
BRUCE W. HAMILL

SYMPOSIUM ON THE ROLE OF LANGUAGE
IN PROBLEM SOLVING

The JHU/ APL Symposium on the Role of Lan­
guage in Problem Solving convened at APL's Kos­
siakoff Center on October 29, 1984, for 2Y2 days of
invited talks, contributed paper presentations, and
panel discussions on the influence that problem
representation and language conventions have on
problem-solving effectiveness and efficiency. In atten­
dance were more than 90 people, including represen­
tatives from Canada, Denmark, Japan, and The
Netherlands.

Robert P. Rich of APL set the tone of the symposi­
um with his comments on "The Influence of Language
on Its User," and APL's George C. Weiffenbach
described "Space-Age Demands for Powerful Com­
puter Languages." In addition to their remarks, which
follow this article, the program featured invited ad­
dresses by four noted academic computer scientists.

In his keynote address, Saul Amarel of Rutgers Uni­
versity reviewed some theoretical "Problems of Rep­
resentation in Heuristic Problem Solving" that have
been the focus of his artificial intelligence (AI) research
efforts for more than 20 years. He identified as key
issues the choice of a representation or formulation
of a specific problem that avoids redundancies and ir­
relevancies; the choice of a representation for the sit­
uation space appropriate to the problem, including
consideration of the presence of symmetries, easily
traversable areas, and critical paths through this space;
and the formation of "macromoves," or complex col­
lections of steps that can be used together in solving
problems of a particular kind. He emphasized the need
to look at ways to solve a taxonomy of problems, rath­
er than considering problem solving as a general task.
He also suggested a link between the acquisition of ex­
pertise and the ability to reformulate problems, and
he indicated that there may be a strong connection be­
tween problem reformulation and the process of the­
ory formation.

Continuing in a theoretical vein but moving toward
practical considerations, Jaime Carbonell of Carnegie­
Mellon University, in his address on "AI Languages
for Problem Solving," first assessed several current
AI languages in terms of language criteria and desider­
ata for problem-solving use. He then discussed how
researchers want AI languages to evolve, focusing on
problem-solving reasoning strategies and knowledge­
acquisition processes as the basis for determining ap­
propriate criteria for such languages. Finally, he con­
sidered how to get from the current situation to the
Dr. Hamill is a psychologist in the Mathematics and Information
Science Group of the Milton S. Eisenhower Research Center.

Johns Hopkins APL Technical Digest, Volume 6, Number 2

desired future situation. Among the reasoning strate­
gies he described for those purposes were means-ends
analysis, transformational analogy, derivational anal­
ogy, learning from examples, and reasoning from first
principles. Carbonell emphasized that AI languages
should permit the inclusion of multiple declarative and
procedural representation formalisms, problem space
transformations, different types of reasoning strate­
gies for operating on the various representations of
knowledge, and facilities for introspection, interpre­
tation, and reflection.

Ben Shneiderman of the University of Maryland ad­
dressed more practical issues involved in "Overcom­
ing Limitations Imposed by Current Programming
Languages," with a view toward providing suggestions
and guidance for research in the design of program­
ming systems and environments. He advocated psy­
chological experiments to determine what factors are
important in the programming process. He identified
among the strengths of current programming lan­
guages their precision, power, effectiveness of com­
munication, modular decomposability, and extensibil­
ity. However, he found them to be error-prone and
tedious, to require considerable training, to be lack­
ing in structure at different levels, to have weak
methods for checking errors, and to produce programs
that are hard to maintain.

Shneiderman recommended several kinds of im­
provements, including those related to programming
style (for example, commenting, structural indenta­
tion, and modular design), novel programming con­
structs (such as enhanced data types, high-level control
structures, and integrity constraints), and the use of
programming in new application areas (such as graph­
ics programming, sound programming, and control of
devices in three-dimensional space). He also advocat­
ed development of enhanced programming environ­
ments and tools, including syntax-directed editors,
facilities to aid programmers in performing error-free
and complete operations in the process of program­
ming (such as automatically matching syntactic sym­
bols like parentheses, providing templates for if-then­
else statements, and carrying out the full intention of
a specified command), reusable libraries of codes, pro­
gram analysis tools, verification testing and debugging
tools, and tools that can automatically maintain pro­
gram operations when transformations are made on
the structure of variables. In the future, he would like
to see systems that permit end users, rather than
programmers, to create programs through the use of
programming tools like spreadsheets and editors; to

149

B. W. Hamill - The Role of Language in Problem Solving

have improved training and motivation for people who
work on programs; and to move toward direct manipu­
lation of objects, such as cursors and icons, as a means
of interacting with a computer display. Finally, he dis­
tinguished between syntactic and semantic aspects of
programming and discussed implications of this dis­
tinction for teaching programming and for designing
programming systems.

