
DANIEL F. STERNE 

APPLIED RESEARCH IN ADA 

A three-phase program consisting of applied research into the Ada * programming language, Ada­
based design techniques, and the Ada Programming Support Environment has been developed at APL. 
The first phase established a foundation of initial Ada laboratory facilities, hands-on Ada experience, 
and basic literacy in Ada technical issues. The second phase is under way and is investigating the 
application of Ada to representative Navy shipboard systems. The third phase will develop spinoff 
products such as prototype reusable Navy software components, an advanced Ada training course, 
or new Ada Programming Support Environment tools to support development and maintenance of 
Navy Ada software. 

BACKGROUND 

What is Ada? Ada is a new state-of-the-art computer 
programming language developed by the Department 
of Defense for embedded computer systems. 1 But 
more importantly, Ada is also a modern approach to 
reducing software life-cycle costs. The approach en­
compasses a design philosophy that departs from the 
traditional emphasis on computational efficiency alone 
and recognizes that software must be designed to re­
duce software maintenance costs. In addition, the ap­
proach calls for the use of an integrated set of special 
utility programs to facilitate the designing, coding, 
testing, maintaining, and managing of software. This 
set of tools, called an Ada Programming Support En­
vironment, is being created in conjunction with the de­
velopment of compilers (translators) for the Ada 
programming language. 

The Department of Defense developed Ada to be­
come the single standard high-order language for the 
Department's embedded computer systems, and the 
armed services have embarked on plans to adopt Ada. 
Nevertheless, the transition to Ada involves a num­
ber of technical and management issues. The Navy has 
made substantial commitments to existing software 
standards and has millions of lines of code invested 
in such older languages as CMS-2. Thus, for the Navy, 
a transition to Ada entails not only technical risks but 
also a major shift in software policy and resource utili­
zation. 

The Fleet Systems Department of APL has been 
monitoring and participating in Ada developments 
since early 1981. During 1981, an in-house Ada docu­
ment library was established, and an informal news­
letter was issued to increase the scope of Ada aware­
ness within APL. The first useful Ada translator, de­
veloped by New York University, was installed on 
computer facilities managed by the Advanced Systems 
Design Group and made generally available. Members 
* Ada is a registered trademark of the u.s. Government (Ada Joint 
Program Office). 

266 

of the Group joined the national Ada special-interest 
group sponsored by the Association for Computing 
Machinery and became participants in the Ada 
Programming Support Environment standards com­
mittee, known as the Kernel APSE Interface Team. 
In late 1981, the Group's growing interest in and 
knowledge of Ada culminated in a plan for a three­
phase program of applied research. 

PROGRAM OBJECTIVES AND PROGRESS 

Phase 1 
The objectives of the first phase were to gain hands­

on programming experience and to acquire familiari­
ty with the central technical issues surrounding Ada 
and the Ada Programming Support Environment. This 
phase was carried out during 1982 and 1983 and was 
supported by the Independent Research and Develop­
ment Program at APL. The first task was to acquire 
an Ada program development system capable of sup­
porting larger programming experiments than could 
be carried out using the New York University transla­
tor. A survey of Ada compilers was undertaken. Based 
on the survey, a Telesoft compiler and an Intellimac 
computer (Fig. 1) were purchased. 

Next, a well-understood example application, suit­
able for redesign in Ada, was needed. An existing 
simulation of a distributed processing system was cho­
sen for its value as an educational vehicle. Although 
the simulator is not a real-time tactical program, it con­
sists of many components that execute in parallel and 
addresses many of the central issues of real-time tac­
tical programs. These include synchronization, buffer­
ing, resource sharing, deadlock prevention, and error 
recovery. The simulator was completely redesigned and 
programmed in Ada using the Telesoft/ Intellimac sys­
tem. Every attempt was made to exploit Ada's most 
significant new features. 

The resulting 2500-line program was analyzed and 
compared with the earlier version, which had been pro­
grammed using the Pascal language and the Di~ital 

Johns Hopkins A PL Technical Diges/ 



Figure 1-Telesoftllntellimac computer system used in Ada 
programming experiments. 

