinders for the original and adjoint problems are 
reasonably approximated by the incoming plane 
waves, i.e., the Born approximation, E(r) ::::: ej 
exp(ik j er) and E(r) ::::: es exp( -iks er), is appropriate. 
We compared 25,26 the exact, Born, and variational so­
lutions to first order in the packing density of the 
cylinders, JI = 4al L, for the plane waves incident nor­
mal to the axes of the cylinders. 

Waves with transverse electric (TE) and transverse 
magnetic (TM) polarization relative to the cylinders' 
axes decouple and thus can be analyzed separately. The 
transverse magnetic wave is relatively simple. To first 
order in the packing density JI, the exact, Born, and 
variational solutions for averaged cross section all 
agree: 

where ao is the single-cylinder Rayleigh transverse 
magnetic cross section, and the term proportional to 
JI is due to interference between the waves scattered 
by different cylinders. Because the Born result is cor­
rect to this order in JI, it follows that multiple scatter­
ing affects the transverse magnetic wave only in terms 
of higher order in v. 

The transverse electric wave is considerably more 
complicated. The Born approximation has the famil-
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iar cosine-squared behavior in scattering angle, Os 
(measured from the forward direction), 

The Born approximation ignores the geometric polar­
izability of the cylinder in the transverse electric 
wave. 44 Thus, Eq. 25 disagrees with the single-scat­
tering result, 

which is obtained by taking this geometric polariza­
bility into account. A comparison with the exact so­
lution to order v, 

shows that for m ~ 1 the multiple scattering effects 
(through this order in JI) are given by 

af,s = - [2/(m 2 + 1)]2 ( m2

2 
- 1 ) 

m + 1 

x 2ao v cos Os cos (Os - 2(3) , (28) 

to relative order (m 2 - 1)/24(m2 + 1), where {3 is the 
angle the plane of the cylinder axes makes with the for­
ward direction (Fig. 4). The variational improvement 
of the Born approximation has the form 

where the multiple scattering contribution (last term) 
is found to be identical to the exact contribution (Eq. 
28) to the same relative error. The higher order terms 
of relative size (m 2 - 1)/24(m2 + 1) in both the ex­
act and variational multiple scattering contributions 
are discussed and compared in Refs. 25 and 26. The 
multiple scattering term arises entirely from the sur­
face integral term in Eq. 18. 

In summary, comparison of the exact (Eq. 27) and 
variational (Eq. 29) forms shows that the SVP correct­
ly accounts for the geometric polarizability of the 
transverse electric wave (even using the Born trial field, 
which does not); it shows further that, to lowest or­
der in the small parameter m 2 

- 1, the SVP 
reproduces the exact multiple scattering contribution. 

VARIATIONAL TRIAL-FUNCTION 
SELECTION 

The tests so far described were limited to Rayleigh 
scatterers, i.e., ones of small size compared to wave­
length. For such size-parameters, one generally expects 
the plane-wave trial fields we adopted to be reason­
able first approximations, despite rather gross flaws 
(e.g., in Eqs. 23 and 25) and even total failures (cf. 
the Rayleigh transverse magnetic cylinder 30

) when 
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used in noninvariant formulations. In any event, we 
have seen that they were susceptible to vast improve­
ment via the SVP. Since our primary concern was to 
test the SVP solutions against known exact solutions, 
we gave no initial attention to other size-ranges or oth­
er trial functions. But, of course, realistic random scat­
terers are characterized by ranges of particle dimen­
sions or roughness scales that may include or exceed 
the wavelengths of interest. Hence, we have devoted 
considerable subsequent study to the judicious selec­
tion or modification of trial functions, and to varia­
tional improvement of the Kirchhoff short-wave ap­
proximation appropriate to large size-parameters. 
These studies were mostly restricted to deterministic 
systems, since the primary interest was in the spectral 
behavior of the variational integrals (Nl , N 2 , and D) 
that are the same in the deterministic Eqs. 2 and 3 as 
in the SVP Eq. 5. 

