
MARK E. SCHMID 

FAULT TOLERANT COMPUTING VIA MONITORS 

The growing use of embedded computers for both military and commercial applications has in­
~reased the imp~rtance of reliability in c?~puter .design. A g~neric technique called computer monitoring 
IS explored for ItS fault tolerant capabIlItIes, wIth emphaSIS on transient fault detection. The success 
of a particular monitor (the program flow monitor) is established through experimentation and is-
sues related to its implementation are examined. ' 

THE NEED FOR FAULT TOLERANCE 

The components used in early computers had rela­
tively short lifetimes. Room-size computers using vacu­
um tubes and relays reflected the low reliability of their 
fundamental components. Calculations performed by 
computers needed to be scrutinized carefully; in some 
cases, the calculations were used only after verifica­
tion by manual techniques. 

Computer designers, recognizing the need for great­
er reliability, began developing techniques for fault 
avoidance and fault tolerance. Fault avoidance stresses 
the prevention of faults through the use of reliable, 
tested parts and conservative design practices that will 
tend to extend a part's lifetime. Although fault avoid­
ance contributed to greater reliability, it alone was not 
enough. Fault tolerance, the ability to withstand an 
error and continue functioning correctly, became a 
common design practice primarily because it was need­
ed to provide a reasonable availability of a properly 
functioning computer. 

When the transistor and, later, the integrated cir­
cuit were introduced, the impact on the reliability of 
computers was so dramatic that designers found fault­
avoidance techniques to be sufficient for most com­
puter applications. The extra expense incurred in fault 
tolerant designs was no longer cost effective. But the 
advent of this new generation of reliable computers 
inspired a new range of application in which people 
would depend on the proper operation of the com­
puter. Such dependency began in small experimental 
applications but has since spread throughout the 
Department of Defense and industry. Examples in in­
dustry that affect a very broad population are tele­
phone systems, banking operations, and even new cars: 
all are highly dependent on computers. Certain appli­
cations, particularly life-critical ones, have always 
demanded fault tolerance, not just fault avoidance. 
But the current pervasive use of computers has made 
computer failure intolerable in a much wider range of 
applications. 

238 

BACKGROUND - FAULT TOLERANT 
TECHNIQUES 

Fault tolerant computer systems have traditionally 
relied on various forms of redundancy to enable cor­
rect operation despite the occurrence of a fault. A tech­
nique known as triple modular redundancy, shown in 
Fig. 1, uses three separate modules to perform a 
?esired function independently. Each module reports 
Its results to a voter, which produces a majority re­
sult. This protects against errors in a single module 
and in most cases will allow the detection of multiple 
errors (because faulted modules will be unlikely to fault 
in exactly the same way). However, the effects of mul­
tiple ~odule errors are implementation-dependent, 
and, If total protection against multiple failures is 
desired, higher degrees of redundancy (more modules) 
are needed. 

The voter in Fig. 1 is a potential source of failure 
because it is not implemented redundantly. In any 
modular redundant system, a point will exist where a 
"decision" must be made to create a single output 
from the redundant inputs. Normally, the voter will 
?e m~ch simpler than the modules it votes on, giving 
It an mherently greater reliability. Its simplicity and 
the use of fault avoidance are the keys to its reliability. 

Computer 
element 

No.1 

Computer 
element 
No.2 

Fault flag Majority 
(optional) output 

Computer 
element 
No.3 

Figu.re 1-Triple modular redundancy uses a majority result 
that IS produced by "counting the votes" from three indepen­
dent computers. 

Johns Hopkins A PL Technical Digest 



Redundancy is still the best technique available for 
providing nonstop, error-free computing with reason­
able certainty. Its only drawback is the cost of 
duplicating so much hardware. The cost extends be­
yond the obvious monetary one. Many systems that 
require fault tolerance, particularly in the military, also 
have severe restrictions on their physical size and pow­
er. Redundant designs may be impractical in such sit­
uations. At various times, the gains in Very Large Scale 
Integration technology promised to allow "on-chip 
redundancy," reducing the penalties associated with 
redundant designs. But with few exceptions, higher 
gate densities have been used to produce more com­
plex computers, not redundant implementations of 
simple ones. Thus alternatives to redundancy-based 
fault tolerance have become of great interest, both in 
commercial and military markets. 

