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A LINEAR RESPONSE THEORY 
FOR WAVES IN A GEOPHYSICAL FLUID 

Linear waves in the ocean and atmosphere occur in a wide variety of types, with periods ranging 
from microseconds to months. A unified theoretical treatment of such waves is developed, and a general 
solution for the fields is presented. Some of the propagation characteristics are summarized in terms 
of a "parameter fluid" that shows allowed and forbidden regions of wave motion as the frequency, 
buoyancy, and rotation rate are varied. 

INTRODUCTION 
Waves in a planetary or geophysical fluid occur in 

a rich and sometimes confusing variety of types. The 
classification of a given wave according to generic type 
(i.e., acoustic, gravity, planetary, etc.) is usually made 
on the basis of frequency, although in some cases the 
assignment to one or another of these families is not 
a clear-cut procedure. 

A unified treatment of linearized waves in a rotat­
ing, stratified fluid has several advantages. First, from 
the purely theoretical view, an analysis that yields es­
sentially all waves in a single equation is a more com­
prehensive and didactic theory, although it is certainly 
more complicated. Second, if coupling between vari­
ous wave modes is to be studied (as, for instance, might 
be the case between infrasonic and high-frequency in­
ternal waves or between low-frequency gravity and 
planetary waves), a scale analysis must be generalized 
accordingly. Third, all approximation schemes suffer 
from difficulties in assaying their ranges of applicabil­
ity, a malaise that is avoided by the more general 
treatment . 

In several ways, the theoretical formulation is simi­
lar to ones used in the electrodynamics of continuous 
media; fluid dynamics and electrodynamics have well­
known parallels, of course. The insight provided by 
the equivalences is useful in understanding the nature 
of fluid motion. 

As a model, we take a stratified, compressible, sin­
gle component fluid, flowing with uniform horizontal 
velocity on a rotating beta plane in a gravitational field 
that is directed normal to the plane. Eddy viscosity and 
heat conductivity are treated by introducing anisotropic 
diffusion and heat-flow coefficients. The thermodyna­
mic properties of the fluid are introduced through equa­
tions for thermal and internal energy, entropy, and heat 
flow. Stratification is described by the Brunt-V rusaIa 
frequency, compressibility by the acoustic speed, and 
rotational force by a Coriolis frequency linearly vary­
ing in the north-south direction. 

Boundary conditions are purposefully kept general 
in order to separate those features of the motion that 
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SYNOPSIS 

"Geophysical fluid" is the name applied to the ocean­
ic and atmospheric fluid envelopes that bathe the earth. 
One liquid and one gaseous, their dynamics may be dis­
tinguished from that of ordinary fluids by several charac­
teristics, chiefly strong vertical stratification, rapid rota­
tion due to the earth's spin, and small thickness relative 
to their horizontal size. From the theoretical standpoint, 
both can be described by the same set of mechanical and 
thermodynamical equations, with essentially only their 
equations of state and their upper boundary conditions 
being different. 

There are several distinct types of waves in geophysi­
cal fluids, differentiated by the restoring forces acting on 
a displaced parcel of fluid. Compressibility gives rise to 
acoustic body waves, surface tension to capillary waves, 
gravity to surface gravity waves, gravity plus buoyancy 
to internal waves, Coriolis force to inertial oscillations, 
and variation in Coriolis force to Rossby or vorticity 
waves. In addition, the presence of boundaries introduces 
other edge modes, such as Kelvin and Lamb waves. 

While descriptions of all of these oscillations are con­
tained in the equations cited, they are usually separated 
out and treated one by one. For the case of fluid equa­
tions having constant coefficients, the present treatment 
attempts to derive a single solution in terms of Fourier­
Laplace inversion integrals that describe all classes of lin­
ear waves, as well as a single dispersion equation relat­
ing frequency to wave vector. The necessarily complicated 
algebra is somewhat simplified by the introduction of 
several characteristic frequencies, spatial scales, and aux­
iliary quantities such as the vector index of refraction that 
aid in the description. Another aid is termed the "param­
eter fluid," which is a graphical technique for distinguish­
ing between the propagation features of the various 
modes. By these means, many of the known types of lin­
ear waves are shown to be contained in the fomulation 
presented. Future work will attempt to generalize the for­
mulation and to present a solution to the dispersion re­
lation that describes all of the wave modes supported by 
the fluid, as well as their possible interactions. 
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are caused by the intrinsic properties of the fluid from 
those caused by boundary effects. The present formu­
lation is given in terms of rectangular boundaries, and 
the solution for the velocity field describes waves rang­
ing through planetary, inertial, internal, gravity, and 
acoustic frequencies, including, of course, coupling be­
tween these different types of oscillations. 

Several important results derive from the calcula­
tions. First, a solution of considerable generality is ob­
tained for the first-order velocity field, formulated in 
terms of integrals involving mixed initial and bound­
ary conditions and a linear response function for the 
fluid. Second, a generalized dispersion equation is de­
rived governing the relationship between frequency and 
wave number components for oscillations ranging from 
acoustic to Rossby wave frequencies. Several familiar 
cases of dispersion equations are recovered from the 
general case. Third, the concepts of a complex vector 
index of refraction and a vector impedance, which are 
applicable throughout the total frequency range of the 
waves, are introduced; these entities suggest methods 
of using, in geophysical wave dynamics, certain mathe­
matical techniques such as extremum principles or the­
ories of wave propagation in random media. Fourth, 
the idea of a fluid parameter space is advanced; it shows 
the behavior of the index of refraction as a function 
of parameters involving the characteristic frequencies 
and scales of the system. A graphical example of a pa­
rameter space is given for an exponential atmosphere. 

THE BASIC APPROACH 
The basic approach is to decompose an arbitrary ini­

tial disturbance in the fluid into its temporal and spa­
tial frequency components; next, propagate those com­
ponents through the medium; and then reassemble 
them at the point of interest in a way that shows the 
modifications to the waves introduced by the fluid and 
the boundaries. From the Green's function, a gener­
alized dispersion relation is derived whose roots then 
give the dispersion equations for the various branches 
or modes-acoustic, gravity, etc. It is shown that (a) 
such dispersion equations generally hold only in the 
long-time limit when the arbitrary initial excitation has 
died away and only the free waves remain; and (b) for 
the general initial-value problem, the initial conditions 
contribute strongly in the short-time limit. 

The vantage point of a linear response formulation 
allows one to view the situation as an input-output 
problem, with the excitation that occurs at one time 
and place in the fluid propagating through the medi­
um to other places at later times in a way described 
by the tensor Green's function, O-l(k,W). * This is 
shown schematically in Fig. 1. 

A more complete development of the theory present­
ed here may be found in Ref. 1, along with an exten­
sion that includes an explicit treatment of Rossby waves. 
Because of space limitations, that discussion has not 
been included here. 

• A glossary of symbols appears at the end of this article. 
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Figure 1-The initial values of velocity, u1 (0), and pressure, 
P1 (0), are specified in some source region of the fluid; these 
quantities then propagate away and are modified by the prop­
erties of the fluid as given by the linear transfer function, 
0-1(k,w), to appear at position x at time t as field variables 
u1 (x,t) and P1 (x,t). 
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Figure 2-The notation that is used in the tangent-plane coor­
dinate system. 