The banquet speaker, John Carr of the University
of Pennsylvania, discussed' 'The Future of Program­
ming Languages" in a very entertaining, yet informa­
tive, manner. After reviewing a number of the his­
torical developments in programming languages, he
focused on the idea of a computer program as a "lit­
tle person inside the box" with whom the user inter­
acts, a concept that changes the fundamental nature
of what a programming language is or should be. He
observed that the Apple Macintosh graphics interface
has changed the nature of interaction with computers,
both because of its relatively low cost and because of
the mouse-oriented user interface that replaces many
keyboard operations. He also noted the availability of
touch-screen interfaces, the trend toward menu-based
interfaces, and the possibility of interposing a power­
ful search chip between a user and a complex data­
base system, each of which has a fundamental impact
on programming requirements and, thus, on the un­
derlying nature of programming languages. The fu­
ture also holds new developments in programming
languages that derive from requirements of very-large­
scale and ultra-large-scale integrated circuit architec­
tures and parallel-processing control mechanisms. In
addition, consideration must be given to the question
of the logical equivalence of hardware and software,
and the relationships among these, firmware, and "hu­
man ware" (processes of the human brain that one
would like to capture in a computer). If we say that
any subroutine can be put onto a chip, how does this
affect programming languages? Using the idea of a
foundry that can operate under the control of com­
puter programs to produce integrated circuits repre­
senting computer programs, Carr argued that the dis­
tinction between software and hardware (i.e., chips)
is becoming less clear and that this has implications
for the definition of what a programming language is.
Finally, he described a computer program on a chip
that is generated by another program called Make Fi­
nite State Machine; if that program makes finite-state
machines, then its output must be a finite-state ma­
chine in some abstract form, and one can ask wheth­
er the latter is a program and whether the program that
generated it is, in fact, a programming language. The
investigation of such "programming tactics" for pro­
ducing programs that are chips can lead to a better un­
derstanding of constraints that exist on programming.

PHILOSOPHICAL FOUNDATIONS: THE
ROLE OF REPRESENTATION IN
PROBLEM SOLVING

Papers contributed to the symposium were presented
in three topical sessions. In the first session, "Philo-

150

sophic Foundations: The Role of Representation in
Problem Solving," Amarel's invited address was fol­
lowed by three papers. Stuart Hirshfield of Hamilton
College presented one entitled "Programs as Symbolic
Representations of Solutions to Problems," in which
he discussed computer programming skills in terms of
the relationship between problem-solving and linguistic
abilities. He speculated that the skills needed for writ­
ing programs are equally linguistic and logical in na­
ture, and he recommended a new approach to teaching
programming to students that would emphasize in­
struction in both linguistic and problem-solving skills
in parallel, rather than the more traditional sequence
of instruction in syntax followed by attempts to write
programs to solve increasingly complex problems.

John Carlton-Foss of Human-Technical Systems,
Inc., discussed "Physics, Cognitive Psychology, and
Computer Languages: Toward an Experimental Epis­
temology Using Languages as a Research Tool in the
Physical Sciences." He argued that the quality of a
match between computer-based products and require­
ments of users of those products involves a series of
transformations from user "reality," to programmer
reality, to system reality, to computer reality. Cogni­
tive style influences the choice of "images" for
representing problems and solutions, and it thus extends
its influence to the design of specialized languages for
use in solving problems in various cognitive styles.

In his paper, "AI Languages Should Be Natural,"
Roy Rada of the National Library of Medicine focused
on ways of capturing in specialized AI languages the
property of "gradualness" that occurs in the refine­
ment of human knowledge. Gradualness appears as
small changes in the specification of a problem that
produce small changes in problem solution. The cor­
responding naturalness property of a language appears
as small changes in the structural presentation of a
string of symbols in the language that produce small
changes in the function or pragmatics of that string.
He presented examples of such changes in an expert
system knowledge base that was treated as a "weighted
graph," with paths through the nodes of the graph be­
ing specified and changed by means of confidence
values, rules, and an edge refinement scheme.

HOW LANGUAGE CAN AFFECT
ACTIONS AND SOLUTIONS

The second session was devoted to the issue of
"How Language Can Affect Actions and Solutions."
After Carbonell's invited address, Jack Boudreaux of
the National Bureau of Standards considered' 'Prob­
lem Solving and the Evolution of Programming Lan­
guages." He reviewed the genealogy of programming
languages and suggested that, rather than simply
replacing the underlying model of computation, each
succeeding generation of programming languages
transfers new and more difficult cognitive functions
from the programmer to the computer. This leads to
the prediction that the next generation will come about
not by advances in computer technology but by suc-

fohns Hopkins APL Technical Digest, Volume 6, Number 2

cessful automation of higher order cognitive functions
that currently require human agents. This could lead
to improved matching of computing languages with
individual cognitive styles and, thus, to workstations
that meet individual user's needs. He cautioned that
if we should reach the point at which a computer sys­
tem interacts effectively with a user through a natural
language interface, it is possible that the human user
will impute to the system more knowledge and reason­
ing ability than it actually possesses, a situation that
could be dangerous in certain situations.

Noah Prywes of the University of Pennsylvania
(representing his coauthors J. Baron, B. Szymanski,
and E. Lock) presented "An Argument for Non-Pro­
cedural Languages" in which he suggested that non­
procedural languages are closer to the "natural" way
of representing most problems than are procedural (se­
quential) languages, especially inasmuch as they save
the user the trouble of working out the order in which
assignments to variables will be made, since multiple
assignments cannot be made to a single variable. Fea­
tures of nonprocedural languages include unambigu­
ous semantics, explicitness, ease of debugging, support
in problem decomposition, and a general approach to
problem solving in which the system translates a prob­
lem statement into results rather than following a spec­
ified sequential set of procedures. Experiments in
which students solved problems in the authors' non­
procedural MODEL system indicate that the time re­
quired to program certain complex systems, such as
an accounting system, is considerably less than that
required in standard procedural languages, although
the number of programming errors does not differ.