Recently, the study of alternatives to redundancy has 
become a very active research area, with a technique 
called monitoring being one of the primary interests. I 
This is also the focus of a three-year research and de­
velopment project at APL. 

Many emerging computer applications (especially 
those using microprocessors for real-time control) have 
reliability requirements that are less stringent than the 
ultrareliable, nonstop nature of redundant systems 
with voters. Often brief periods of errant operation 
can be tolerated, as long as correct operation is even­
tually resumed or a shutdown is completed. 

Two practices are currently used to achieve this level 
of reliable operation: the watchdog timer and self-test. 
The watchdog timer 2 is a device that provides a 
"sanity check" on a processing element. The watch­
dog requires a periodic update to be delivered by the 
computer. If the update is not made within a certain 
length of time, the watchdog asserts that the computer 
is faulty. This may result in an attempt to restart the 
program, a shutdown of the computer, an attempt to 
start a standby processor, or other alternatives. 

The self-test function is a program that is designed 
to test a large percentage of the capabilities of a proces­
sor or a system. These tests often have diagnostic capa­
bilities that also help speed maintenance. Many 
commercial products use self-test capabilities to indi­
cate the product's status before use. This is referred 
to as a power-up test. Self-tests may also be executed 
periodically, allowing the integrity of the system to be 
verified during use. This use of the self-test is called 
confidence testing. 

There is an interesting distinction between these two 
techniques. The self-test generally is a thorough test 
of the functionality of the hardware. It can determine 
when a part of a processor or system has a permanent 
defect. The watchdog timer, on the other hand, con­
tinuously requires the computer to perform a very sim­
ple task and is considered a "monitor" of the 
computer. Because that task (periodically reporting to 
the watchdog) is written as part of the application pro­
gram, most events that severely disrupt execution of 
the program will cause the watchdog timer to report 
the system as faulty. The event causing the disruption 

Volume 5, Number 3, 1984 

may be a permanent fault of the type that the self-test 
would catch, or it might be a transient fault - one 
in which no permanent damage is done but that causes 
the normal operation to be upset. In cases where there 
is no permanently failed part, even a periodic appli­
cation of a built-in test would not detect the improper 
operation. 

Built-in tests usually do a very thorough job of 
checking functionality, something that watchdog tim­
ers do only indirectly and incompletely. The capabili­
ty of the watchdog timer to respond to transients 
would not be significant if the prevalence of transient 
faults were not so great. But data accumulated from 
a number of experimental systems indicate that the oc­
currence of transient faults is 20 to 50 times greater 
than permanent faults. 3 

THE GENERAL MONITORING CONCEPT 
Because of the relatively high frequency of transient 

faults, a generalized concept of computer monitoring 
has been developed; it is shown in Fig. 2. A monitor 
uses information about the program being executed 
to check constantly for correct operation. In the case 
of a watchdog timer, the information used is knowl­
edge of the periodic update to the watchdog. Much 
more complex monitors have been devised, with the 
limiting case being a duplicate of the processor check­
ing every aspect of operation. 

A comprehensive overview of the monitoring ap­
proach to fault tolerance is presented in Ref. 1. High­
ly ranked among the relevant issues are character­
izations of performance deviations to which monitors 
can be sensitized and assessments of monitor effective­
ness. The APL effort has focused on observation of 
performance deviations and experimental evaluation 
of monitors. 

Faults can be viewed at different levels. At the lowest 
level, noise on a transmission line, a marginally oper­
ating transistor, or the impact of an alpha particle on 
a memory cell may be the underlying physical cause 
for faulty operation. The physical fault may propa­
gate upward, perhaps causing execution of an errant 
instruction that in turn might cause a system action 
that could be externally discernible. The various lev-

Characteristics of 

Processor 

Memory Error 

Figure 2-General monitor concept. The monitor continuous­
ly compares processor activity with stored characterizations 
of the correct operat ion. 