SYSTEMS OF EQUATIONS 

Basic Equations 

The basic equations of dynamics and thermodynam­
ics used below are appropriate to a single component 
fluid; they constitute nine equations in the nine depen­
dent variables: velocity (u = ux + vy + WZ), specific 
volume (a = II p), temperature (1), pressure (P), en­
tropy (s), heat (q), and internal energy (e) per unit 
mass. Equations 1 through 9 define the notation used. 
In each equation, dl dt = al at + U· V represents the 
convective derivative. Figure 2 shows the tangent-plane 
coordinate system used in the development of the 
theory. 
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Momentum: 

au 
-
at 

+ u . V u - Ov sin "- + Ow cos "-

ap 
+ v·A·vu, -a 

ax 

av 
-
at 

+ u·vv + Ou sin "-

ap 
-a +v·A·Vv, ay 

aw 
+ u· V w - Ou cos "­

at 

Continuity: 

ap 
-a - + V·A·Vw-g. az 

da 
- aV'u = 0. 

dt 

First Law of Thermodynamics: 

de dq da 
dt = dt - P dt 

Second Law of Thermodynamics: 

Heat flow: 

ds 

dt 
= 

dq 

T dt 

d dq 
p dt (Ccx T) = P dt 

Equation of state: 

p = p(p,T) . 

Internal energy: 

e = e(a,s) . 

v·K,VT. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

The remaining quantities in Eqs. 1 through 9 are the 
tensor eddy viscosity, A, which has the matrix repre­
sentation 

(10) 
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and the eddy heat conductivity, K, which has a simi­
lar form; both reflect the anisotropy between the hor­
izontal (Ah' Kh) and vertical (A y, Ky) components of 
the momentum and heat diffusion tensors in the ocean 
and atmosphere. These terms represent a phenomeno­
logical description of complicated turbulent diffusion 
processes and are not rigorous. The numerical values 
of A and K depend on the length scales in which one 
is interested; similarly, the scales of motion selected 
determine whether the diffusivities are themselves 
functions of position. 

The introduction of several thermodynamic relation­
ships and thermo mechanical coefficients allows one to 
avoid the use of an explicit equation of state and to 
eliminate further reference to the internal energy. Con­
tinuing so as to define the notation, these are written as 

Pressure: 

Temperature: 

Sound speed: 

Coefficient of thermal expansion: 

a = (aa/aT)p/a, 

Specific heat at constant volume: 

Specific heat at constant pressure: 

Cp = T(as/aT)p , 

Ratio of specific heats: 

'Y = Cp/Ccx . 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Following Eckart,2 the thermodynamic identity is 
used: 

(18) 

Zero-Order Equations 
The zero-order variables are assumed constant in 

time, with all of the coefficients of the zero-order equa­
tions except n being constant in space. The first-order 
motions represent departures from this state. 

The dependent variables are expanded in a pertur­
bation series and, by the usual means, one obtains the 
zero-order equations, written for constant, horizon­
tal mean flow, Uo = (uo,vo,O) : 

n x Uo = -ao V Po - gz , (19) 

Uo' Vao = 0, (20) 
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uo· VSo tio 0, (21) = 
To 

ao V ·K· VTo tio = o. (22) 

Equation 19 contains the equation for geostrophic flow 
as its horizontal component and the hydrostatic equa­
tion as its vertical component. Equation 20 requires 
the density gradient to be normal to the horizontal 
mean flow, i.e., vertical. 

If Po is assumed to vary in the vertical only, one 
obtains for the pressure gradient 

V Po = -Po(O x Uo + gz) . (23) 

Analogous expressions for entropy and temperature 
gradients may be obtained but are not given here for 
brevity. 

We now introduce two buoyancy frequencies for later 
convenience. The first is termed the Brunt-V aisaIa fre­
quency, N z : 

N 2 = _g( 1 dpo + ~) , 
z Po dz c2 

(24) 

whose role in establishing buoyancy oscillations is well 
understood. A second buoyancy frequency, N a , is de­
fined via 

(25) 

In the meteorological literature, this quantity is often 
called the atmospheric cutoff frequency, since it is the 
lowest frequency at which acoustic waves can propa­
gate in an exponential atmosphere. 

Assume now that the Coriolis vector, 0, has only 
a vertical component and can be expanded in a series 
in the north-south direction: 

2 OE sin A = I ~ 10 + {3y, (26) 

where I is the Coriolis parameter, (3 is the meridional 
derivative, OE is the angular speed of the planet, and 
A is the latitude. Next, define a reduced gravitational 
acceleration, g~, whose horizontal components are 
proportional to the slopes of isopycnal surfaces in the 
fluid and whose vertical component is -g. Let ll(x,y) 
define such a surface. Then, from the geostrophic con­
dition, one obtains 

~x - = 
all 

ax 
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luo all 
(28) ~y = -- = -

g ay 

The vector ~ is then defined as 

~ - (0 X Uo + gZ) 
g 

- ~x X + ~y j - Z . (29) 

With these abbreviations, the zero-order pressure gra­
dient may be written as 

VPo = Pog~ . (30) 

First-Order Equations 
In the eight first-order equations, the total time 

derivative of a linearized variable,1/;= 1/;0 + 1/;1' has 
the form 

where products of first-order terms have been neglect­
ed. The momentum equation, 

contains advective, Coriolis, eddy viscosity, pressure, 
and buoyancy terms, with gravity implicitly appear­
ing in the term VPo. Velocity-shear terms (V ·uo) do 
not appear because of the assumption of a uniform 
velocity field. Conservation of mass is assured to first 
order by writing the continuity equation for the specific 
volume: 

The Second Law of Thermodynamics becomes 

aSl fat + Uo· VSl + Ul • VSo = til ITo, (34) 

the heat flow equation is 

(35) 

and the first-order thermodynamic equations replac­
ing the first law (equation of state and internal ener­
gy) are 

-P5 c2al + 
Po ('Y - 1) 

Pl Sl , (36) 
a 

Tl 
Po ('Y - 1) 

+ 
To 

al Sl • 
a Ca 

(37) 
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(See Apel l and Eckart2 for the derivation of Eqs. 36 
and 37.) 

By applying Eq. 31 to the time-differentiated ver­
sions of Eqs. 36 and 37 and then using Eq. 34 to elim­
inate dS I I dt, one obtains for the pressure and tem­
perature, respectively, 

(38) 

and 

(39) 

The subsequent development of the theory will take 
place using Eqs. 32 to 35, 38, and 39 for the first-order 
quantities and Eq. 30 for the zero-order gradient. 

Eckart Field Equations 
Eckart recognized the value of transforming the 

first-order quantities by using the acoustic impedance, 
Zo, to scale out the (approximately) exponential den­
sity variation with height. That impedance is 

Zo (z) = Po (z)c . (40) 

We will follow this procedure for the first-order fields, 
using slight variations from the Eckart definitions; a 
capital letter will denote the transformed version of 
a lower case quantity, wherever possible. 