Our initial study27 of trial functions treated a near­
ly transparent (m ~ 1) dielectric sphere, of size­
parameter ka • (m - 1), via Eqs. 2 and 7, again with 
the known exact solution available for comparison. 
For the simple approximation in which the incident 
plane wave is used as the trial function, the variation­
al total cross section was found to be accurate to 10 
percent up to ka(m - 1) ~ 0.8. Modifying the plane 
wavenumber to that inside the sphere, mk, increased 
this limit to ka(m - 1) ~ 1.2. Introducing an adjust­
able wavenumber, exk, and determining ex variation­
ally, raised the limit to ka(m - 1) ~ 1.6. Ultimately, 
a nonplane (spherical lens) wave function was found 
the most effective simple trial function tested, raising 
the limit to ka(m - 1) ~ 4 (see Fig. 5). Indeed, rea­
sonably accurate near-forward scatter amplitudes were 
obtained for ka(m - 1) as large as 10, which for m = 
1.2 corresponds to a sphere radius of approximately 
8A. 

4~----~----~------~----'-----~ 

3 

2 3 4 5 
ka(m - 1) 

Figure 5-Total scattering cross section (Utod for a dielec­
tric sphere of radius a and refraction index m = 1.2 as a func­
tion of size parameter (ka(m - 1)). The variational result using 
the spherical lens trial function (colored curve) agrees with 
the exact solution (black curve) within 10 percent up to the 
vertical bar. 
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We next investigated the effects of trial function 
selection on the accuracy achievable with the surface­
scattering test model described above (Fig. 3). For 
plane-wave trial functions, substantially accurate vari­
ational amplitudes had been found for ka :5 1 and, 
not surprisingly, complete breakdown at ka > 1, 
where plane waves are a poor starting approxima­
tion. 18

-
21 In order to test the SVP at higher frequen­

cies, we have subsequently investigated the physical 
optics (Kirchhoff) approximation as a trial function 
in the variational integrals of Eq. 3. The Kirchhoff trial 
function is the surface field determined by adopting 
the tangent-plane approximation for boundary con­
ditions at the scatterer surface and the geometric op­
tics approximation for shadowing. Using this trial 
function, we found variational improvement not only 
in the expected regime (ka > 1), but also through the 
important "resonance" region (ka - 1) and all the way 
down to the Rayleigh limit (ka - 0). To investigate sys­
tematically this all-frequency behavior, we analyzed in 
detail the classic single-boss model of Rayleigh (Fig. 1 b) 
over all size-parameters, polarizations, and bistatic con­
figurations. 30 This model involves much the same in­
tegrals, and ka behavior, as the multi-boss random 
array; but again, its exact solution is available for strict 
evaluation of results. Sample comparisons of Kirchhoff, 
variational, and exact calculations are shown in Figs. 
lc, 6, and 7 via the curves labeled K, V, and E, respec­
tively. One sees for both transverse magnetic and trans­
verse electric polarization and in both magnitude and 
phase that the variational (V) curves improve substan­
tially over the Kirchhoff (K) in the latter's domain (ka 
~ 1), and then nicely follow the exact (E) curves 
through the transition (ka - 1) where the Kirchhoff 
curves have departed significantly from the exact. 

The findings over the entire ka spectrum from these 
model calculations30 are: (a) general variational im­
provement of the Kirchhoff approximation at high fre­
quencies (ka ~ 1); (b) better variational extension into 
the intermediate-frequency region (ka - 1) than expect­
ed; and (c) substantial low-frequency improvement. 
Regarding the latter, we fmd in brief that, whereas Ray­
leigh limits of the Kirchhoff approximation are totally 
wrong in wavelength and angle dependence (or, by a 
factor 2 in one case), the variational technique always 
improves them by correcting the wavelength dependence 
(and the factor 2). And, while not correcting faulty an­
gular distributions, the variational treatment is found 
to improve integrated (total) cross sections. 

The variational Rayleigh limits are evidently suffi­
cient improvement that they enable the excellent short­
wave results to extend satisfactorily through the reso­
nance regime. Nevertheless, the low-frequency accura­
cy is not uniformly adequate to consider the variation­
al-Kirchhoff approximation a reliable all-frequency 
method. Furthermore, the Kirchhoff trial function can 
be awkward for variational calculation, as our forth­
coming treatment of variational Kirchhoff divergences 
for transverse electric polarization will attest. In oth­
er words, the canonical Kirchhoff approximation is 
neither fully adequate nor suitably tractable for vari-
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Figure 6-Typical bistatic scattering for the Rayleigh model 
(Fig. 1 b) with horizontal polarization (transverse magnetic, 
E II axis). The scatter cross section relative to boss width (a/2a) 
and phase of scatter amplitude are shown as functions of 
size-parameter (ka) for exact, Kirchhoff, and variational (E,K,V) 
solutions. 