239 



M. E. Schmid - Fault Toleran t Computing via Monitors 

els of fault manifestation have been characterized in 
Ref. 4, which presents a taxonomy of fault tolerance. 
The monitoring devices considered here are sensitized 
at the informational level, where the computer pro­
gram may provide an extensive description of normal 
operation. A disruption at this level will be referred 
to as an upset. 

EXPERIMENT ATION 
There has been little previous experimental work 

regarding characterizations of upsets in computer sys­
tems. This problem was addressed with two series of 
fault-injection experiments on a representative 
microprocessor-based system. In the first series, the 
system executes a small machine language program; 
in the second series, a much larger software environ­
ment developed with a high-level language is used. In 
each series, faults from a broad spectrum of fault con­
ditions are applied in individual experiments to an 
otherwise properly functioning computer. An exten­
sive instrumentation complex records data associated 
with the upsets that result from the injections. These 
data are used to characterize the upsets and to serve 
as a benchmark for the performance of candidate up­
set monitors. 

In both experiment series, one particular class of up­
sets is seen to be dominant. However, full, rigorous 
designs of monitoring devices sensitized to such up­
sets are, in general, prohibitively complex and/or 
memory intensive. Hence, there is motivation to con­
sider more practical upset monitor designs. This is 
done for a particular class of upsets in the form of 
"compressed monitors." Here, the database that char­
acterizes correct operation is reduced to make im­
plementation more reasonable. Interestingly, rather 
extensive compressions yield upset monitors with up­
set detection capabilities that approach those of a full, 
rigorous implementation. 

A testbed containing a small computer system based 
on a Z80 microprocessor was developed for ex­
perimentation. Single faults are injected into the sys­
tem under a wide range of conditions. Since so little 
is known about the details of faults that actually oc­
cur, a set of approximately 700 unique fault-injection 
conditions is used for each of the two experiment se­
ries. The faults are generally transient and are inject­
ed in a single microprocessor line primarily because 
they may cause more subtle perturbations of computer 
operation than permanent and multiple line faults. De­
tection of an upset caused by such a fault is likely to 
be a lower bound on upset monitor sensitivity. 

Data are collected from separate "gold" and "fault­
ed" test runs as illustrated in Fig. 3. A gold run is ini­
tiated by starting execution from a known state. 
Microevents (e.g., central processing unit cycle states) 
and macroevents (e.g., input/output) are recorded 
over an interval that starts just prior to the fault in­
jection. Faulted runs occur on the same testbed under 
identical conditions but with a fault injected during 
the run in a precise, reproducible manner. Computer 
events are recorded as in the gold run. 

240 

Gold run Fault run 

Start Restart* 

Fault 

Compare/analyze 

Results 

* Restart under conditions identical to gold start 

Figure 3-Experimental procedure. Data are collected from 
an unfaulted period of execution (gold run). Further data are 
collected over the same period, but with a precisely inject­
ed fault (fault run) . The data from both runs are analyzed to 
characterize manifestations of the fault. 

UPSET CLASSIFICATIONS 
For each experiment, the induced upset is charac­

terized by means of a cycle-by-cycle comparison of the 
recorded data for gold and faulted operations. Where 
differences exist, the primary features are examined 
and an attempt is made to associate them with one or 
more upset classes. Naturally, the classes of most in­
terest are those that can be described in terms of highly 
observable features of operation, since these cor­
respond to the most promising upset monitors. Others, 
such as data upsets, appear to be unmonitorable with­
out redundant hardware because of the difficulty in 
characterizing correct operation. Certain upset class­
es tend to cover a significant majority of the upsets 
observed. However, some recorded upsets cannot be 
classified because they correspond to differences be­
tween gold and faulted runs that are very complex, and 
a general classification is not realistic from the per­
spective of external monitoring. Fortunately, such 
cases are the exception; only 20070 of the upsets were 
unclassifiable. 