Velocity field: 

U (x,t) = (U, V, W) = 01 (x,t) "";Poc . (41) 

Density and specific volume fields: 

R (x, t) = PI (x, t) / "";Po c , (42a) 

A(x,t) = al (x,t) "";Poc . (42b) 

Pressure field: 

P(x,t) = PI (x,t) / "";Poc . (43) 

Entropy field: 

S(x,t) = SI (x,t) g('Y - 1) .JP;C / ac2 
• (44) 

Temperature field: 

T' (x, t) = TI (x, t) a.JP;C / 'Y . (45) 

Heating rate field: 

Q (x, t) = q I (x, t) g ('Y - 1) .JP;C / ac2 To. (46) 

The relations obeyed by the Eckart fields are ob­
tained by substituting their defining relations into the 
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first-order equations (in the derivatives operating on 
A and K, terms of order r g have been neglected): 

aU/at + 00' vU + (v - roz) ·A· (V - roz)U 

+ n x U = -c( V + r)p - S~ , (47) 

aAlat + 00' VA = ao(V + roz)'u, (48) 

aSI at + 00' V S = Q - N 2
• U , (49) 

aPlat + 00' vP = cQIg - c(v - r)·u , (50) 

aT'lat + 0o·VT' = QIg 

+ [,,(-I(V + roz) - (V - r)]· U , (51) 

(V - roz)' K· (V - roz)T' = PoCaQlg. (52) 

In the course of taking spatial derivatives, the ver­
tical variation in Po (z) generates three terms that are 
essentially reciprocal scale heights, which are intro­
duced for convenience of notation. The first, r 0, is 

(53) 

and will be termed the transition attenuation coeffi­
cient. The second, r g, is the reciprocal scale height 
for compressibility: 

rg == _glc2 
• 

The third, r z, is defined by 

(54) 

1 dpo g 
r z == ro - rg = - - + (55) 

2po dz c2 

and is Eckart's vertical attenuation or adiabatic coeffi­
cient. A useful identity that relates the Brunt -V aisala 
and atmospheric cutoff frequencies to r z and r 0 is 

From Eqs. 53 and 55 evaluated for the case of con­
stant coefficients, the density is 

When the stratification Po 12po dominates over r g, as 
is usually the case in slightly compressible fluids, r -J 
is essentially the characteristic scale of the gradient. 
Its order of magnitude is 150 kilometers in the upper 
ocean, whereas r-: is approximately 225 kilometers. 

The Coriolis force also introduces reciprocal lengths 
for horizontal motions, which we define as the baro­
clinic attenuation coefficients, r x and r y: 
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These quantities are analogous to reciprocal Ross­
by radii of deformation, jlc, for a fluid in which the 
limiting velocity is c, scaled by the Mach number, 
uo/c. The order of magnitude for r-! in the ocean, 
as defined, is 10 10 meters. 

In the present limit of an infinitely deep fluid, it is 
the acoustic speed, c, that establishes the limiting ve­
locity for waves, and in this regard, c plays the role of 
the velocity of light in electromagnetic theory. Later on, 
it will be shown that in a single-layer system of depth 
H, the waveguide effect presented by a rigid bottom 
and deformable top surface constrains the allowed 
values of m to be very small wave numbers. In this 
shallow-water, slow-wave system, the square of the 
acoustic speed, c2

, is harmonically summed with gH 
to give an equivalent speed, ce , via 

1 1 1 - + - =-
c2 gH - C; , (59) 

which, when c2 ~ gH, allows the neglect of acoustic 
effects on the wave speed in all but the deepest ocean, 
excepting, of course, for sound waves. Thus, neglect 
of r x and r y is not justified in a shallow fluid, and 
indeed, those quantities become Rossby radii of defor­
mation in a bounded fluid that is in geostrophic ad­
justment. 

These reciprocal lengths are summarized by the vec­
tor r, termed simply the attenuation vector: 

j (" ") 2" -vox + uoY 
c 

(
1 dpo g) " 

+ - -+c2 z. 
2po dz 

(60) 

The role of rand r oZ in the field equations is to in­
troduce attenuation or amplification terms in the spa­
tial derivatives, which arise as a result of Coriolis forces 
and stratification. The neglect of r 0 and g/ c2 is equi­
valent to the Boussinesq approximation. 

Finally, the r's combine to form a vector buoyan­
cy parameter, N 2 , defined as 

N 2 == N;x + N;y + N;z .. en (vox - uoy) - gC', ~: + :,)z. 
(61) 

THE FORMAL SOLUTION 
In order to arrive at the complete solution for the 

Eckart fields, replete with initial and boundary values, 
we will decompose those quantities into their frequency 
and wave number components by performing a La­
place transform, .£, followed by a finite Fourier trans-
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form, 5" = 5"x5"y5"z, in all three space variables. The 
same symbol will be used for both the space-time field 
and its wave number-frequency transform, with the 
functional arguments indicating just which of the four 
independent variables has been transformed. Thus we 
take 

U(k,w) 5".£ [U(x,t)] 

[X2 [00 
Jx dx Jo dt exp[-i(k·x - wt)]U(x,t). 

1 (62) 

The space-time behavior of the field variables may 
be taken as 

exp[i(k·x - wt)] , (63) 

where the total phase is 

k·x - wt = kx + /y + mz - (wr + iWi)t, (64) 

thereby defining the (x,y,z) components of wave vec­
tor, k, as 

k = (k,/,m) 

and the complex frequency, w, as 

w = Wr + iWi . (65) 

The Laplace transform variable has been taken as iw 
= iWr - Wi rather than -s, the usual symbol, in order 
to retain the conventional notation for plane waves 
used above. The Laplace inversion integral is thereby 
evaluated along a modified path in a way to be dis­
cussed below. The spatial integral is over all three coor-
dinates. . 

Integral transforms are most useful for equations 
having constant coefficients; upon transformation, a 
linear coefficient in a spatial variable generates a de­
rivative in the conjugate wave number variable. In the 
present case, 0, viaj, varies linearly in y; in addition, 
the parameters N 2

, ~, and r containj. Thus the ef­
fect of the y-Fourier transform is to generate second­
order differential equations in y-wave number space 
that are scarcely simpler than the originals. The ex­
ception appears to be when Do = 0, in which case 
only the 0 x U term persists; it produces differential 
equations solvable in terms of known functions . 

For this reason, the development of the theory here 
reaches a branch point. If the mean flow is to be in­
cluded, the beta effect must be taken as zero, and vice 
versa. The case of the variable Coriolis parameter is 
complicated and will not be treated here (see Ref. 1 
for a more complete discussion). Instead, only the con­
stant-j case will be developed. 

In applying the fourfold transformations 5" and .£, 
their effects on the convective derivative are to gener­
ate the Doppler-shifted frequency, 
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(66) 

plus mixed initial and boundary values of the depen­
dent variables. 

The presence of ao (z) and Po (z) in Eqs. 48 and 52 
has been dealt with by using the exponential density, 
Eq. 57, with the constant r 0 as the scale height. 
Upon Fourier transformation in z, this factor results 
in making the z-component of wave vector complex. 

We now define a number of parameters that will al­
low the solution to be written somewhat more com­
pactly. 

Indices of Refraction. We define the complex vec­
tor indices of refraction, n and no, via 

n == (k - IT) CIWd . (67a) 

The adjoint index (considered to be a row matrix) is 

n + == (k + ir)clwd . (67b) 

Also, an analogous quantity appearing in the eddy vis­
cosity terms is no, where 

no == (k - IToz)C/Wd . (68) 

The justification for designating these as indices of 
refraction is as follows. The normal scalar index of 
refraction is the ratio of some reference speed (in this 
case, the acoustic speed, c) to the phase speed of the 
wave. The acoustic speed provides an absolute scale 
for velocity in the theory, much as does the velocity 
of light in electromagnetic theory. The fluid wave 
phase speed is 

w(k) 

Ikl 
(69) 

and it is thus proper to assign the direction of the wave 
vector to the index of refraction. As a further gener­
alization, a wave propagating in a current moving at 
Uo is altered in speed and direction by the Doppler 
shift of the current, which thus acts to refract the wave. 
Hence a reasonable definition of a vector index of re­
fraction in a moving medium might be 

kc 
n(r = 0) = . (70) 

W - uo·k 

However, the terms involving rand r oZ arise in the 
theory in essentially the same way as do those involv­
ing k, except for their mUltiplication by i. These terms, 
appearing as real phase factors in the exponent, there­
fore describe attenuation or amplification due to the 
horizontal and vertical variability in the zero-order 
properties of the medium. Thus the definitions (Eqs. 
67 and 68) may be considered as generalized vector in­
dices of refraction describing oscillatory, evanescent, 
and amplifying waves. 

