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WIDE-AREA CORRELATION AND TRACKING 
OF SURFACE SHIPS USING MULTIPLE SENSORS 

Both local and wide-area sensors are used by the Navy to collect information on the position and 
identity of surface ships. For this information to be useful, a process known as correlation and 
tracking must be applied to the diverse sensor inputs to establish a surface picture free of positional 
and identity ambiguities. The basic procedures used in multisensor correlation and tracking must 
partition sets of sensor reports into subsets (called tracks) corresponding to single objects, and must 
estimate the identity and position of each object based on the information in the tracks. Because of 
the volume of reports, it is desirable to automate these procedures as much as is practical. This arti­
cle describes a general Bayesian approach to automated correlation and tracking of surface ships 
that has been tested using real-world data. 

INTRODUCTION 

In recent years, the U. S. Navy has been faced with 
an increasingly extensive and demanding requirement 
for wide-area surveillance of surface ships. This has 
been necessitated by the growing tendency of foreign 
navies to conduct global operations and by the U. S. 
Navy's development of long-range antiship missiles 
such as Harpoon and Tomahawk. Estimates of the 
positions and identities of high-interest targets and 
the surrounding background ships over large ocean 
areas must be maintained for effective command and 
control. In addition, when a decision is made to 
launch long-range antiship missiles, accurate predic­
tions of future positions of the targets must be ob­
tained for effective missile fire control. 

Data for developing wide-area surveillance pic­
tures must be collected in many cases from sensors 
whose coverage extends well beyond the range of sen­
sors on the launch platforms. Collection, processing, 
and dissemination of surveillance information to 
support the use of long-range antiship weapons is an 
important function of the Navy command and con­
trol system. Within this system, reports from multi­
ple sensors and sources, consisting of the positions 
and (in some cases) identities of surface ships, must 
be partitioned into sets (tracks) associated with the 
same object. This process is called correlation. The 
sets of reports correlated with each other are then 
used in the tracking process to estimate positions and 
identities of surface ships at arbitrary times. 

Sensor reports can be quite diverse in content, fre­
quency of arrival, and quality. Some sensors provide 
unique identifiers of the ship under surveillance (e.g., 
ship name); others provide nonunique identification 
(e.g., the characteristics of electromagnetic emis­
sions, which may apply equally well to all ships with­
in a general class). Some sensors provide reports with 
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measured positions of objects only. At various times, 
different sensors provide reports at varying rates, 
depending on such factors as specific tasking of the 
sensor and the number and behavior of objects under 
surveillance. Also, since the sensors may be remote 
from the facilities where correlation and tracking are 
performed, communication delays accrue. 

Because of the diversity of communication paths, 
report arrival rates vary quite widely; the order of 
receipt of a report is not always the chronological 
order of observation. Typically, sensor reports are 
accompanied by individual assessments of error sta­
tistics, but the statistics and the degree of compliance 
with the implied performance may vary considerably 
from report to report and from sensor to sensor. A 
more detailed discussion of sensor or data character­
istics can be found in the classified literature. 

In order to maintain current tactical pictures, this 
stream of diverse sensor reports must be processed on 
an event-by-event basis, i.e., as the reports arrive at 
the facility performing correlation and tracking. Fur­
thermore, the amount of data required to maintain 
current, accurate surveillance pictures over wide 
ocean areas makes automated correlation and track­
ing desirable. Within the present Navy command and 
control system, the ability to perform multisensor 
correlation and tracking relies heavily on manual in­
teraction. There is a need to implement more auto­
matic algorithms for performing these functions. 

A substantial amount of research on new correla­
tion and tracking algorithms has occurred in recent 
years. References 1, 2, and 3 are excellent surveys of 
the work and provide comparisons of the features in­
cluded in many of the algorithms. However, in many 
specific algorithms that follow these approaches, one 
or more operational considerations have been ig­
nored. Thus, for instance, of the 56 specific algo­
rithms compared in Ref. 2, only 11 appear to satisfy 
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the basic prerequisite of being recursive multiship al­
gorithms capable of handling a sequence of reports 
where each contains measurements of a single object. 
Only one of the 56 algorithms is designed to recur­
sively incorporate out-of-sequence data. Neverthe­
less, among the 56 candidates, an algorithm pro­
posed by D. B. Reid-l is promising from the stand­
point of maturity and generality. Consequently, this 
algorithm, with required modifications, forms the 
basis for the correlation and tracking approach 
described here. 