Seven monitorable upset classes were identified. 
These classes are listed and explained in Table 1. Fig­
ure 4 shows the extent to which each upset class cov­
ered the upsets produced by an injection. Also reported 
is the average time (in microseconds) between fault in­
jection and the observance of a classifiable upset, 
called the time of emergence. 

Time of emergence is obviously related to latency 
of detection by associated upset monitors. In Fig. 4, 
the first bar, labeled "All," indicates the percent of 
upsets that could be classified in any of the monitor-

Johns Hopkins A PL Technical Digest 



Q) 

Table 1 - Upset classes. 

IPF (invalid program flow) Improper sequence 
of instructions 

lOA (invalid opcode address) Fetch of an instruc­
tion from a nonin­
struction address 

UNM (unused memory) Memory access to an 
existent but unused 
memory area 

IRA (invalid read address) Read access (for data) 
to an instruction 
area, or unused or 
nonexistent memory 

IOe (invalid opcode) Fetch of an illegal 
instruction, or an 
instruction not part 
of the subset used 
in the specific task 
software 

IWA (invalid write address) Attempt to write into 
memory not desig­
nated as alterable 

NEM (nonexistent memory) Access to a location 
with no memory 

80~----------------------------------~ 
(6) ~Denotes time of emergence 

(12) 

N 60 (15) 
(26) (26) c 

Q) 

E: 
~ 40 
Q) 
Cl 

~ 
~ 20 
o 
u 

o 
All 

(12) 

(22) 

IPF lOA UNM IRA IOC IWA NEM 

Upset class 

Figure 4-Coverage by monitorable upset class. Seventy per­
cent of the upsets fell into at least one monitorable upset 
class. Bar heights indicate the percentage of upsets that were 
covered by a class. Numbers in parentheses report the aver­
age time, in microseconds, between the injected fault and 
the behavior indicative of the upset class. (See Table 1 for 
full monitor names.) 

able categories. The most predominant single catego­
ry is invalid program flow. Note that a given upset 
could often be characterized as fitting more than one 
classification, resulting in significant overlap between 
classes. 

FULL PROGRAM FLOW MONITORS 
In both series of experiments, invalid program flow 

characterized the greatest number of observed upsets 
and also had the minimum time of emergence. This 
provided strong motivation for an investigation of 
practical and efficient implementations of program 
flow monitors. 

Program flow is defined as the sequence of instruc­
tions that are executed by the computer. It is charac­
terized by the addresses associated with the instructions 

Volume 5, Number 3, 1984 

M. E. Schmid - Fault Tolerant Computing via Monitors 

and may be described by source-destination address 
pairs. The source and destination addresses are de­
fined, respectively, as the first and second addresses 
of a pair of sequentially executed instructions. A giv­
en destination address may have more than one pos­
sible source address (e.g., the first instruction of a 
subroutine) or a given source address may be paired 
with multiple destinations (e.g., a return instruction). 
During execution, the program flow monitor compares 
known valid source-destination address pairs with pairs 
that are observed. 

Figure 5 shows realizations of a full program flow 
monitor. The term "full" is used to describe these 
realizations because they completely identify all valid 
and invalid address combinations. That is, no signifi­
cant attempt has been made to condense the source­
destination pair representation. In the figure, the num­
ber of valid address pairs is represented by v, and the 
number of bits in an address specification is w. 

Content Addressable Program Flow Monitor 
Figure 5a illustrates what is perhaps the simplest full 

program flow monitor in concept, but one that is dif­
ficult to implement. The valid source-destination pairs 
are concatenated and entered into a memory that is 
content addressable. An observed source-destination 
pair addresses the memory to determine whether the 
pair is valid. Although this method requires the least 
memory of the depicted realizations (v2w bits), it im­
poses the greatest complexity on the mechanism that 
validates an observed address pair. 