The paper by Thomas Strothotte of the University
of Waterloo concerned "The Use of the Subjunctive
in Problem Solving." Observing that current program­
ming languages use only the present tense, while nat­
ural languages use a rich variety of tenses and moods
for personal communication and problem solving, he
suggested adding the subjunctive mood to program­
ming languages as a feature to facilitate problem solv­
ing. The subjunctive would permit one to construct
such statements as, "If I take another step, will I fall
off the cliff?" Current languages only permit solutions
of this problem in the form, "Take a step. Did I fall
off the cliff? If yes, go back a step; if no, take anoth­
er step." He has implemented an IF WOULDBE (ex­
pression) THEN ... ELSE ... primitive construct in
PASCAL to capture the look-ahead feature of the sub­
junctive, and he argued that it removes some of the
awkwardness of using algorithmic languages.

OVERCOMING LIMITATIONS
IMPOSED BY CURRENT
PROGRAMMING LANGUAGES

The third session, which concluded with Shneider­
man's invited address, was devoted to means of
"Overcoming Limitations Imposed by Current Pro­
gramming Languages." Anand Desai of Digital Equip­
ment Corporation (representing his coauthor Robert

Johns Hopkins APL Technical Digest, Volume 6, Number 2

B. W. Hamill - The Role of Language in Problem Solving

Jernigan of Decision Resource Systems) described
"XIMM-An Expert System for Idle Materials
Management: Logic Programming for Corporate
Strategies." The expert rule base of XIMM, a system
that plans redistribution, upgrading, and dismantling
for parts of various Digital Equipment Corporation
computer products, is written in APLLOG, an integra­
tion of PROLOG and APL languages. APLLOG sup­
ports "scripts" (sets of conditions and rules to make
sorts through databases and to produce and output
results), rules (in the form of Horn clauses), a knowl­
edge base, functional predicates, macro commands,
projection functions, ordinary functions, and an edi­
tor. He demonstrated the effects of these features in
a detailed discussion of XIMM output.

Aaron Temin of the University of Texas at Austin
(representing his coauthor Elaine Rich also of the Uni­
versity of Texas at Austin) discussed "MIRROR: A
Language for Representing Programs for Reasoning."
MIRROR is a programming language (or a "program
representation language") whose goal is to make ex­
plicit in programs those things that an on-line help sys­
tem would need to know. The help system in question
is for the text editor SCRIBE; both the help system
and SCRIBE are written in MIRROR, which itself is
written in LISP. Although the help system is very limit­
ed at present, it is being developed in such a way as
to enable it eventuaHy to explain cause-and-effect re­
lations, comparisons, look-ups, and command syntax
through user modeling and the use of several program
design techniques that will facilitate operation of an
intelligent help system.

In his paper entitled "APL-A Pictorial Lan­
guage," Ross Bettinger of The Mitre Corporation ad­
vocated the use of graphic concepts in problem solving.
Noting a distinction in current research on human
brain function between verbal-analytic-linear and
nonverbal-gestalt-nonlinear modes of thinking that are
characteristic of the left and right hemispheres, respec­
tively, of the brain, he suggested that most program­
ming languages depend heavily on "left-brain
thinking" and do not use right hemisphere capabili­
ties, while APL (and to some extent LISP) incor­
porates both left- and right-brain modalities of
thought, making it a superior language in which to for­
mulate problems for computer solution. He demon­
strated through examples the use of geometric
(pictorial), rather than algebraic, thinking in solving
problems using the APL language.

J ames Ryan of Analogic Corporation (representing
his coauthor Michael Berry) described "Threaded
Workspaces-An Environment that Facilitates the
Programming and Execution of Large and Complex
Application Systems." Threaded workspaces are a
means of organizing large, complex systems into well­
defined, easily understood, and easily connected pro­
gram modules through the use of named contexts and
ways of linking and binding variables from different
contexts among modules. This programming environ­
ment permits the construction and use of a library of
program modules that can be combined in an ap-

151

B. W. Hamill - The Role of Language in Problem Solving

plication system of cooperating, possibly concurrent,
processes.

Naomichi Sueda of Toshiba Corporation (represent­
ing his coauthors Shinichi Honiden, Y oichi Kusui, and
Kuzuo Mikame) discussed "PROLOG Application in
Software Components Reuse." The concept of soft­
ware components reuse has been incorporated in an
image-processing logic simulator designed to improve
efficiency in checking algorithms for image process­
ing. The simulator operates on a system of some 350
software components in the Subroutine Package for
Image Data Enhancement and Recognition (SPIDER).
The logic simulator chooses components of SPIDER
that can be used without reprogramming and sets up
combinations of those components automatically. Pa­
rameter attributes of each component are treated as
knowledge, and PROLOG is used to infer relation­
ships among parameters through the application of
rules defined for that purpose.

A paper entitled "Solving Graph Problems Using
LOGRAPH" was presented by Tomasz Pietrzykowski
of the Technical University of Nova Scotia (represent­
ing his coauthor P. T. Cox). LOGRAPH, a pictorial
language implemented in PROLOG, is designed to
overcome difficulties in representing complex problems
and algorithms that arise in textual descriptions. It per­
mits a graphical form of a problem to be represented,
not merely as a heuristic aid to the user, but as pic­
tures on a screen that can be directly executed. The
pictures, which resemble flow charts, consist of frames
with compartments (variables) that are connected by
lines that represent the operational relations among
them.