ational usage. Instead, it is attractive to exploit the 
freedom inherent in the variational principle in order 
to design trial functions that are both simple and ef­
fective. For simple scattering models, the liberated ap­
proach has yielded extremely accurate all-wavelength 
variational results. 28,29 

In particular, we have investigated "boundary­
Born" approximations, i.e., plane-wave trial functions 
modified by a parametric function adjustable to suit 
the boundary conditions. One treats the function or 
its derivatives (depending on polarization) on the 
boundary as variational parameters and determines 
them by the stationarity property of the variational 
principle. As an example, consider transverse electric 
plane-wave scattering from the classic Rayleigh mod­
el (Fig. Ib). We used a simple modification of the in­
cident plane wave (t/;inc) in which the field near the 
scattering surface (So) is approximated as 
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Figure 7-Same as Fig. 6, except with vertical polarization 
(tranverse electric, B II axis). 

Here l/; represents the magnetic field (H II axis), so the 
boundary condition is al/;Ian = 0 on So. This is iden­
tically satisfied by Eq. 30, provided only that 
al(P)lan lsQ = 1. We treatl(P) on So (i.e.,/(a» itself 
as a variatIOnal parameter and determine it by the sta­
tionarity condition, aI1l 2/al(a) = O. 

Figure 8 shows an example of the variational results 
for (normalized) cross section as a function of size­
parameter ka. One sees excellent agreement with the 
exact solution for ka ranging over four orders of mag­
nitude around unity. Similarly very accurate broad­
band results were found for transverse magnetic waves, 
and also for isolated cylinders with either polarization, 
by using boundary-Born trial functions analogous to 
Eq. 30 but appropriate to the pertinent boundary con­
ditions. 28 Thus, choosing simple trial functions that 
are capable of satisfying the boundary conditions leads 
to excellent results for perfectly conducting cylindri­
cal scatterers, for radius to wavelength ratios, kaI27r, 
ranging from very small to very large. 

Presently, trial function design for simple sea-sur­
face radar scattering models is under investigation in 
collaboration with APL's Space Department. For ex­
ample, considering a one-dimensional, perfectly con­
ducting corrugated surface, say z = t(x), we again use 
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Figure 8-Variational results using the boundary-Born trial 
function (colored curve) compared to the exact solution (black 
curve) for the Rayleigh model (Fig. 1 b) with vertical polariza­
tion (transverse electric) and OJ = 50 0
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logarithmic size scale (ka). 

scalar waves incident normally to the y axis to describe 
scattering in different polarizations independently. 
Thus, in horizontal polarization, E = jE(x,z), we ap­
proximate the electric field near the surface by the 
boundary-Born form, 

E = E inc 
- E inc Iz= r • I(x,z) , (31) 

and the boundary condition E = 0 on Z t(x) is 
guaranteed provided that fIx,t(x)] == 1. A simple 
general form that satisfies this proviso homologously 
to Eq. 30 is I(x,z) = g[z - t(x)] with g(O) = 1. One 
finds that in the variational integrals (Eq. 2) the para­
metric function, I, and its derivatives appear only via 
allazlr , which for the simple form indicated reduces 
to g' (0). In that case, there results a completely para­
meter-independent variational scattering amplitude, 
which we have evaluated for a sinusoidal surface 
(again: known exact solution). This variational result 
has been shown analytically to be in precise agreement 
with the exact solution in a variety of limiting cases­
including both low-frequency and high-frequency 
limits-even where the trial approximation gives quite 
wrong noninvariant results. Numerical studies will 
evaluate the solution for intermediate regimes of scat­
tering parameters. If required, the variational results 
may be fine-tuned by noting that with a periodic sur­
face, t(x) = t(x + A), the tuning function, allazlr , 
is likewise periodic and representable as a Fourier se­
ries, the first term being just the constant g'(O). Of 
course, if all terms of the series were retained, one ex­
pects the exact solution. However, it is important to 
note that this is not the same as expanding the surface 
field in a complete set (e.g., Papas' early variational 
work 3

) because the latter trial function takes no ac­
count of the boundary condition. Here it is built into 
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the trial functions such as Eqs. 30 and 31 from the 
start. 