The vector index of refraction is proportional to a 
quantity called the slowness of the wave, s = kl w, a 

48 

vector whose components are the reciprocals of the 
phase speeds in the (x,y,z) directions. Its projections 
on the coordinate axes are 

S'Xi = k;lw == l/c4>i' i = x,y,z, (71) 

whereas a definition of phase velocity (such as ctjJ = 
wk/lk21) has projections that are not the components 
C4>i above. The slowness (and the index of refraction) 
are therefore to be preferred as vector descriptors of 
wave phase velocity. 

Generalized Impedance. An additional aid in inter­
preting n is as follows. Neglecting the initial and bound­
ary values, the relationship between the first-order 
pressure and velocity fields becomes, upon substitution 
of the defining equations, 

PI = pocn+ 'UI 

(72) 

where the generalized vector impedance, Z, is 

(73) 

and the dot product is understood as a matrix contrac­
tion. The quantity PoC is the ordinary acoustic im­
pedance; it is natural to define Z as a generalized 
impedance for the broader classes of waves discussed 
here. Thus the refractive index provides a scaling fac­
tor not only for the phase velocity of a variety of flu­
id waves but for their pressure-velocity relationship as 
well. 

The power flux transmitted by the wave is Y2 PI ui 
= Y2 z· U lui, which, in terms of the transformed Ec­
kart fields, becomes Y2 n + • UU*. Here again, the in­
dex of refraction and impedance display their useful­
ness. 

Wave Parameters. An important geophysical fluid 
wave parameter is the baroclinic/buoyancy parame­
ter, B 2 , defined as 

Its components are the squared baroclinic oscillation 
frequencies in the horizontal (Eqs. 61) and the squared 
Brunt-V aisala frequency in the vertical (Eq. 24) scaled 
by w~; B is a convenient mnemonic symbol for these 
frequencies. Another parameter is the (constant) Cori­
olis force parameter, Fo, where 

(75) 

and 

(76) 

The eddy and heat diffusion parameters are complex 
scalars given by 

(77) 
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and 

(78) 

A considerable simplification of the theory occurs 
if it is possible to treat the heating rate, til' as a 
known function, rather than solving for it self-con­
sistently. This has the effect of decoupling the ther­
modynamic and the hydrodynamic equations and 
places ti on the right-hand side of the velocity field 
equation below. 

By algebraic maIiipulation with those definitions and 
the elimination of all variables except U, one arrives 
at an important result for the transformed Eckart ve­
locity field: 

D(k,w) U(k,w) = [I + iFo x + ~B2. 

- (nn +. -iT)]U(k,w) = S(k,w) . (79) 

Some discussion of this equation is in order. The vec­
tor source function S(k,w) represents initial values 
specified over all space and boundary values specified 
over all time, plus the estimate of Q needed to effect 
the decoupling of the thermodynamic variables just 
mentioned. Its form can be found in Ref. 1. 

Equation 79 defines the tensor dispersion function, 
D, whose matrix elements are 

where oij is the Kronecker index and €ijk and €3jk are 
permutation indices. 

The velocity response of the fluid to the initial and 
boundary forcing is then summarized by the operator 
equation 

D(k,w) U(k,w) = S(k,w) . (81) 

The solution for the Eckart field may be obtained for­
mally by defining an inverse operator D-1(k,w) and 
left-multiplying Eq. 81 by it. This operator is simply 
the matrix inverse of Eq. 80. 

U(k,w) = D-1(k,w) S(k,w) . (82) 

The solution for the velocity, Ul (x,t), is obtained im­
mediately from Eq. 82 by Fourier-Laplace inversions 
and by using Eq. 41 to return to the physical quanti­
ties of interest: 

Ul (x,t) = (2'7r-) -4(poctY2 

x ~ 11m, [ dk [ dl [+:~, dw 

x exp[i[k·x-w(k)t]] D-1(k,w) S(k,w) , (83) 

where the inverse matrix is the sought-for linear re­
sponse function, 
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D-1 W _ cof(D) 
(k, ) - det(D) , (84) 

and where cof(D) is the cofactor matrix of D and 
det(D) is its determinant. This, then, is the complete 
solution to the problem of linear waves in the body 
and on the surfaces of the fluid, given in terms of the 
initial, boundary, and heat-flow values, and of a lin­
ear response function characterizing the bulk of flu­
id, D-1, that is independent of initial and boundary 
values. Equation 83 is a central result of this paper. 
From its form, the solution may be recognized as es­
sentially the Fourier-Laplace transform of the Green's 
function for the problem. 

A discussion of the inversion integrals in Eq. 83 is 
in order. The k-integration is carried out along the real 
(k,i,m) axes over the range of accessible wave numbers; 
if any of the m-values is continuous, as would be caused 
by boundary conditions that impose such spectra, the 
associated summation is either supplemented by or 
replaced with an integral. The w-integration is along a 
path in the complex w-plane, as shown by Contour 1 
in Fig. 3, at a distance Wi = 0 from, and parallel to, 
the real w-axis and above all of the singularities, both 
poles and branch lines, of D-1S exp(-iwt). For t < 0, 
the path is closed in the upper half-plane, where the 
integrand is analytic and the w-integral has the value 
zero, thereby reflecting the principle of causality: no 
response anywhere prior to t = O. For t > 0, it is closed 
in the lower half-plane, thus encompassing clockwise 
the singularities due to both the source of excitation and 
the fluid eigenfrequencies. If complex frequencies or 
wave numbers are indicated in an instability problem, 
certain precautions must be observed in performing the 
integrations. These have been discussed by Briggs in rea­
sonably general terms. 3 

Contour 1 

w ­
I 

---------L----~~o+-------~----~--~wr 

Contour 2 X 

X 

X -Designates poles 

Branch 
X cut 

Figure 3-lntegration contours in the complex frequency 
plane, to be used in the Laplace inversion integral appear­
ing in Eq. 83. The poles and branch cuts are caused by both 
the dispersion function and the source function. In the long­
time limit, the contour may be lowered far down in the nega­
tive Wi plane. 
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The response of the fluid is governed by two class­
es of singularities: those resulting from the nature of 
the medium independent of initial and boundary con­
ditions, and those imposed by boundaries, driving 
forces, and methods of excitation. To examine the in­
trinsic properties of the medium, it is highly useful to 
consider a fluid that has been excited by a delta func­
tion source long after the impulse has been applied. 
As Landau 4 has shown, in the asymptotic time lim­
it, it is simpler to evaluate the frequency integral along 
a different line, denoted by Contour 2 in Fig. 3. The 
integrals from Contours 1 and 2 will be equivalent, 
provided that no singularities of the integrands are 
crossed during the deformation of the path. As Con­
tour 1 is lowered into the negative Wi half-plane, the 
contribution from its horizontal legs becomes vanish­
ingly small as t - 00, leaving only the branch cuts and 
poles as contributors to the integral in the long-time 
limit. Since almost any physically realizable source, S, 
is likely to be free of branch cuts, it will suffice to con­
sider only poles of the integrand. In this asymptotic 
time limit, most of the broad spectrum of transients 
generated by the impulse has been damped out by 
whatever loss mechanisms are represented by Wi (e.g., 
eddy viscosity), leaving only the free waves characteris­
tic of the fluid response, which oscillate at the eigen­
frequencies. Then, in Eq. 83, the only contribution to 
the frequency integral comes from the poles of 
O-l(k,w) or (exactly equivalent) from the zeros of the 
determinant of the 0 matrix, by Eq. 84. This condi­
tion, det(O) = 0, then establishes the wave propaga­
tion characteristics because it yields the generalized 
dispersion relation for the system. 