Bruce Blum of APL discussed "Language, Prob­
lem Solving, and System Development." Focusing on
requirements for the development of new software
tools, he emphasized the importance of finding errors
early, noting that most errors occur in the system de­
sign phase. He stated that programmer productivity
is a function of the size of the program being coded.
He also pointed out that maintenance is the major part
of software cost, with coding accounting for only
about 20 percent of the time that will eventually be
spent on a software system. His approach to system
development is to work at a high enough level that he
can be concerned with issues in the problem domain
rather than with coding issues. His TEDIUM system,
which is written in MUMPS, is designed to enable the
user to work at that level so that effective application
systems can be developed by domain experts with rela­
tively little experience or interest in programming lan­
guages.

PANEL SESSIONS
The symposium culminated in two panel sessions.

The first was devoted to the discussion of "Language
Requirements for Effective and Efficient Problem
Solving." This panel was chaired by David Barstow
of Schlumberger-Doll Research; panelists were Jaime
Carbonell, John Carlton-Foss, Adin Falkoff of IBM/
T. J. Watson Research Center, and Andrew Gold-

152

finger of APL. Barstow focused attention on three
issues:

1. The effectiveness or efficiency with which the user
can communicate the problem, or how easy it is
to state a problem;

2. How languages can help in the solution of a prob­
lem, that is, what is the nature of the solution
process and what features of languages might
help or hinder that process;

3. If there is some measure of the quality of the re­
sult of the solution process, what language fea­
tures might help us find the best or worst of
alternative solutions.

Discussion by panelists and others ranged across
many topics, including:

1. The effects of differences among the world's
natural languages on the ways their speakers
think;

2. The relationship between individual differences
in personality and the choice of programming
languages;

3. The interaction among the person trying to solve
a problem, the problem itself, and the domain
or context in which the problem occurs;

4. Suggested extensions of current programming
language capabilities to support specialized
problem-solving applications;

5. Aspects of the APL language that seem to pro­
duce changes in the way people think about
problems-arrays, functional notation, opera­
tors for function transformation, and shared
variables;

6. The importance of programming environments
to system design and development, especially
for research systems;

7. How to specify and bring in implicit knowledge
for use in problem solving by a system-the
"frame problem" in AI;

8. Possible efficiency advantages of "wide-spec­
trum" languages in which components that are
composed may be either primitive or abstract;

9. Only primitives in programming languages, with
other kinds of functions being developed from
the primitive for various applications in order
to avoid erroneous assumptions about the pur­
poses and operations of complex "black-box"
functions;

10. Building high-level languages by combining
primitive-based languages in hierarchical
structures;

11. The importance of documentation for program­
ming languages;

12. The influence of PROLOG on how one thinks
about solving problems;

13 . The prospect of new modalities of thought
deriving from programming languages;

14. Difficulties involved in understanding and
teaching the concept of recursion;

15. Cooperative use of the abilities of the human

Johns Hopkins APL Technical Digest, Volume 6, Number 2

and the computer system so that each performs
those functions that it does best;

16. Inheritance hierarchies as tools for organizing
problems for solution.

The second panel session considered issues related
to "Comparative Application of Computer Languages
to Practical Problems." The panel was chaired by
Bruce Blum; panelists were Roy Rada, Elaine Rich,
Jean Sammet of IBM, and Ben Shneiderman. The
range of topics discussed by the panelists and others
included

1. Criteria and measures (or the lack thereot) for
comparing programming languages;

2. Software engineering;
3. Programming as a productive activity;
4. Transportability of software;
5. The problem of investment in obsolescent lan­

guages;
6. The unpredictability of software needs for fu­

ture hardware;
7. What a programming language is;
8. Languages for specialized application areas,

i.e., special-purpose languages;
9. Functional capability and tailored style as fun­

damental needs in special-purpose languages for
solving problems in particular application areas;

10. Identifying relevant literature for guidance in
how to make the relationship between com­
puters and their users more natural;

11. Software reusability;
12. High-level programming requirements;
13. Facilities for direct manipulation of objects on

a computer terminal;
14. Technological limitations on how problems are

represented for computer solution;
15. The difference between a language and its im­

plementation;
16. Use of natural languages (e.g., English) for

programming;
17. Use of "natural formal notations" (as opposed

to natural languages) for programming that are
natural to the problem area or domain.

B. W. Hamill - The Role oj Language in Problem Solving

SUMMARY

Finally, Jack Boudreaux offered a summary of the
symposium in which he identified some of the prin­
cipal themes that he would like to see addressed fur­
ther at future symposia and conferences. The first such
theme was that of defining a paradigm within which
to consider the role and function of computers and
computer-based systems. Three possible alternatives
are the computer as an assistant, the computer as a
user environment, and the computer as a tool kit. The
second theme concerned methods for eliciting and
representing what users know and believe about "ob­
jects" that are important in field-specific user do­
mains. His third theme was the notion of program
schemata and plans that mediate between what the
programmer knows about a programming language
and what he knows about the application domain. The
fourth theme he identified was the distinction between
language as text and language as graphic sign, or the
distinction between linear and two-dimensional means
of communication.

The Symposium on the Role of Language in Prob­
lem Solving was characterized by very open discussions
of the contributed papers and invited addresses, live­
ly exchanges among panelists and audience partici­
pants, and a high degree of animated interaction
among all participants. The general consensus was that
this was a very successful symposium and that anoth­
er should be planned for the future to pursue this topic.

The symposium proceedings will be published by the
North-Holland Publishing Company as The Role of
Language in Problem Solving-I in 1985.