Another problem presently being investigated is that 
of a beam with a Gaussian irradiance profile incident 
on a perfectly conducting, infinitely long cylinder. The 
case of normal incidence has been analyzed in detail 
for a boundary-Born Gaussian trial field. The first sur­
prising result was that the adjoint problem is not ob­
tained merely by interchanging k; +-+ -ks in the original 
Gaussian problem, but rather is the solution of a plane­
wave scattering problem with the field incident from 
-ks and detected in the direction -k;. Since we know 
the boundary-Born trial field for a plane-wave scat­
tering problem, this unexpected result does not pres­
ent a difficulty. Numerical results for transverse mag­
netic polarization were obtained for a wide variety of 
system parameters, and the agreement between the ex­
act and variational cross sections was as good as that 
found earlier in the plane wave problem. 

ELECTROMAGNETIC 
INDUCTION AND VISION 

We now leave the subject of variational analysis of 
wave scattering to summarize some related low-fre­
quency electromagnetic and visual analyses. At low 
frequencies or high conductivities, such that displace­
ment currents are negligible, pre-Maxwellian methods 
are commonly adopted (e.g., current-current interac­
tion at a distance). This may seem simpler, but actu­
ally can be clumsy, ad hoc, and lead to incomplete 
solutions; Maxwell field theory instead facilitates pre­
cise and complete solution of induction problems. 35-41 

Consider an isotropic linear medium, wherein the 
electromagnetic Fourier components exp[i(ker - wI)] 
satisfy the vector wave equation with dispersion rela­
tion k 2 = €P,W

2 + ip,aw, where €, p" a are permittivi­
ty, permeability, conductivity, all assumed scalars here 
(cf. Eqs. 9). For the optical-to-radar waves considered 
so far, and outside of good conductors, the wavenum­
ber, k, is nearly real and waves readily propagate. But 
in the induction regime (w ~ al €), 

k =::: ..J(ip,aw) == (1 + 1)10 , (32) 

where 0 is skin depth, so that 1m k =::: Re k. This means 
that "waves" are so strongly damped that they sim­
ply diffuse rather than propagate. Thus, instead of in­
coming plane-waves from infinity being scattered into 
far-field outgoing waves, here one has to deal with 
proximate interactions. 

For example, in the DISCOS magnetic suspension 
system, which consists of a metallic cylindrical shell 
encircling an AC filament, one can treat the levitation 
as repulsion between the AC current and the eddy cur­
rents it induces in the shell. However, a model deduced 
from current flow at equilibrium gives a misleading 
physical picture that appears to entail a difficult fabri­
cation problem for the device. 39 The alternative vec­
tor field treatment considers the magnetic field of the 
current filament (Bo) scattering via the shell into an 

Johns Hopkins APL Technical Digest, Volume 7, Number 1 (1986) 

Bird, Farrell - Electromagnetic Scattering Theory 

internal field that satisfies the divergenceless vector 
Helmholtz equation, with k 2 the inductive value (Eq. 
32), 

v x V x B - k2B = 0, div B = 0 , (33a) 

and an external scattered field (vl/;) given by Laplace's 
equation, i.e., 

B = Bo + Vl/;, Ill/; = 0, (33b) 

subject only to the boundary condition 

B continuous at interfaces. (33c) 

Equations 33 completely define the field, which then 
gives the levitational force-torque system by standard 
formulas, as well as the correct eddy current distribu­
tion via j = curl BI p,. 

The solution of Eqs. 33 was calculated for a great 
variety of shell constructions and shell-filament orien­
tations for infinitely long, stationary configura­
tions. 39 Subsequently, both finite-length and kinet­
ic-dynamic effects were analyzed. The former 40 yield­
ed good agreement with stationary laboratory mea­
surements. The latter41 determined the kinetic magne­
tic torque affecting the spin-orbital dynamics of the 
suspension over a wide range of parameters and con­
ditions. Along with aiding in malfunction diagnosis 
and design optimization, 50 it is interesting that al­
ready infinite-length theory dissolved the apparent 
need for a difficult fabrication of end-caps for finite­
length nonhomogeneous shells. 39 This may seem par­
adoxical but only shows once more the value of exact 
analysis of idealized models in order to understand 
practical systems. 