Returning to Eq. 83 in the asymptotic time limit: 
for isolated singularities, the residue theorem allows 
the partial inverse frequency transform to be written as 

M 

U(k,t)~ E exp(-iwjt) [(w - w)U(k,w)L · , 
. j 

j 

j 1,2, ... M, (85) 

where the sum is over those M residues of 0 -1 that lie 
above Contour 2. The singularities, w = w/k) , are 
roots of the dispersion relation, 

M 

det[D(k,w)] = 0 = II [w - w/k)] , 
j 

(86) 

where the fundamental theorem of algebra has been 
used to write det(D) as a product of its factors. Each 
value of Wj represents a different branch of the dis­
persion relation (acoustic, gravity, inertial, or Rossby 
waves), and each is an eigenfrequency of the fluid in 
the absence of boundaries, with a dispersion equation 
of the form 

w (87) 
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In the asymptotic time limit, t - 00, the least-damped 
oscillation (due to the uppermost pole in Fig. 3) per­
sists longest; this mayor may not be the lowest fre­
quency wave. 

Thus, for long times, the result of the Laplace in­
version is given by Eq. 85, which may now be consid­
ered as the Fourier amplitude for the velocity field of 
the free waves. In many problems, it is easier to deal 
with individual Fourier components (i.e., Eq. 85) than 
with their sum (i.e., the Fourier inversion of Eq. 85). 

EFFECTS OF BOUNDARIES 
ON THE DISPERSION RELATIONS 

Having obtained the generalized dispersion equation 
for an infinite medium (Eq. 86), the effects of a finite 
depth of fluid will now be investigated. These primarily 
restrict the vertical wave number, m, to quantized 
values. Thus, horizontal boundaries have a waveguide 
effect on propagation in layered media. This constraint 
is expressed by additional equations involving m, 
which then must be used in conjunction with the 
infinite-medium dispersion relations above in solving 
for Wj(k). The physical effect is to reduce propaga­
tion speeds of the wave modes in the fluid to values 
given by Eq. 59, in addition to quantizing the vertical 
wave number. 

A Single-Layer Fluid 
A single-layer fluid of constant depth, H, will be 

used to illustrate the effects of finite depth on wave 
propagation. Multilayer models having continuous 
density profiles composed of exponentially varying 
segments of the type given by Eq. 57 may be construct­
ed from such layers; the Brunt-V aisaIa. frequency in 
each layer is constant but is discontinuous at the 
boundaries. 

As is well known, the effect of depth is derived by 
imposing top and bottom boundary conditions. 

The Bottom Boundary Condition. For a rigid bot­
tom with no drag, the lower boundary condition is 

z . U 1 (x, t) = 0 at z = -H, all t. (88) 

This translates into a condition on the Fourier-Laplace 
transform of the Eckart field, 

W(k,w) exp(ik· x) , (89) 

which is satisfied for all values of z if the complex field 
is taken as 

/ W(k,w) / exp[i[m(z + H) - 7r/2] ] . (90) 

The Surface Boundary Condition. The upper boun­
dary condition at a free surface, taken as z z 0, is 
the dynamic condition for constant pressure, dpl dt = 
O. From Eq. 31, 

dp apl 
dt at + uo· VPI + UI· Vpo o 

at z = 0 , (91) 
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for which the partially transformed Eckart equiva­
lent is 

P(k,/,z = O,w) = (~)U(k'/'Z = O,w)'~ . (92) 
lWd C 

Equation 92, involving an additional relationship be­
tween U and P at the surface, must be used in con­
junction with the previous equations for those quan­
tities in order to determine the vertical component m, 
which may now assume only those values that allow 
the pressure to vanish at the surface. To do this, six 
equations in six unknowns (U, V, W, S, P, and nz ) 

must be solved simultaneously to obtain the disper­
sion equation for waves in the vertically bounded fluid. 

We shall treat the case of steady waves with no mean 
flow in the asymptotic time limit and, in addition, con­
tinue to neglect Q. The slightly complicated algebra 
yields a dispersion equation 

NJ + mg tan mH 
w2(m) = (93) 

1 + T tan mH 

where 

(94) 

is a transition frequency for surface waves. Equation 
93 must be solved for the vertical wave number, m, 
which takes on an infinity of real, quantized values 
for body-wave modes, and a continuum of either real 
or imaginary values for the surface wave mode, with 
the transition occurring at w2 = NJ. Thus, 

m = m>..(w,H,T), A = 0, ±1, ±2, ... , (95) 

where A is the vertical mode index. Equation 93 is rem­
iniscent of the dispersion equation for surface gravity 
waves, to which it reduces in the appropriate limit, but 
it is more general than that relation. 

For the case of zero mean flow, Eqs. 86 and 93. are 
required in order to effect a solution for the disper­
sion equation. Thus, for Uo = 0, one obtains from 
Eq. 86, upon expansion of the determinant, 

[(1 + iT)2 - fJlw2][(1 + iT) - N;lw2 - (m>..clw)2] 

- (1 + iT)[(1 + iT) - N;lw2](k2 + P)c21w2 = 0 . 
(96) 

The solutions are then 

w = Wj>.. (k,/,m,H); j = 1, 2, ... , M; 

A = 0, ± 1, ± 2, (97) 

Solutions to the Dispersion Equation 
A number of familiar solutions will now be extracted 

from the dispersion function (Eq. 86) and the associat­
ed equation for the vertical wave number (Eq. 93). 
These will illustrate that the variety of waves claimed 
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in the introduction is indeed contained in the formu­
lation. 

Uniform, Compressible, N onrotating Fluid of In­
finite Extent. In this case, N 2

, UO, fo, g, and Tare 
zero and H = 00. Then the condition det(D) = 0 is, 
upon expansion, equivalent to the dispersion equation, 

W = Wj(k) = ±c .Jk2 + /2 + m2 , j = 1, 2, (98) 

and only isotropic acoustic waves propagating toward 
and away from the origin of an infInite medium remain. 
The relation is analogous to the equation describing 
electromagnetic propagation in free space, with c play­
ing the role of a limiting velocity of propagation in the 
fluid. 

Acoustic-Gravity Waves in a Nonrotating, Stream­
ing Fluid. If we neglect rotation and look at only high­
frequency waves in a streaming, compressible, strati­
fied medium of semi-infinite vertical extent, Eq. 86 
yields the dispersion equation for hybrid acoustic-in­
ternal oscillations. One obtains an implicit dispersion 
equation, 

wJ(l + iT)[wJ(1 + iT)[wJ(1 + iT) 

- (k2 + P + m2)c2 - N;] + N;(k2 + p)c2J = 0 , 
(99) 

which has three modes, two of which propagate in op­
posite directions. The quantity in the braces describes 
coupled acoustic-internal gravity waves in this medi­
um, which, in the high-frequency, loss-free limit, re­
duce to the case of an acoustic wave in a stratified 
flow: 

j = 1, 2 . (100) 

The atmospheric cutoff frequency, N a , is given by 
Eq. 25. Equation 100 describes, among other things, 
the propagation of infrasonic waves in the atmo­
sphere. 5 

The remaining mode, given by 

WJ(1 + iT) = 0 

(W - Uo ·k}[w - uo·k + i[A h (k2 + p) 

(101) 

simply represents advection by the stream of a pertur­
bation of scale 2'7r/lkl, which, when observed in a ftxed 
coordinate system, appears as a damped wave, the real 
part of whose frequency is w. 