Address Universe Program Flow Monitor 
Figure 5b displays a memory intensive realization 

of a full program flow monitor. A I-bit-wide memo­
ry table of all possible combinations of source and des­
tination addresses (2 2W bit memory) is used to repre­
sent the valid address pairs. Observed source and des­
tination addresses are concatenated to form an index 
into the table, and the memory output directly indi­
cates the validity of the address pair. 

Indexed Program Flow Monitor 
Figure 5c is a compromise that uses indexing to re­

duce the memory required for the address universe 
method. An observed address pair is tested by using 
the source address to find the start of a set of valid 
destinations. The valid destinations are compared to 
the observed destination to determine the observed 
pair's validity. Such a realization of a full program 
flow monitor requires 2 w(lOg2 v) + wv bits. 

COMPRESSED PROGRAM FLOW MONITORS 
The full program flow monitor realizations de­

scribed in the previous section require either extensive 
memory or device complexity. In general, this repre­
sents a major drawback to their utilization. Hence, an 
investigation of more practical program flow moni­
tors was warranted. The monitors discussed here are 
referred to as compressed program flow monitors. The 
term compressed is used because the source-address 

241 



M. E. Schmid - Fault Tolerant Computing via Monitors 

v 

(a) Content addressable (2w X v bits) 

Source Destination 

Source Destinat ion 

Content match (valid)/ 
No match (invalid) 

(oj Table of address universe (2 2W bits) 

Sou rce 

Source 

Destination 

Valid/ invalid 

(c) Indexed (2 W (1092 v) + vw bits) 

Destination 

/ W IComparel 

v 

--­W 

/ W 

Valid/ 
invalid 

Figure 5-Three full program flow monitors. (a) A table of valid 
address combinations is searched for a match to the current 
combination . (b) The current address combination is used to 
index a table of all possible address combinations. The in­
dexed value indicates the validity of the combination . (c) The 
current source address indirectly indexes a table to deter­
mine a set of valid destinations. A search of that set is made 
for the current destination address. 

pair representations that the designs utilize are con­
densed relative to those of full program flow monitors. 

A compressed program flow monitor is illustrated 
in Fig. 6. Note the similarity to the address universe 
full program flow monitor (Fig. 5b) in the use of a 
"bit map" to indicate the validity of source-destination 
address combinations. However, instead of having a 
valid/ invalid entry in the map for all possible source­
destination address combinations, the compressed pro-

242 

Source Destination 

W 

--~L..~-- Valid/invalid 

Figure 6-Compressed program flow monitor. Source and 
destination addresses are combined and compressed to form 
an index into a "bit map" of all possible compressed combi­
nations. The indexed value indicates the validity of the com­
bination. 

gram flow monitor uses a compression or coding 
scheme to reduce the domain of combinations over 
which valid/invalid entries must be provided. For 
evaluation purposes, each individual source-destina­
tion address combination was compressed to a 
representation of length m (where m is no greater than 
w, the number of bits in one address specification), 
resulting in a bit map of 2 m bits. For each of the 
compression schemes, the bit map size may be varied 
so that ranging degrees of compression could be evalu­
ated. An analogous technique, called "hashing," is 
used extensively in software design to achieve a fast 
search capability with a low storage requirement. 

As a benchmark, it is interesting to compare the 
memory requirements of compressed program flow 
monitors with those of the indexed full program flow 
monitor of Fig. 5c, which seems to be the most prac­
tical in terms of memory intensity and complexity of 
all the full program flow monitors. Assuming that 
there are w bits in an address, if the source address 
is used to index a memory table and if the number of 
valid and specifiable address combinations is v, then 
the memory required for an indexed full program flow 
implementation is vw + 2 IV (lOg2 v) bits. Since the 
number of valid address combinations may indeed ap­
proach the size of the address space, the memory re­
quired can be on the order of w2 IV bits, which is often 
the size of the monitored system's memory. Hence, 
a compressed program flow monitor requiring only 
2 m bits (with m less than w) compares quite favor­
ably, assuming, of course, that it can be shown to have 
similar coverage and latency figures. As will now be 
discussed, this is indeed the case. 