Equipment Corp. RSX-11M executive system. The 
Ada version of the simulator was judged more reli­
able, more transportable, simpler, and superior in 
overall organization. These improvements were at­
tributed to the use of Ada's advanced features: pack­
ages, tasks, and exception handlers. The team was 
favorably impressed with Ada but felt that its large 
size and the complexity of certain features would make 
comprehensive programmer training relatively diffi­
cult. The language features for intertask communica­
tions were found to be powerful and easy to use but 
may be less natural or less efficient than other mechan­
isms for some applications. Ada's large variety of pro­
gram building blocks allows designers to construct 
elaborate program architectures whose structures are 

Vo lume 5, Number 3, 1984 

difficult to envision from program listings. Conse­
quently, some form of pictorial representation is need­
ed as supplementary design documentation. A com­
bination of Ada-oriented graphic notations proposed 
in the literature 2

,3 was found useful. Figure 2 illus­
trates the use of this notation to depict one compo­
nent of the simulator. 

The remaining element of Phase 1 was a literature 
survey that concentrated on unresolved technical is­
sues considered of interest to the Navy. These includ­
ed the use of Ada as a program design language, use 
of Ada in distributed and multiprocessor systems, the 
suitability of various computer architectures for ex­
ecuting Ada programs, Ada educational approaches, 
and the compatibility of existing Navy software with 
Ada. 

Phase 2 
The objectives of Phase 2 are to explore the issues 

of applying Ada to Navy tactical software systems and 
provide lessons learned for future combat system up­
grades. Phase 2 encompasses two efforts, one funded 
by the Aegis Complementary Research and Devel­
opment Program and the other by the Tomahawk 
Cruise Missile Program. Each began in late 1983 and 
builds on the base of experience acquired in Phase 1. 

In the Aegis investigation, a simplified model of a 
large tactical computer program is being redesigned 
in a top-down manner. The Aegis Command and De­
cision System Computer Program was chosen as an 
example from among six candidate tactical systems. 
The selection was based on a number of factors in­
cluding representativeness, familiarity, availability of 
documentation, and potential for illuminating partic­
ular Ada issues. The Command and Decision Program 
is one of three computer programs forming the core 
of the Aegis Weapons System. It is responsible for 
coordinating the activities of the Aegis sensor and 
weapons subsystems in response to operator com­
mands and automated doctrine rules. The objective of 
redesigning the program is not to produce operation­
al tactical software but to identify problems and suc­
cessful techniques of applying Ada to a typical 
shipboard system. 

The investigation probes the aspects of program ar­
chitecture in which Ada-based designs will differ most 
from traditional ones. These aspects include schedul­
ing of functions in response to elapsed time or in­
put/output events, the exchange or sharing of data 
among functions, error detection and error handling, 
and the encapsulation of processor and device-depen­
dent information. Various system-level Ada design 
techniques discovered during Phase 1 are being 
evaluated. 

The redesign of the Command and Decision Pro­
gram is proceeding in three steps, or "cuts." During 
each cut, a simplified executable model of the program 
is built that is completely redesigned, based on the re­
quirements described in the Command and Decision 
System Program Performance Specification docu­
ment. Each model is of wider scope and higher fideli-

267 



D. F. Sterne - Program of A pplied Research in Ada 

To bus broadcast 

Bus-send 

Sequencer 

Figure 2-An example of an experimental Ada·based graphic notation, used here to describe a component of a 
simulator program. Rectangles and parallelograms represent Ada code modules: packages, procedures, tasks, 
and entries. Large arrows represent execution flow paths; small arrows represent data flow paths. 

ty than its predecessor. At the beginning of each cut, 
only those design decisions and techniques that worked 
successfully in the preceding cut are retained; others 
are discarded. Similarly, choices among software de­
velopment computers, compilers, execution com­
puters, and peripheral devices are reexamined and new 
choices are made. 

The three cuts are expected to take approximately 
3,9, and 30 months, respectively. The first cut has re­
cently been completed. It uses a Digital Equipment 
Corp. VAX-ll / 780 computer and the UNIX operat­
ing system for both program development and pro­
gram execution, and an Ada subset compiler developed 
at the University of York, England. A Navy standard 
UYA-4 console is the program's primary input/out­
put device. 