Internal Gravity Waves in a Rotating Medium. The 
internal wave dispersion relation is obtained from Eq. 
96 in the limit of an incompressible fluid by allowing 
c2 

- 00 and using the relationship Na I c 
- r o. Setting Uo and 7 equal to zero gives 

51 



Apel - Linear Response Theory jor Waves in a Geophysical Fluid 

N; (k2 + [2) + IJ (m 2 + r~) 
k 2 + [2 + m 2 + r~ 

(102) 

where the non-Boussinesq term, r 0, is usually 
neglected. In the long wavelength limit, k 2 + P = 0 
and wrow = IJ, while in the short wavelength limit, 
m2 + rJ = 0 (corresponding to purely vertical prop­
agation) and w~ = N;. 

If 10 is negligible, another familiar form of inter­
nal wave dispersion equation is obtained: 

2 2 ( k
2 

+ P) 2' 2 
Wj«() = N z 2 2 2 = N z sm (), (103) 

k + [ + m 

where () is the propagation angle with respect to the 
vertical. 

Surface Gravity Waves on a Rotating, Stratified, 
and Bounded Fluid. We will treat the surface gravity 
wave for the case of a nonstreaming, dissipation-free, 
stratified medium on a rotating plane. A rewriting of 
Eq. 86 for this case yields 

( 1 - IJ/w 2)[1 - N;/w 2 - (mc/w)2] 

- (1 - N;/w2) (k2 + p)(C2/W 2) = O. (104) 

We next solve this equation for m and reinterpret that 
quantity as a vertical attenuation coefficient, Jl, via 

m = ±iJl (105) 

in order to take into account the essentially evanes­
cent, edge-wave nature of surface waves. This recipro­
cal e folding distance is 

where Eq. 56 has been used for Na/c. This quantity 
reduces to the familiar expression for the vertical wave 
number in a nonrotating Boussinesq fluid when 10 
ro = I = 0: 

(107) 

With the interpretation of Jl given by Eq. 106, Eq. 
93, as derived from the upper and lower boundary con­
ditions, becomes 

W
2 = NJ + Jlg tanh JlH , (108) 

where the transition frequency, No (cf. Eq. 94), is so 
named because it is at this frequency that waves obey­
ing Eq. 93 make the transition from imaginary to real 
vertical wave numbers and change character from the 
surface to the lowest mode internal gravity waves. 2 If 
the medium is neither rotating nor stratified, the usu-
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al expressions for surface gravity waves are recovered 
from Eqs. 106 and 108: 

w/k) = ± j g -Jk2 + P tanh ..Jk2 + p) H, (109) 

which, for deep water, approaches 

~ ±jg..Jk2 +P (110) 

whereas for shallow water, the limit is 

(111) 

Equations 106 and 108 also show that the limiting 
velocity for long wavelength surface waves in an un­
stratified fluid is .JiiI if the fluid is shallow, and 
c if it is deep. If r 0 = Na = N z = 10 = 0, but c ~ 
00, Eq. 106 yields 

Jl = ..Jk2 + P - w2 fc 2 . (112) 

Upon substitution into Eq. 108, this gives, in the long­
wave limit, a phase speed, ccf>' of 

(113) 

which approaches 

c; - gH, (114) 

In a deep fluid, but one still shallow compared with 
a wavelength, 

(115) 

Inertial Oscillations. Near the inertial frequency, 
w2 ~ IJ, and from Eq. 96, 

(116) 

Thus, inertial oscillations are essentially very long­
length waves of complex frequency: 

(wr + iWi)(1 + iT) = ±/o , (117) 

or, from Eq. 101 for this case, 

wr ±/o(1 + 7
2

) 

~/07/(1 + 7
2

) 

(118) 

(119) 

where we have neglected ro compared with m. The 
real part of the frequency is shifted somewhat from 10 
by the viscosity. Also, the damping decrement for in­
ertial oscillations is proportional to the vertical wave 
number and vertical eddy viscosity, indicating that pri­
marily upward or downward propagation is dominant. 
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This will be discussed in the paragraphs under the head­
ing, A Parameter Space for the Atmosphere. 

Subinertial Waves. In the absence of the beta effect, 
subinertial waves can only occur in a fluid for which 
N; < fJ, i.e., a rapidly spinning or weakly stratified 
system. In the incompressible limit and at frequencies 
well below the inertial frequency, Eq. 96 gives a dis­
persion equation for these waves. 

If 0 is the angle of propagation measured from the ver­
tical, this may be rewritten as 

w = Wj = ± ..../N; + fJ cot2 0, (121) 

illustrating that subinertial waves, as with inertial os­
cillations, propagate mainly vertically. 

Thus, as shown by subsections 1 through 6, Eqs. 86 
and 93 describe without inordinate complication a very 
wide range of waves in the rotating, stratified, single­
layer fluid. The general statement, Eq. 86, is a fourth­
order polynomial describing left and right propagation 
of two acoustic and two internal gravity waves. The in­
troduction of lower and upper boundaries adds two ad­
ditional surface-wave modes. In addition, the vertical 
eigenfrequency structure is superimposed on the body­
wave modes for the case of the layered fluid. 

A PARAMETER-SPACE DIAGRAM 
The Fluid Parameters 

We will now develop an analytical and graphical tech­
nique for sorting out and classifying the variety of 
modes in the model fluid. This technique will also il­
lustrate the behavior of the vector index of refraction 
in a multidimensional parameter space. In the absence ­
of a mean flow and sources, the normalized parameters 
in the problem are N;lw2, NJlw 2, N;lw2, fJlw 2, 
wAI c2

, and mHo It is obviously impossible to repre­
sent graphically more than three of these at once, and 
it is even difficult to illustrate clearly the behavior of 
more than two. However, the parameters that differen­
tiate the fluid most vividly, for example, are stratifica­
tion and Coriolis force. Therefore, the two fundamental 
parameters will be taken as proportional to N z and fo . 

The buoyancy parameter: 

B; = N;/w2 . 

The CorioUs parameter: 

FJ =fJ/w2 . 

Solution for the Index of Refraction 
Referring to Fig. 2, when Uo = 0, the components 

of the vector index of refraction along the coordinate 
axes are 

kc/w = n sin 0 cos 0 , 

lclw = n sin 0 sin 0 , 

(122) 

(123) 
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mcl w = n cos 0 , (124) 

where in the present notation, 

We choose to deal with Eq. 96 with T = 0 for sim­
plicity. Then, with the index components above sub­
stituted in Eq. 85 or 96, one obtains 

(1 - FJ)(1 - B; - n2 cos2 0) - (1 - B;)(n2 sin2 0) = 0 . 
(126) 

This can be factored into the form 

n(O) 
1 - (B; - FJ) (sin2 0)/(1 - FJ)· (127) 

The index of refraction is a function of the polar angle 
and the stratification and Coriolis parameters. Since n 
is defined as the ratio of the speed of sound to the phase 
speed of the wave, 1 In is proportional to the phase 
speed, cq, = wi ..../k2 + 12 + m 2 , at different values 
of O. Therefore, a three-dimensional surface in (x,y,z) 
space may be defmed by the locus of the tip of a vector 
whose direction is that of the wave vector and whose 
length is proportional to the phase speed, or to lIn(O). 
This figure is called the phase velocity or the wave nor­
mal surface and is the reciprocal to the more familiar 
wave number surface, n(O).6 

Figure 4 shows a two-dimensional curve generated by 
the intersection of a plane containing the z axis with the 
phase velocity surface. Such surfaces typically have ei­
ther lemniscate or spheroidal shapes. The figure illus­
trates the behavior of the wave number surface, lin (0) , 
and its reciprocal, n(O); the normal to the latter defines 
the direction of the group velocity cg = V k w(k). The 
dumbbell-shaped lemniscate also varies as FJ and B; 
vary, of course. By studying these surfaces along with 

z 

1----------. x, y 

Figure 4-Phase velocity surface, 1 In(()) , and wave number 
surface, n(()). The former gives the relative variation in phase 
velocity cq, as the angle from the vertical, (), changes. The 
direction of the group velocity, cg , is specified by the nor­
mal to the wave number surface. 
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certain other critical surfaces in the parameter space, one 
can understand something of the complicated behavior 
of n by examining allowed and forbidden regions of 
propagation in that space. 