ACKNOWLEDGMENTS-I thank my cochairman David Wein­
traub, program chairman Robert Jernigan, support coordinator Bar­
bara Northrop, publicity coordinator Constance Finney, and
members of the program committee and the support staff for their
excellent performance in planning and executing the symposium.
Special thanks go to George Weiffenbach and Robert Rich for their
early interest and continued support and to William Guier and Daniel
Brocklebank for their advice and counsel during planning. Finally,
I thank the Applied Physics Laboratory for its financial and facili­
ties support, without which the symposium could not have been held.

THE INFLUENCE OF LANGUAGE ON ITS USER!

ROBERT P. RICH

It is still true (and I suspect that it will remain so
for some time) that the most effective solvers of prob­
lems still are people, and the thrust (as I take it) of
the meeting is to show that choice of a suitable nota­
tion has an effect on the way we approach and solve
problems. In case there are any who do not believe
that, I have a very simple example, as shown in the
figure. Until about the 12th century, people used Ro-

Dr. Rich is Supervisor of the Data Processing Branch at APL.

Johns Hopkins APL Technical Digest, Volume 6, Number 2

man numerals for commercial bookkeeping and any
other purposes that might occur to them, and I believe
the books of the Medici were kept in Roman numer­
als as a matter of law until as late as 1499. So it took
500 years for Europe to move from the notational sys­
tem shown in the top panel down to that shown in the
lower left-hand corner.

In the top panel I show the multiplication of 47 by
53 using the duplation method-not in the form in
which the Romans, via the Greeks, originally got it

153

B. W. Hamill - The Role of Language in Problem Solving

53
X 47

371

2 12

2491

XLV II

XXI I I

XI

V

II

Ll il

CVI

CCXII

CDXX IV

.ocCC)(Lv lIT

MDCXCVI

MMCDXCI

(X - Y) (X + y)

(50 - 3) (50 + 3)

X2 _ y2

2500 - 9

2491

from the Egyptians, but in a form that may be more
familiar to the reader. The top panel shows two
columns of Roman numerals. The left gives the results
of successively halving the number 47, throwing away
the remainders. The right column shows, above the
line, the results of successively doubling 53. Each num­
ber in the right column is crossed out if the correspond­
ing number in the left column is even; in this example
only one such crossed-out number occurs. Below the
line in the right column is the sum of the numbers
above the line that did not get crossed out, namely,
the product 2491 of the numbers 47 and 53 we started
out with.

All of the operations involved-division by two,
doubling, addition, and recognition of odd numbers­
are easily performed on the abacus. But the whole pro­
cess is a cumbersome one, especially when compared
with the more familiar decimal form of the same com­
putation, as shown in the lower left corner. Here we
show that for certain simple calculations, a choice of
notation permits you to do away with the Roman aba­
cus (which was a pretty good-sized grooved rock; the
ones that have been recovered weigh anywhere from
50 to 200 pounds). The paper and pencil, all that is
required for the Arabic numerals, were great advances
in portability, and portability, of course, as applied
to personal computers, is still very much in the news.
But we are still performing the same calculation in both
of those panels.

As we move over to the panel at the lower right, we
are, in principle, doing the same thing, but we are tak­
ing a very different approach to our problem; namely,
we recognize that this is a useful special case of the
general situation that the first two panels address. We
have an algebraic formula that happens to fit the two
numbers that I have picked and we get the same an­
swer, 2491, in our heads. Now, I think that during the
next several days we are going to be shown analogs
of both the decimal and the algebraic approaches and
three or four still higher levels of ways in which lan­
guage can help us solve our problems.

I would like to start out by saying that natural lan­
guage and human culture are obviously very closely

154

related, and human culture is obviously closely relat­
ed to thinking. So we have an influence from language
to culture to thinking, and this influence (or at least
a specific form of it) is known as the "Whorf-Sapir
Hypothesis." In Edward Sapir's words (as quoted by
his student, the insurance adjuster Benjamin Lee
Whorf):

Human beings do not live in the objective world
alone, nor alone in the world of social activity as or­
dinarily understood, but are very much at the mercy
of the particular language which has become the medi­
um of expression for their society. . . . We see and
hear and otherwise experience very largely as we do
because the language habits of our community pre­
dispose certain choices of interpretation.

In the words of Benjamin Lee Whorf, who also has
his name attached to this hypothesis that we think the
way we do because we speak the way we do:

It was found [as a result of his study of the Hopi
language] that the background linguistic system (in
other words, the grammar) of each language is not
merely a reproducing instrument for voicing ideas, but
rather is itself the shaper of ideas, the program and
guide for the individual's mental activity, for his anal­
ysis of impressions, for his synthesis of his mental
stock in trade. Formulation of ideas is not an indepen­
dent process, strictly rational in the old sense, but is
part of a particular grammar, and differs, from slightly
to greatly, between different grammars.

The Whorf hypothesis has been widely discussed in
the linguistics community, discussion that is motivat­
ed partly by the fact that the theory is very difficult
to demonstrate and partly by the fact that because
Whorf was an insurance adjuster without formal train­
ing in linguistics, anything he said had to be seriously
attacked as a matter of professional pride. Inciden­
tally, I might point out that we have some of that in
the programming language community, but none of
you have ever noticed it, I am sure.