For a different example, consider the hydromagnetic 
field, b, induced by interaction of a given magnetic 
field, Bo, with a flow field, u, in a weakly conduct­
ing fluid. An important instance is oceanic hydromag­
netism, where the geomagnetic field interacts with the 
great variety of seawater motions to induce manifold 
oceano-magnetic effects. 35 The induced b is too weak 
to act back on u to produce true hydromagnetic radi­
ations (e.g., Alfven waves) and, as Eq. 32 showed, 
electromagnetic waves do not propagate. However, an 
interesting phenomenon that we have called "nseu­
doradiation" does arise. When the inducing flo~ u is 
a mechanical radiation (e.g., surface or internal gravity 
waves, or sound), it can carry along with it and there­
by propagate the hydro magnetic field. The acoustic 
case entailing "sonomagnetic" pseudowaves and their 
scattering by the air-sea interface (see Fig. 9, top) has 
lreen analyzed in detail. 36,38 

Sonomagnetic pseudoradiation is described by the 
inhomogeneous divergenceless vector Helmholtz equa­
tion, again with k 2 of Eq. 32, 

V x V x b - k 2b = -p,a curl (Bo x V cf», 

div b = 0 . (34a) 
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Figure 9-Sonomagnetic pseudowave scattering by the 
ocean surface (upper sketch) for an undersea acoustic source 
(d ~ ocean depth) in geomagnetic field of horizontal and ver­
tical components, B. and B.l , respectively. The graph shows 
the source power, P, versus range, R, domain (shaded) in 
which the sonomagnetic amplitude Ib.l I radiated at low al­
titudes from a 1 hertz vertical acoustic dipole (at any d, see 
Ref. 36) in a polar ocean exceeds a magnetometer sensitivi­
ty of 10-4),. 

Herein the acoustic field is represented by the poten­
tial flow, U == V C/>, where c/> satisfies the scalar Helm­
holtz equation with acoustic wavenumber ka' 

in which S is the sound-source distribution and Cs is 
sound speed_ The sonomagnetic field equations (Eqs. 
34), subject to the conditions b continuous and c/> = 
o at the air-sea boundary, were solved 36 in quadra­
tures that are analogous to the Sommerfeld integrals 
of antenna theory but are more complicated in that 
two wavenumbers enter: the electromagnetic k (Eq. 32) 
and acoustic ka (Eq. 34b). Analysis showed that the 
sonomagnetic field, b, not only propagates with the 
sound but also is transmitted into the (nearly) sound­
free air. Therein it is radiated to considerable distances 
for high-power infrasonic sources, S, as seen in Fig. 
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9. The time-dependent case (k2 in Eq. 34a reverting 
to -p.aalat) was subsequently analyzed for strong pulse 
sources in an infinite medium, revealing a sonomag­
netic shock accompanied by precursor and relaxation 
waves. 38 Of particular interest are the vector charac­
teristics of the sonomagnetic signal, as opposed to the 
scalar sound pulse, since they could aid in locating an 
unknown source. 

In closing, it seems felicitous to remark our appli­
cation of vector-field-analytic methods to a quite dif­
ferent facet of electromagnetic theory: the mathema­
tical description of visual sensation. This has exercised 
physicists from the founder of electromagnetic theory, 
Maxwell, through the early vector mathematization (of 
both space and color) by Helmholtz and Grassman, 
to the Riemannian geometrization (following Ein­
stein's general relativity) of color theory by Schrl>din­
ger. Thus, there is consensus that vision requires a vec­
tor theory, despite a period of confusion over just what 
are the vector components-retinal photon absorp­
tions, or cortical brightness and color sensations. 32 
Only recently, however, has the mathematical descrip­
tion evolved to incorporate spatiotemporal variations, 
thus by definition forming a vector field theory, which 
we have accordingly analyzed as we did the wave­
scattering theory above via a Green's function 
description. 33 

Maxwell devoted a great deal-by some measures, 
a third-of his efforts to the analysis of vision. His 
mature insights that "All vision is color vision ... ," 
and" ... essentially a mental science," 51 seemed lost 
in subsequent controversies that raged over Helmholtz­
ean "three-color" and Heringean "four- (or more) col­
or" theories. However, controversy dissolved in mod­
ern times upon acceptance of the zone concept, viz., 
that Helmholtz red-green-blue (RGB) color compo­
nents represent the retinal photoabsorption zone, while 
Hering's opponent colors (red versus green, blue ver­
sus yellow) represent the mental sensation zone. Again 
to quote Maxwell: " ... there is one word on which 
we must fix attention. That word is Sensation." 51 

The presently accepted model for visual sensation is 
shown in Fig. 10. 