A BAYESIAN MULTIPLE-HYPOTHESIS 
APPROACH TO CORRELATION 
AND TRACKING 

In an automatic correlator/ tracker, an important 
and difficult problem is the representation and reso­
lution of ambiguities. Frequently, ambiguities arise 
when shipping densities are high, when sensor errors 
are large, or when identifying information supplied 
with reports is sparse or confusing. Ambiguities 
cause incorrect associations of reports with current 
tracks. Incorrect associations, in turn, cause tracking 
errors and misidentifications. However, subsequent 
reports can often assist in resolving ambiguities. This 
is especially true when there is a substantial amount 
of data arriving out of sequence. For this reason, 
some information about the ambiguities must be re­
tained as they arise. However, if all ambiguities and 
related information were retained as each report is 
processed, the storage and processing capabilities of 
any computer would quickly be overwhelmed. 

An important feature of the correlator/ tracker 
algorithm described here is its ability automatically 
to represent and resolve ambiguities dynamically and 
yet to adhere rigorously to limitations of computer 
memory and speed. This is accomplished recursively 
by a combination of clustering and hypothesis prun­
ing, as will be explained later. 

The input to the correlator/ tracker is a sequence of 
sensor reports. Suppose that, at some stage in the 
correlation process, n reports (M, , M 2 , ••• , M il ) have 
been received. Each report is assumed to have a mea­
sure of the position and possibly the identifying at­
tributes of a single surface ship. (If a report contains 
information on multiple ship contacts [i.e., a scan], 
each contact is currently treated separately.) Included 
in each report is the time, (, at which the measure­
ment was made. Also, it is assumed that a sensor er­
ror ellipse is included that indicates the estimated ac­
curacy of the reported position. 

The key to the correlation process is the construc­
tion of multiple "hypotheses." An hypothesis is a 
possible way of associating reports with ship tracks. 
In the case where n reports have been received, there 
may be m possible hypotheses, denoted H~, H ; , ... , 
H'~l . The algorithm is considered "recursive" be­
cause, on receipt of a new report, it generates new hy­
potheses based on that report and on the previous m 
hypotheses. Likewise, it is referred to as a Bayesian 
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algorithm because the probabilities of new candidate 
(possible) hypotheses are calculated using the prob­
abilities of prior hypotheses; the calculation is based 
on a mathematical theorem called Bayes' rule. 

At each step (corresponding to a new sensor re­
port) the candidate association hypotheses are gen­
erated and incorporated into a hypothesis matrix on, 
discussed below. The correlator calculates the prob­
ability of each hypothesis, H : , in on and uses this in­
formation to determine which associations of the n 
measurements are most likely to be correct. An over­
view of the functions involved in this processing is 
shown in Fig. 1; a summary of each function is pro­
vided in the remainder of this section. 

Figure 1 - Surface ship correlator/tracker structure. 
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The correlator/tracker processing begins with the 
receipt of a new report, M il + I. The first function of 
the correlator/ tracker involves report preprocessing. 
Preprocessing includes a number of activities. Initial­
ly, a screening procedure is carried out to determine 
if the report should be processed at all. This decision 
is based on report age, information content, and 
whether the position corresponds to the ocean area of 
interest. If the report passes this screening process, it 
is converted to an internal format that can be pro­
cessed by the main correlator/ tracker algorithm. 
This conversion involves translation of the error el­
lipse information and any attribute information into 
terms that are understandable by the correlation al­
gorithm. The preprocessing function will be ex­
panded as the correlator/ tracker algorithm is made 
more sophisticated. 

After preprocessing, the correlator determines the 
cluster into which the incoming report should be 
placed. A cluster is a set of reports associated with a 
single track or with tracks that cannot be separated 
unambiguously. In other words, if a report could be 
associated with two different tracks, all the reports 
associated with each track must be included in the 
cluster. Associated with each cluster of reports is a 
set of hypotheses, hypothesis probabilities, target 
state (i.e., position and velocity) estimates, and co­
variances. Clustering of reports minimizes the num­
ber of hypotheses needed to list all possible associa­
tions, thereby minimizing the calculation and storage 
requirements. The implicit assumption is that reports 
in different clusters are associated with one another 
with probability o. 

When a new report is received, the correlator com­
pares the new reported position with the most recent 
estimated position for each target in each cluster. If 
the new position is "close enough" positionally (in 
the sense of a distance normalized by the sum of the 
covariances of the reported and estimated positions) 
to any target in the cluster, the new measurement is 
associated with that cluster. In addition to this posi­
tional test, if a new report has the same unique identi­
fication as any report in an existing cluster, the report 
is automatically associated with that cluster. If a re­
port is associated with more than one cluster, all of 
the clusters with which it is associated are combined 
into a single cluster. If the report is associated with 
none of the existing clusters, then a new cluster is 
formed. The hypothesis assignments, probability cal­
culations, and pruning operations that follow are 
performed only on the cluster to which the new re­
port has been assigned. 