There is a real question about the way people think
and the influence of language on the process. Jacques
Hadamard, in his delightful little book on The Psy­
chology of Invention in the Mathematical Field, de­
votes a major chapter (the sixth) to the question of
whether people in fact do use language in their think­
ing or do not. I will not try to reproduce the chapter,
but I do recommend the book and the chapter in par­
ticular to those who are interested in the subject. In
the chapter, he gives a champion for each opinion;
much of my further discussion involves the men and
their approaches as Hadamard presents them in his
book.

Max Muller, the etymologist, felt that there was no
possible way for anybody to think except by using
words, while Francis Galton, the biostatistician (a rath­
er unfortunate choice, I think), was the one who point­
ed out that a lot of people do think without words.
I think that this is nicely resolved by Edward Wilson
in the Autumn 1984 issue of The American Scholar:

Johns Hopkins APL Technical Digest, Volume 6, Number 2

B. W. Hamill - The Role of Language in Problem Solving

There is a real question about the way people think and the influence
of language on the process.

The symbols of art, music, and language freight
power well beyond their outward and literal meanings.
So each one also condenses large quantities of infor­
mation. Just as mathematical equations allow us to
move swiftly across large amounts of knowledge and
spring into the unknown, the symbols of art gather
human experience into novel forms in order to evoke
a more intense perception in others. Human beings
live-literally live, if life is equated with the mind­
by symbols, particularly words, because the brain is
constructed to process information almost exclusive­
ly in their terms.

He is taking the Max Muller approach to the ques­
tion, of course, and the other approaches you can find
well spelled out in Hadamard's chapter. The whole
question, I think, is put into perspective by Roman
Jacobsen (as quoted by Hadamard), just as he has put
so many other questions into proper perspective:

Signs are a necessary support of thought. For so­
cialized thought (stage of communication), and for the
thought which is being socialized (stage of formula­
tion), the most usual system of signs is language
properly called; but internal thought, especially when
creative, willingly uses other systems of signs which
are more flexible, less standardized than language and
leave more liberty, more dynamism to creative
thought.

William Rowan Hamilton put it in a nice analogy
that Hadamard describes in his book: Think of a per­
son digging a tunnel in a sandbank. He finds that af­
ter he has dug about a foot, the ceiling starts caving
in; he has to get out of the way and let a mason build
arches or somebody do some other form of shoring
so that he can come back into the tunnel and dig the
next foot. So we have two different people doing
different things: the fellow with the shovel digging the
sand out of the way and the fellow with the trowel and
mortar building up the arches behind him. If we think
of the dynamism of creative thought as the fellow dig­
ging away at the problem and then of the transforma­
tion and communication of that thought as the mason
building the arches, we realize that there can be a sin­
gle activity carried out by very different means and
that the final result (namely, a tunnel you can safely
walk through in one case or a paper in a journal in
another) really requires both kinds of work. What
seemed to be an unsolvable problem turns out to be
no problem at all. I refer once again to the sequence
of panels in my figure; this is what we really mean,
I think, by problem solving: To the extent that we can
find that the problem we have to solve is, in fact, no

Johns Hopkins APL Technical Digest, Volume 6, Number 2

problem or a trivial one, we have taken advantage of
our intelligence; perhaps we can teach our machines
to take advantage of their intelligence in the same way.

I am reminded c~~one of H. H. Munro's little es­
says (writing as Saki). I will not attempt to quote it
because it is a bit too long to read every word, but
again, I refer you to the full text. He had written a
book that had gotten some slight renown, and a friend
of the family asked where she could get a copy. He
pointed out that having recourse to an ironmonger or
a greengrocer would entail delay and disappointment
and suggested that she visit a bookshop. She met him
at a private view a couple of weeks later and said "It
is all right, I borrowed it from your aunt." This is an­
other example of essentially working around a prob­
lem rather than actually addressing it, and I recom­
mend to all of the intelligence people here, artificial
and natural, that you look for ways of avoiding your
problem before you spend a lot of time solving it.

Let me summarize this phase of my talk, namely,
the influence of natural language on culture and there­
fore on people, by a little bit of doggerel.

The Irish had no word for "no,"
The Romans none for "yes,"

Which language best helped empire grow
Is easy to assess.

I now move to the second part of my talk, which
deals not with natural language and natural people but
with programming languages and programmers. (That
did not come out exactly the way I meant, but I guess
it made the point clearly.) I would like to introduce
the topic by taking a far-out position from which we
can perhaps swing back toward the center. This is one
taken by David Bolter in Turing's Man, another re­
cent book that I recommend to your attention and that
requires careful and critical reading. "The whole
course of linguistic philosophy from Leibnitz to the
positivists seems to culminate in the computer, where
symbols are drained of connotations and given mean­
ings solely by initial definition and by syntactic rela­
tions to other symbols." One of the reasons why I
recommend that you read Bolter critically is exempli­
fied here. Those of us who have become fluent in a
programming language realize that, although what
Bolter says is strictly true when we first open the man­
ual, it rapidly becomes untrue as we become fluent in
the language and begin thinking in it (as Whorf would
say) because the symbols in artificial languages pick
up their own connotations as well as their denotations
just as symbols do in natural languages.