A Parameter Space for the Atmosphere 
As a relatively simple example of a parameter space 

that contains the basic features of a semi-infinite geo­
physical fluid, consider the two-dimensional diagram 
shown in Fig. 5. This figure is constructed for an at­
mosphere with a plane lower boundary. The vertical axis 
is the buoyancy parameter, N; / w2

, and the horizontal 
axis is the Coriolis parameter, fJ / w2

• Such a graph is 
analogous to a diagram for magnetized plasma given by 
P. C. Clemmow, R. F. Mullaly, and W. P. Allis. 7 

If one now considers a fluid whose stratification and 
rotation are slowly varying throughout its volume, the 
behavior of a wave in the fluid can be deduced partially 
from the behavior of the phase velocity surface in the 
parameter space. Equivalently, for fixed N z and fo, as 
the frequency of the wave is made to vary, its location 
in parameter space moves; high frequencies are found 
in the lower left-hand corner and low frequencies in the 
upper right-hand corner. 

The small figures at various locations on the diagram 
are phase velocity surfaces, as in Fig. 4, with the isotropic 
velocity of sound shown by dotted circles. One may think 
of this diagram itself as a kind of parameter "fluid," 
with the stratification increasing with height and the ro­
tation rate increasing to the right. Furthermore, "up" 

in the parameter fluid corresponds to "up" in the real 
fluid. At various points in the "fluid," we may think 
of small steady-state wave-making devices that radiate 
waves; the wave normal surfaces are surfaces of con­
stant phase about each device, and the radius vector is 
proportional to the distance traveled by the wave at a 
given angle in physical space. The topological character 
of these phase velocity surfaces changes as the wave­
makers cross the critical parameter surfaces mentioned 
above. . 

To see how this comes about, consider Eq. 127 for 
n«()). The index of refraction vanishes along a line in 
B; - FJ space given by B; = 1. (In Fig. 5, B; has been 
chosen equal to 0.81 B;, corresponding to the at­
mospheric cutoff case for the earth.) It also vanishes for 
FJ = 1, unless () = O. The zeros of n«()) are called 
cutoffs and form one set of bounding critical surfaces 
in the parameter space. On one side of the boundary, 
the radical in Eq. 127 is negative, n is imaginary, and 
no propagation is possible; the region is called evanes­
cent, and a wave crossing the boundary will decay in 
real space exponentially. On the other side, propagation 
is possible and the wave oscillates sinusoidally. 

The other critical surfaces are generated by resonances, 
or regions where n2 = 00 in the lossless case (in the 
case with viscosity present, n2 is large but finite). From 
Eq. 127, this condition obtains at a resonance angle, 
() R, and resonance frequency, w R, given by 

10r------,-------.---.--.-~------~------~--~--~ 

Figure 5-Two-dimensional param­
eter "fluid" for a stratified, rotating, 
compressible atmosphere. The di­
agram ,is divided into six regions as 
specified by roman numerals, with 
the boundaries set (a) by resonanc­
es, where the index of refraction is 
infinite (n 2 = oo), and (b) by cut­
offs, where n 2 = O. The locations 
of resonances depend on 0 and are 
shown for OR = 0, 7r/6, 7r/3, and 7r/2, 
while the locations of cutoffs are in­
dependent of angle. No wave prop­
agation occurs in evanescent re­
gions. In the propagating regions, 
the phase velocity varies with angle 
as shown by the small inset figures, 
which are phase velocity surfaces 
as on Fig. 4. The isotropic velocity 
of sound is indicated by the dotted 
circles and the resonance cones by 
the dotted lines paSSing through 
their centers. Various types of flu­
id waves exist in the regions as 
noted. 
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At n2 = 00, one has Ccp = 0, and no propagation is 
possible; once again, n is real on one side of the critical 
surface and imaginary on the other. The angle () R is the 
angle at which Ccp becomes zero (Fig. 4), thereby limit­
ing the angular width of the lemniscates shown in the 
parameter fluid; propagation cannot occur at angles in 
physical space outside the region defined by the reso­
nance cone () = ()R. 

The combination of resonances and cutoffs divides 
the B; - F~ parameter space into six regions on Fig. 5, 
numbered clockwise from I to VI. As each of the criti­
cal bounding surfaces is crossed, the topological charac­
ter of the wave normal surfaces changes; hence, so do 
the propagation characteristics. While the cutoffs are in­
dependent of angle, the resonances depend on () via Eq. 
128. Figure 5 shows how these infinities vary with B; 
and F~ for constant values of () equal to 0, 30, 60, and 
90 degrees. 

The B; - F~ diagram of Fig. 5 gives a vantage point 
in locating where the various fluid modes may exist in 
the "fluid." The high-frequency acoustic or acoustic­
gravity waves are obviously confined to the lower left­
hand corner of Region I (cf. Eq. 99); their phase veloci­
ties all exceed C (in the semi-infinite case) and are nearly 
isotropic; in fact, they are exactly isotropic along the line 
f~ = N;. Internal waves, which are constrained to the 
frequency interval 

(129) 

must therefore be located in Region III and are charac­
terized by near-horizontal propagation. Regions I and 
III are separated by the small evanescent Region II, 
which is located between the Brunt-VaisaIa and 
atmospheric-cutoff frequencies. 

In Region IV, where both f~ and N; are greater than 
w2

, waves are also evanescent. Regions V and VI, 
which correspond to a rapidly rotating, weakly strati­
fied fluid, are not generally accessible in geophysical 
fluids but may readily be so in planetary fluids or labo­
ratory experiments. They allow propagation of sub­
inertial waves mainly in the vertical, as the phase veloc­
ity surface suggests (cf. Eq. 121). In Region V, propa­
gation is possible at near-horizontal angles and at 
frequencies near fo. Inertial oscillations occur near the 
boundary between Regions VI and I, at F~ ::= 1. 