The first cut model implements only a few essen­
tial, highly simplified command and decision func­
tions. The functions include managing a small data­
base of track reports from a single simulated sensor; 
displaying track positions, velocities, and identifica­
tion symbols on the UY A-4; and responding to oper­
ator commands to engage targets, drop tracks, and 
change track identifiers. Subsequent models will sup­
port multiple operators, additional operator functions, 
track reports from multiple sensors, doctrine-driven 
automatic system response, and increased detail in all 
implemented functions. Each cut will also include a 
wraparound simulation program to create input stimuli 
and record output responses. As shown in Fig. 3, the 
program provides simulated communications from the 
Aegis Weapon Control System and Spy Radar Con­
trol System. 

The other Phase 2 Ada activities are sponsored by 
the Tomahawk Cruise Missile Program, which is con­
sidering using Ada for future upgrades of the Toma­
hawk Weapon Control System software. As the 
Technical Direction Agent to the Tomahawk program, 
APL plans to support future upgrades by conducting 

268 

VAX-11 /80 
Computer 

Environment 
simulator 

Wraparound 
Simulation 

Program 
console 

Command and 
Decision System 
console 

Figure 3-Configuration of the software used in Phase 2 of 
the initial Ada investigation. The software includes a simpli­
fied model of the Aegis Command and Decision System and 
a wraparound simulation program to create input stimuli and 
record output responses. The wraparound simulation program 
provides simulated communications with the Aegis Weap­
on Control System and Spy Radar Control System and cre­
ates a simulated environment of friendly and hostile forces . 

software design experiments for the weapon control 
system. General areas of interest include experiments 
to improve the man/ machine interface and to incor­
porate Ada's design philosophy into the overall soft­
ware structure by using Ada as a program design 

Johns Hopkins APL Technical Digest 



language. To date, APL has assisted the Tomahawk 
program in identifying Ada risks and fallbacks and has 
participated in an Ada advisory committee for the 
Tomahawk Weapon System. 

In addition, the Tomahawk and Aegis programs 
have supported planning efforts to establish an APL 
Ada laboratory facility and a series of Ada awareness 
and education seminars. 

Phase 3 
By capitalizing on the insights gained in the Phase 

2 experiments, it should be possible to develop some 
specific spinoff products. Several potential spinoffs 
have already been identified. One is derived from what 
is perhaps Ada's greatest potential benefit: its support 
for constructing reusable software components. Tru­
ly reusable components will allow new software ap­
plications to be built from elements of earlier appli­
cations, resulting in substantial cost savings. If Ada 
proves successful in this respect, the Navy will even­
tually assemble a library of reusable components 
specialized for Navy applications. By generalizing and 
enhancing some of the Ada components developed in 
the Phase 2 experiments, APL may be able to contrib­
ute prototype reusable components to a Navy Ada 
library. 

Another potential spinoff concerns the need for 
more extensive and specialized Ada training. In par­
ticular, real-time system architects, having years of ex­
perience using traditional techniques and philosophy, 
may be ill-prepared to use a radically different tech-

Vo lume 5, Number 3, 1984 

D. F. Sterne - Program of Applied Research in Ada 

nology like Ada to design large tactical programs. Al­
though consultants and educational institutions offer 
numerous courses on Ada and on software engineer­
ing with Ada, these courses tend to be introductory, 
directed specifically at programmers, and concerned 
only with small, academic example applications. At 
present, there are no educational courses that address 
the needs of experienced real-time system architects. 
Another potential spinoff is an advanced educational 
course using the Phase 2 prototype systems as case 
studies. Because these prototypes are based on 
representative Navy applications, an analysis of their 
strengths and weaknesses may have significant peda­
gogical value. 

Another potential spinoff concerns the need for 
specialized Ada Programming Support Environment 
tools to support development of Navy tactical soft­
ware. The experience of building representative tacti­
cal systems may lead to the identification or devel­
opment of such tools. 

REFERENCES 
I Reference Manual for the Ada Programming Language, u.s. Department 
of Defense, ANSIIMIL-STD-1815A-1983 (983). 

2 R. Buhr, "A Graphical Design Notation for Ada with Realistic Examples," 
ACM AdaTEC Meeting, San Diego (24-25 Feb 1983). 

3G. Booch, Software Engineering with Ada, Benjamin Cummings Pub. Co., 
Menlo Park , Calif., pp. 49-52 (1983). 

ACKNOWLEDGMENT-The author wishes to thank the following for 
their contributions to tlie results described in this article: M. E. Schmid, 
R. A. R. Pearce, T . A. Grobicki, and M. J . Gralia. 

269 