I think that a good way of putting this is Richard
Conner's statement, "A properly trained programmer

155

B. W. Hamill - The Role of Language in Problem Solving

thinks primarily in terms of programming, only secon­
darily in terms of a particular language." That really
is going a bit toward Galton's view of the Whorf
hypothesis. We can move back to the other side by
means of a sentence from Dijkstra's Discipline of
Programming, "A most important, but also a most
elusive, aspect of any tool is its influence on the habits
of those who trained themselves in its use. If the tool
is a programming language, this influence is-whether
we like it or not-an influence on our thinking habits."
This could be a straight quotation from Whorf and
subject to the same arguments pro and con on both
sides. I am not going to say very much about specific
languages because there are a number of people here
who would protest violently against any specific state­
ment I might make about a specific language. I will
quote Conner again, from his nice little essay, "Hap­
py 25th Birthday, COBOL," in Computerworld: "Al­
though we think of COBOL as a language, this
discussion [that is, his, not mine] will treat it as some­
thing more-a mentality, if you will." Benjamin Lee
Whorf again.

I have an interesting example of the direct influence
of culture rather than language on behavior; this is
again from Dijkstra. One of the problems he set was
to arrange a line of marbles in the order of the colors
of the Dutch national flag, which is red, white, and
blue. The subject is given a device that can pick up
a marble, look at it and determine its color, and move
it to one place or another. However, it is very expen­
sive to do this so we do not want to do it twice to the
same marble. The solution to the problem is pretty
straightforward: The subject takes the groove in which
the marbles are and says, "I am going to put all the
red ones to the left, then the white ones, and then the
blue ones." Thus, as he picks up each marble and de­
termines its color, he has the problem of where in the
groove to put it. When Dijkstra asked his students,
who were either Dutch or American, which marble to
inspect first, their suggestion was always' 'the leftmost
one." He says: "I had the idea that this preference
could be traced to our habit of reading from left to

right. Later I encountered students that suggested first
the rightmost one, one was an Israeli computing sci­
entist, the other was of Syrian origin. " So here we have
a secondary influence of language, namely, the direc­
tion in which you write it does have at least this mod­
est effect on our thinking of various kinds of problems.

Why is it easy for people to continue to disagree on
the effectiveness of particular languages? According
to B. A. Sheil's article on the psychology of program­
ming in Computer Surveys:

As practiced by computer science, the study of
programming is an unholy mixture of mathematics,
literary criticism and folklore. However, despite the
stylistic variation, the claims that are made are all ba­
sically psychological; that is, that programming done
in such and such a manner will be easier, faster, less
prone to error or whatever. . .. Sadly, however, psy­
chological data have been at best a minor factor in these
debates.

With that very real understatement of the situation,
I will terminate my comments.

BIBLIOGRAPHY

J. D. Bolter, Turing's Man: Western Culture in the Computer Age,
University of North Carolina Press, Chapel Hill (1984).

R. L. Conner, "Happy 25th Birthday, COBOL," Computerworld
(Apr 5, 1984).

R. L. Conner, Computerworld (Sep 10, 1984).
E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, En­

glewood Cliffs, N.J. (1976).
J. Hadamard, The Psychology of Invention in the Mathematical

Field, Princeton University Press (1945).
M. Muller, Three Introductory Lectures on the Science of Thought,

London (1887).
H. H. Munro, "The Sex That Doesn't Shop," The Complete Works

of Saki, Doubleday & Co., Garden City (1976).
B. A. Sheil, "The Psychological Study of Programming," Com­

puting Surveys 13, 101-120 (1981).
B. L. Whorf, Language, Thought, and Reality, J. B. Carroll, ed.,

MIT Press (1956).
E. Wilson, "The Drive to Discovery," American Scholar, Autumn

(1984).

SPACE-AGE DEMANDS FOR POWERFUL COMPUTER LANGUAGES!

GEORGE C. WEIFFENBACH

The title of my comments is somewhat more gran­
diose than is appropriate and my real intention is some­
what more modest. In a broad sense, I represent the
user community, and more particularly, I view myself
as a broker for users, whether they are interested in
Dr. Weiffenbach was formerly head of the APL Space Department
and is now a Senior Fellow at APL.

156

scientific applications or other fields in the space are­
na. I'll restrict most of my remarks to things I am fa­
miliar with, activities we are involved in now, and then
I will take a flier and do a little speculating at the end.

I would like to address four general areas; they look
somewhat different, but there are relationships. I will
address first implantable medical devices, then scien-

fohns Hopkins APL Technical Digest, Volume 6, Number 2

B. W. Hamill - The Role oj Language in Problem Solving

With satelHtes, more emphasis has got to be placed on correct design than in almost any
other case there is no feedback through large production.

tific computing, spacecraft satellite design and manu­
facturing, and last, smart spacecraft.

Under the technology utilization program of the Na­
tional Aeronautics and Space Administration, APL
has been involved in a number of projects to develop
devices that are implanted in human beings. The work
has been done in conjunction with the Johns Hopkins
Medical School, the Massachusetts General Hospital,
the Mayo Clinic, and a number of other organizations.
Some years ago, we started with pacemakers, which
essentially had no smarts, and more recently we have
worked on a number of other things. As a sampling,
there are defibrillators with very primitive intelligence;
that is, they can observe the heart rate and note when
it goes into fibrillation-when it is arrested in effect­
and then shock the heart, all internally. Currently it
looks like hypertension is going to be the first closed­
loop system that we will be able to establish, a closed
loop in the sense that it will measure a person's blood
pressure and, in response to that, will inject medicine
into the bloodstream. In addition, there are an artifi­
cial sphincter, an insulin pump (we actually have in­
sulin pumps in several dogs in clinical trials with an
implantable device that has a fairly competent com­
puter), and pumps to inject morphine into the spinal
column. The last may very well be our first human im­
plant, because it is hard to test those on animals. With­
out going into a lot of detail, all these cases present
opportunities for some very smart implantable devices.
I don't think it takes too much imagination to think
of the things one would like to be able to do that would
involve expert systems programmed in very-large-scale
integrated circuits for implantable devices.