SUMMARY AND CONCLUSIONS 
A model is presented for linear w~ves propagating 

in a compressible, uniformly stratified, viscous fluid 
flowing with a constant mean velocity on a {3 plane. 
The linearized Navier-Stokes equations are used in con­
junction with the isentropic form of the First and Sec­
ond Laws of Thermodynamics and equations of state 
and internal energy to construct a linear response the­
ory for free and forced waves propagating in the fluid. 
The complete, formal solution for the first-order ve­
locity field is derived in terms of Fourier-Laplace in­
version integrals, given by Eq. 83. The behavior of the 
field in time and space depends on two separate fea­
tures of the solution. First, the intrinsic properties of 
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the fluid (stratification, rotation, sound speed, viscosi­
ty, and streaming velocity) establish a response that is 
independent of initial and boundary conditions; the re­
sponse is described by the general dispersion tensor, 
O-l(k,w). These functions summarize all of the wave 
propagation characteristics that are independent of 
boundaries or forcing but which are governed by the 
nature of the medium itself. For a layered fluid, they 
yield a general dispersion relation (Eqs. 86 and 93 com­
bined), whose solutions for frequency as a function of 
wave vector determine the behavior of planetary, iner­
tial, internal, and acoustic waves and the various hy­
brid combinations that result from coupling between 
these types. Second, the extrinsic features of the medi­
um (the presence of boundaries, initial values of the 
fluid variables, or forcing applied by external means) 
then modify the intrinsic response in a variety of ways. 
Mathematically, these features are given by a source 
function S that specifies mixed initial and boundary 
values. Boundaries can also be introduced directly 
through boundary conditions, and an example for a 
stratified, rotating, single-layer ocean is given. The top­
bottom wave guide effect given by Eq. 93 delimits the 
vertical wave number and, when used in the infinite­
medium dispersion relation, recovers acoustic, internal, 
and surface gravity waves in recognizable forms (Eqs. 
98, 103, and 109). 

Finally, the parameter "fluid" is introduced as a 
means of classifying waves and showing their allowed 
and forbidden regions of propagation as functions of 
the fluid parameters. Cutoffs and resonances in the in­
dex of refraction occur at critical values of the param­
eters for stratification and Coriolis force, and these 
appear as bounding surfaces in the "fluid." An exam­
ple is given for a parameter "atmosphere" in Fig. 5. 

The theory is capable of addressing a broad class of 
problems in atmospheres, oceans, and laboratory fluids; 
some examples, in addition to propagation of simple 
free waves, are waves in channeled flows, wave coup­
ling to form hybrid types, oceanic response to wind and 
barometric forcing, and baroclinic and barotropic in­
stabilities. 
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GLOSSARY OF SYMBOLS 
(Minor sUbscripts and symbols have been omitted.) 

A, tensor eddy viscosity 
A h , horizontal elements of viscosity 
A v ' vertical element of viscosity 
A, Eckart specific volume field 
a, coefficient of thermal expansion 
B2 = (B; ,B; ,B; ), baroclinic/buoy-

ancy parameter 
B;, buoyancy parameter for cutoff 

frequency 
c, speed of sound 
Ccx , specific heat at constant volume 
Cp , specific heat at constant pressure 
Ce , effective propagation speed 
ccp, wave phase speed 
cg , wave group velocity 
0, tensor dispersion function 
0-1, inverse of dispersion function 
Dij, i-jth matrix element of 0 
cof(O), cofactor matrix of 0 
det(O), determinant of 0 
e, internal energy per unit mass 
F 0 = 01 Wd, normalized Coriolis 

vector 
F5 = 161 w~, Coriolis parameter 
f = fo + {3y, variable Coriolis fre­

quency 
fo, constant Coriolis frequency 
~ = ~ x ~ y ~ z , Fourier transform 

operators 
g = -gz, acceleration of gravity 
g, scalar acceleration of gravity 
H, layer thickness 
I, unit tensor 
i, j, tensor indices for x, y, and z 
j, index for roots of dispersion equa-

tion 
K, tensor eddy heat diffusivity 
Kh , horizontal elements of diffusivity 
Kv, vertical element of diffusivity 
k = (k, /, m), wave vector 
k, x-component of wave vector 
k h , horizontal component of wave 

vector 
ce, Laplace transform operator 
/, y-component of wave vector 
m, z-component of wave vector 
N2 = (N; ,N; ,N; ), vector frequency 

parameter 
No = -cp612po, atmospheric cutoff 

frequency 
N ; = fgvo l c2

, x-baroclinic frequency 
N; = -fguolc2

, y-baroclinic fre­
quency 

N ; = -g(P6Ipo + glc2
), Brunt-Vai­

sala frequency 
o = (nx ,ny ,nz ), vector index of re­

fraction 
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n = 101, absolute value of 0 
0 + , adjoint vector index of refraction 
00 = (nox ,noy ,noz), vector index for 

zero Coriolis force 
o~ , complex conjugate of 00 

00+ , adjoint vector index of refraction 
P, Eckart pressure field 
P, pressure 
Po, zero-order pressure 
PI, first-order pressure 
Q, Eckart heating rate field 
q, heat per unit mass 
qo, zero-order heat per unit mass 
ql, first-order heat per unit mass 
qo = dqo 1 dt, zero-order heating rate 
ql = dql 1 dt, first-order heating rate 
R, Eckart density field 
P, unit vector in radial direction 
s, wave slowness 
S, Eckart entropy field 
s, entropy per unit mass 
So, zero-order entropy per unit mass 
SI, first-order entropy per unit mass 
S, vector source function 
T, temperature 
T', Eckart temperature field 
To, zero-order temperature 
T I , first-order temperature 
t, time 
U = (U, V, J¥), Eckart velocity field 
U, x-component of velocity field 
o = (u, v, w), fluid velocity 
00 = (uo, vo,O), zero-order velocity 
01 = (u\J VI, wd, first-order velocity 
u, x-component of velocity 
uo, x-component of zero-order ve­

locity 
U I, x-component of first-order ve­

locity 
V, y-component of Eckart velocity 

field 
v, y-component of velocity 
vo, y-component of zero-order ve­

locity 
VI, y-component of first-order ve­

locity 
W, z-component of Eckart velocity 

field 
w, z-component of velocity 
wo, z-component of zero-order ve­

locity 
WI ' z-component of first-order ve­

locity 
x = (x,y,z), Cartesian coordinates (x, 

east; y, north; z, up) 
X, unit vector in x-direction 

y, unit vector in y-direction 
Z, generalized vector wave impedance 
Zo, acoustic impedance 
z, unit vector in z-direction 
Zo, reference level 
a, specific volume 
ao, zero-order specific volume 
ai' first-order specific volume 
{3, beta-plane parameter 
r = (r x,r y,r z), attenuation vector 
r g = -gl c2

, compressibility recipro-
cal scale height 

r 0 = p6 12po, transition attenuation 
coefficient 

r x = - fvo 1 c2
, x-baroclinic attenua­

tion coefficient 
ry = fUolc2, y-baroclinic attenuation 

coefficient 
r z = p612po + glc2

, vertical at­
tenuation coefficient 

'Y, ratio of specific heats 
0, imaginary coordinate for Laplace 

inversion 
0 ij ' Kronecker index 
Eijk , permutation index 
.", elevation of fluid surface above 

equilibrium 
0, polar angle between z-axis and wave 

vector 
OR' resonance polar angle 
K, heat diffusivity parameter 
A, latitude 
A, vertical mode index 
p., imaginary vertical wave number 
~x = fVolg, x-slope of isopycnal 

surface 
~y = -fuolg, y-slope of isopycnal 

surface 
~g, reduced gravity vector 
P, density 
Po, zero-order density 
PI, first-order density 
T, eddy diffusivity parameter 
¢, azimuth angle between x-axis and 

horizontal component of wave 
vector 

1/;, arbitrary scalar variable 
0, Coriolis vector 
{lE, angular speed of planet 
w, radian frequency 
Wd, Doppler-shifted frequency 
Wi ' imaginary part of frequency 
Wj , frequency roots to dispersion 

equation 
WR, resonance frequency 
Wn real part of frequency 
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