Recognizing the vector-field character of space-time 
varying color-brightness vision, V(z ') as delineated in 
the Fig. 10 caption, we formulated a general theory 
in which V(z ') is a nonlinear vector functional repre­
senting all the many physiological operations of the 
visual system that transmute the quantum absorptions, 
Q(z), by cone or rod cells at retinal coordinates z == 
t,x,Y into the visual sensations. 32 For the large class 
of vision experiments in which linearization is valid, 
we expressed the theory by means of an analog to the 
dyadic Green's function for wave scattering encoun­
tered above (cf. Eq. 10), i.e.,33 

V(z') = Vo(z') + 1 dz F(z' ,z) • <1Q(z) (35) 

for small-, fast-, or fine-scale fluctuations .£1Q == 
Q - Qo about an ambient state Vo ,Qo. Notke that we 
have denoted the Green's dyadic here by F, since in 
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Figure 10-Vector field representation of visual sensation 
M in three Cartesian dimensions of achromatic (A), tritanopic 
(T), and deuteranopic (0) opponent-color sensation. Bright­
ness is measured by lVI, and hue and saturation by ratios 
Vr/VD and VA/ lVI, respectively. All are functions of senso­
ry space-time coordinates (z ;: t' ,x' ,V ' ). (For the color-defi­
cient, including one of the authors: the T axis is red-green, 
the 0 is blue-yellow.) 

vision the letter G is preempted for the color green and 
unavailable for George Green. The dyadic properties 
in Eq. 35 refer not to ordinary three-space, however, 
but to the retinal (RGB) and cortical (ATD, cf. Fig. 
10) spaces. This theory has elucidated brightness-con­
trast studies and 'standard color models, has provided 
color vision generalizations of classic space-time bright­
ness laws, has analyzed wavelength-pulse and color­
flicker experiments, and has yielded understanding of 
heterochromatic luminance additivity in flicker and 
border observations. 32,33 

CONCLUSION 
The theoretical researches we have surveyed concern 

topics that at first can seem too disparate to belong 
under one title. Yet, the unity of physics relates the 
different topics closely. One way to appreciate this is 
to compare the basic field equations (Eqs. 8, 33, and 
34). They are all variations on the vector Helmholtz 
equation that governs general vector field behavior (see 
Ref. 1, Eq. 13.1.1 and text following). The differences 
reside in boundary conditions (e.g., Eqs. 1 versus 33b), 
or in subsidiary conditions (e.g., Eq. 34b), or in the 
media (e.g., Eqs. 9 versus 32). Vision theory lacks such 
dynamical field equations (although visual kinemat­
ics hints of analogs via the existence of perceptual 
Lorentz transformations 52), but its vector field nature 
(Fig. 10) and Green's function representation (Eq. 35) 
are well established. Of course the differences in topics 
lead to dissimilar treatments and consequences. But 
as emphasized through this review, the mathematical 
similarities of the different vector field analyses allow 
them to share common language and lend mutual 
support. 
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The core of the research program remains the de­
velopment of variational techniques for wave scatter­
ing calculations, especially for stochastic scatterers. A 
number of outstanding problems remain to be solved 
to facilitate application of the technique. For exam­
ple, formulation of a surface-integral variational prin­
ciple for penetrable scatterers would ease calculations 
for lossy dielectric scatterers. Some progress toward 
this end has been made for high frequencies, and the 
principle will be tested on a stochastic grating model. 
Similarly, extension of our variational trial-function 
design process to the case of imperfect conductors is 
required. Also, calculations for infinite cylinders need 
to be extended to finite-length, undulatory, and rough­
ened cylindrical or spheroidal scatterers. Complex ma­
croscopic bodies may then be modeled by combining 
contributions from a set of such elementary constitu­
ent scatterers. 
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