In scientific computing (or information processing
if you will) we are involved in three areas of research:
space physics (magnetohydrodynamics or plasma
physics), physical oceanography, and solid-earth geo­
physics. These all deal with very complex and heter­
ogeneous systems and already have enormous
databases that are being augmented at an accelerat­
ing rate. Examples are the imaging devices put in or­
bit for both physical oceanography and solid-earth
geophysics, which produce data at prodigious rates.
Another interesting characteristic all three areas share
is that they are at the point where current theory is
not adequate, and not adequate in very important
ways, which is shown by the fact that we have already
seen a number of phenomena that are predicted only
through the introduction of nonlinear theory.

Furthermore, we have a data glut that you would
not believe. As one example, for the imaging radar that
was put into orbit on the SEASAT satellite in 1979,
only 40 percent of the data has been processed and no

Johns Hopkins APL Technical Digest, Volume 6, Number 2

more than 10 percent has been analyzed; that satellite
lived for only 90 days. What we do not have is an in­
formation glut; I think the role of the techniques dis­
cussed at this symposium is obvious.

In the third area I wish to address, namely, space­
craft design and fabrication, we have all the normal
activities that come with running a business: account­
ing, management information systems, and the like.
It is already quite clear that, even in this rather nor­
mal kind of enterprise, we come up short in the com­
puting systems that we have available to address these
issues. But in the satellite business, we have other rou­
tine activities, e.g., inventory systems, that are not
quite standard. Because of the enormous cost of
designing, building, and launching satellites, and be­
cause we really want to achieve the most reliable pos­
sible system, we keep detailed birth-to-death records
on each of the many thousands of components on the
satellite. Obviously, re,cord keeping is a serious prob­
lem for us. Robert Jernigan and some other people
here have put together an inventory system; they do
not have it quite altogether-mainly a funding
limitation-but it has pulled us out of a real choke
point. We were so backed up that we were losing
schedule, and that is a very costly situation.

Looking at the space hardware design process, we
have a shortfall in computer-aided design, computer­
aided manufacturing, and computer-aided engineer­
ing. With satellites, more emphasis has got to be placed
on correct design than in almost any other case. The
reason is that there really is no mass production. We
cannot rely on a million customers out there some­
where to debug what we make-there is no feedback
through large production. There is no graceful way to
see what we have produced, note how it functions, and
then correct it. Every time we miss the boat there are
enormous cost and schedule problems. We are not
nearly where we would like to be in space hardware
design tools . That is the existing situation; I hope that
I am getting across the message that we urgently need
the tools that you people can provide.

Looking into the future toward smart spacecraft,
I get even more interested in pushing your art. We have
already seen the past impact of computers through­
out our society. In space technology, we are going to
see a total turnaround. Satellites have been kind of a
"gee-whiz" business; there is a lot of glamour attached
to it. We see the enormous rockets go off and it is very
impressive. A less spectacular but more impressive fu­
ture is in store. In less than ten years, I am convinced
that we will have the ability to design an information
processor, a computer, that can be put into a satellite
that will easily have all the power of a CRA Y and will

157

B. W. Hamill - The Role of Language in Problem Solving

almost certainly be even smarter. One of the driving
factors that I have noted-and you do not have to be
very sharp to see this happening-is the enormous
progress that is being made in the hardware side of
the computing business. We already have chips on the
market with half a million components on them, and
there does not seem to be any fundamental limitation
to increasing the number of components you can put
on a silicon chip by a couple of orders of magnitude.
It is fascinating that the Japanese are working on chips
of this kind, but with perhaps 40 layers on them. The
hardware is coming. It has an enormous impetus be­
hind it for all kinds of reasons.

What I have not yet seen is comparable progress in
our ability to exploit the hardware, which clearly
means computer architectures and programming.
Some very simple arithmetic, verified by a lot of ex­
perience, tells us that if we are going to design a eRA Y
for a satellite, the number of man-years needed to de­
sign the architecture and to turn it into a useful de­
vice is enormous. When we look further downstream
as the hardware gets more potent, today's conventional
approaches are simply going to become impossible. I
do not mean only from the standpoint of the length
of time and the number of people involved; if we do

158

not find different, more effective ways to carry out
this process, we will never get there. I think everybody
here must be very much aware of the futility of add­
ing more and more people into a programming task
of any kind (and designing the architecture of a smart
computer has got to be one of the most sophisticated
of these tasks). Sooner or later you reach a stage of
diminishing returns, where you simply never arrive at
the end point.

The potential that I can see in future smart, autono­
mous satellites is mind-boggling. I doubt that anybody
can really predict the manifold uses that future satel­
lite-borne computers can be put to. But I am convinced
that they will, in fact, allow us to do things that we
are totally unable to do today in terms of satellite au­
tonomy, reliability, and information processing. I
count on this community to provide the means by
which we can bring this about.

REFERENCE

1 The comments by R. P. Rich and G. C. Weiffenbach will appear in a forth­
coming Proceedings volume of the symposium on The Role oj Language
in Problem Solving-I, R. Jernigan, B. W. Hamill, and D. M. Weintraub,
eds., North-Holland Publishing Co., Amsterdam (in press). Reprinted by
permission.

fohns Hopkins APL Technical Digest, Volume 6, Number 2