The four compression methods listed in Table 2 have 
been evaluated for effectiveness. This evaluation used 
the experimental data described previously, which en­
abled the wide variety of fault conditions given in Ta­
ble 1 to be used in assessing the performance of the 
compressed program flow monitors. Because the cost 
of this monitor is governed primarily by the size of 
the bit map, the degree to which this additional stor­
age could be reduced was of great interest. For descrip-

Johns Hopkins A PL Technical DigesT 



Table 2-Program flow compressions. 

Type 

Difference 

Concatenate 

Swap exclusive-or 

Parity coding 

Method 

Difference between source 
and destination addresses 

Concatenation of lower half 
of source and destination 
addresses 

Exclusive-or of byte swapped 
source with destination 

Parity bits generated from 
concatenated source and 
destination 

tive purposes, we will define the storage ratio as the 
ratio of the memory used by the bit map to the mem­
ory required for program storage (this does not include 
data storage). For each compression method, six stor­
age ratios were examined, ranging from I to 11128. 

All compression monitors are based on combining 
source-destination address pairs in various ways. A 
very straightforward method is the' 'difference moni­
tor," which uses the difference between source address 
and destination address to specify valid combinations. 
For example, if a combination of source address equal­
ing 0001002 and destination address equaling 0001102 

occurred, then 1111102 (2's complement form) would 
represent a valid source-destination pair. 

The next two compression methods involved swap­
ping and exclusive-or operations on portions of the val­
id source and valid destination addresses. The 
"concatenated monitor" uses a compression that is a 
concatenation of the lower w/ 2 bits of the source ad­
dress with the lower w/ 2 bits of the destination ad­
dress. The "swap exclusive-or monitor" is based on 
a compression wherein the lower w/ 2 bits of the source 

70 l iii i i 

2 
Ful l program flow monitor coverage 

60 

M. E. Schmid - Fault Tolerant Computing via Monitors 

address are first swapped with the upper w/ 2 bits, and 
an exclusive-or of the swapped source and destination 
addresses is then performed. In the above compres­
sion methods, representations of less than w bits are 
obtained by masking off the high-order bits as 
necessary. 

The last compression method is a parity coding. To 
achieve the m bits to be used by the parity encoding 
monitor, groups of 2w/m bits are combined to create 
each of the m parity bits. Alternating bits are taken 
from source and destination addresses, starting with 
the high source bit and low destination bit, to get an 
interleaving effect. For example, again suppose that 
the source address is 0001002 and the destination ad­
dress is 0001102 , If m = 4, then three bits at a time 
are combined, resulting in 00102 as the represen­
tation. 

Figure 7 shows the experimental results for the four 
different compressed program flow monitors for var­
ious storage ratios (i.e., the bit map was compressed 
to various sizes). It appears that, although the abso­
lute performance for the different compressions varies, 
the performance of each approaches the coverage of 
the full program flow monitor as the degree of com­
pression is reduced. The parity coding and swap 
exclusive-or compressions demonstrate moderately 
higher coverage and, although not indicated in Fig. 
7, also exhibit the minimum latency. As points of refer­
ence, the memory requirements for the content ad­
dressable and address universe full program flow 
monitors are also shown on the horizontal axis. With 
the possible exception of the content addressable full 
monitor, these memory requirements are excessive. 
However, as mentioned earlier, the primary disadvan­
tage of a content addressable program flow monitor 
is its significant hardware complexity. 

... ..:-------.::::'::: -:::: ",---' ~ 50 
Cll 
Cl 
C'C 

~ 40 
a 
u 

~ 30 
Q. 

::J 

20 

Swap 
Pa ri ty 

, 
I 

I 

, 
I 

10 Concatenate 

,,'" ",' 

,: ",,,,,,,,, 
, 

OL-~'~-L __ ~ ____ L-__ L-__ ~ __ -L __ ~ __ ~ __ ~ __ -L __ ~I~l~~ 
1 1 ..l 1 1 1 1 2 4 8 64,000 

128 64 32 16 8" '4 "2 Content Universe 
addressable table 

Bit map size (bits) 
Storage ratio = Program size (bits) 

Figure 7-Performance of various compressed program flow monitors as a function of storage ratio. Compres­
sions that reduce the bit map to a size greater than 1/16 the program storage size capture much of the capability 
of a full program flow monitor. Storage ratios for content addressable and address universe full program flow 
monitors are shown for comparison. 

Volume 5, Number 3, 1984 243 



M. E. Schmid - Fault Tolerant Computing via Monitors 

CONCLUSIONS 
A large set of experiments, where single-line tran­

sient and permanent faults were injected into a 
microprocessor, was conducted to characterize the up­
sets induced by injected faults. It was found that the 
most prevalent monitorable behavior during the up­
sets was invalid program flow. This conclusion led to 
an investigation of program flow monitors. 

Straightforward program flow monitor implemen­
tations were excessively large and/or complex because 
of the difficulty in representing valid program flow. 
As a result, four methods for reducing the valid pro­
gram flow representation were developed and evalu­
ated using the experimental data from the upset 
characterization study. The results were quite favor­
able. Figure 7 indicates that compressed program flow 
monitors may provide coverage of upsets nearly as well 
as a full program flow monitor but with a fraction of 
the full monitor's memory (and cost). 

Monitoring techniques, and specifically program 
flow monitoring, can provide a satisfying degree of 
fault tolerance to systems that otherwise might employ 
no fault tolerance technique at all. Preliminary results 
from experiments conducted on a recently developed 
program flow monitor demonstration system indicate 
the monitor's performance to be better than the data 
presented here. Such results, if confirmed, would give 
even more impetus to the development of monitoring 
techniques. 

244 

REFERENCES 
I A. Avizienis , "Fault Tolerance by Means of External Monitoring," in 
Proc., AFIPS Con! 50, pp. 30-40 (1981) . 

2W. H. Toy, "Error Switch of Duplicated Processor in the No.2 Electronic 
Switch System," in Proc. 1971 International Symp. on Fault Tolerant Com­
puting, pp. 108-109 (1971). 

3 D. P. Siewiorek and S. Swarz, The Theory and Practice 0/ Reliable Sys­
tem Design, Digital Press, p. 18 (1982). 

4 A. Avizienis, " Framework for a Taxonomy of Fault Tolerance Attributes 
in Computer Systems," in Proc. 1983 Computer Architecture Symp. , pp . 
16-21 (1983). 

RELATED PUBLICATIONS 
B. Courtois, "Some Results About the Efficiency of Simple Mechanisms for 
the Detection of Microcomputer Malfunctions," in Proc. 1979 International 
Symp. on Fault Tolerant Computing, pp . 71-74 (1979). 

S. Z. Hassane, Signature Testing 0/ Sequential Machines, Report 82-18, Stan­
ford University Center for Reliable Computing (1982). 

D. J. Lu, "Watchdog Processors and VLSI," in Proc. National Electronic 
Con! 34, pp . 240-245 (1980). 

M. Namjoo, CERBERUS-16: An Architecture/ora General Purpose Watch­
dog Processor, Report 82-19, Stanford University Center for Reliable Com­
puting (Dec 1982). 

M. Namjoo and E. 1. McCluskey, "Watchdog Processors and Capability 
Checking," in 12th International Symp. on Fault Tolerant Computing, pp. 
245-248 (1982) . 

M. E. Schmid, R. L. Trapp, A . E. Davidoff, and O. M. Masson, "Upset 
Exposure by Means of Abstraction Verification," in 12th International 
Symp. on Fault Tolerant Computing, pp. 237-244 (1982). 

ACKNOWLEDGMENTS-Much credit for the accomplishments of this 
project must go to the other primary participants, R. L. Trapp and A. E. 
Davidoff of APL, and O. M. Masson of The Johns Hopkins University 
O . W. C. Whiting School of Engineering. This work was supported as an 
Independent Research and Development Project under general contract 
N00024-83-C-5301 with the Department of the Navy. 

Johns Hopkins APL Technical Digest 