Following assignment of the new report to a clus­
ter, the correlator determines the set of all potential 
report / track associations within the cluster of inter­
est. This entails enumerating all possible ways in 
which the new measurement M il + I can be associated 
with tracks existing in the current hypothesis matrix 
on of the cluster (see Fig. 2). Each candidate associa­
tion is defined by two numbers. The first, k, indicates 
the particular prior hypothesis, H~1 , that the report is 
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Report Possible associations 
(track numbers) 

2 3 4 of fifth report (j) 
(/) 

1 3 3 . iii 1 0, 1,3,5 Q) -
(/) 

2 2 3 2 £::::' 2 0, 1,2, 3, 5 'en '-
Q) Q) o .... 
.£:.0 3 3 4 

Q.Q) 

3 0, 1, 3,4,5 (5 E >.0 
Q.::::l 4 2 3 3 

.£: E 
4 0, 1, 2, 3, 5 >c:: .... ::::l 

I o c:: 
5 2 0 2 ;t 5 0, 1,2,5 

Figure 2 - This figure gives an example of the correia· 
tor/tracker hypothesis matrix and shows how new report 
associations are formed by the correlator/tracker. In (a), the 
rows of a sample hypothesis matrix correspond to different 
hypotheses and the columns to received reports. Each en­
try is a track number representing the track with which the 
report is associated under the given hypothesis. Thus, ac­
cording to the first hypothesis, the first two reports came 
from the same target and the next two came from a second 
target. In (b), all possible ways in which a new report can be 
associated with different tracks are shown for each of the 
hypotheses in (a). Note that a 0 represents a false track, a 5 
represents a new track (Since the new report is the fifth), 
and a number from 1 through 4 represents a track that al­
ready exists in the prior hypothesis. 

augmenting. The other number, j, indicates the spe­
cific ship track in H~' with which the report is being 
associated. If there were n H hypotheses in 0 11 and 
each were to contain n T existing tracks, (n T + 2) nil 
associations would be formed. (This count includes 
association of the report with possible new tracks and 
false targets). 

Once all possible report / track associations are de­
termined, it is necessary to evaluate the probability 
that each is correct. This is done in two steps. Each 
candidate track existing prior to receipt of measure­
ment M n+ I will have been filtered (using an algo­
rithm based on a digital filtering technique called 
Kalman filtering). Starting with the filtered track po­
sitions, each track, j, of each hypothesis, H ; , in 0 11 is 
first extrapolated (or interpolated, if report n + 1 is 
out of sequence) to the time t il + I corresponding to the 
new report. The extrapolated states and covariances 
are then used in the second step, which is the actual 
probability calculations. The results give the prob­
ability that each possible report association is the cor­
rect one. The probability calculation is a recursive 
computation based on Bayes' rule. 

If all possible associations were carried in the cor­
relator/tracker as potential hypotheses, the computa­
tional burden would rapidly become unwieldy. Con­
sequently, only the most probable of these are for­
mally promoted as candidate hypotheses and are in­
corporated into the tentative updated hypothesis ma­
trix, denoted 0 ; + I, for the cluster being processed. 

For those associations that have been retained as 
candidate hypotheses in 0 ; +1, it is necessary to up­
date the corresponding ship tracks. The Kalman­
filter-based tracking algorithm that is used was de­
signed with the objective of achieving good low-level 
maneuver response at relatively low reporting fre­
quencies while retaining stability against positional 
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Example of Correlator ITracker Hypothesis Matrix Processing 
This example illustrates the processing of the cor­

relator/ tracker hypothesis matrix when a new report 
(the fifth) is received. The hypothesis matrix prior to 
the receipt of the fifth report is assumed to be given 
in the upper left of the figure. The correlator deter­
mines all possible ways in which the fifth report can 
be associated with different tracks for each of the 
hypotheses in this matrix. The resulting matrix con­
taining all of these possible association hypotheses is 
shown in the top center. (This matrix is constructed 
from the same associations enumerated in Fig. 2.) 
Of these 23 associations, only the 5 most likely are 
formally promoted as candidate hypotheses. These 
are incorporated into the tentative updated hypoth­
esi.s matrix shown at the upper right. After this 
matrix is formed, it is determined that the fourth re-

port is too old, and it is deleted (lower right). In the 
resulting matrix, hypotheses 2 and 4 are now iden­
tical. If the state estimates for corresponding tracks 
in both hypotheses are close enough, the two hy­
potheses are merged. Likewise, hypotheses 3 and 5 
are equivalent. (Both say that the first two reports 
arose from the same ship and that the third and fifth 
reports came from different ships.) Consequently, 
these hypotheses are also merged if their state esti­
mates are close. If both pairs of hypotheses are 
merged, the matrix in the bottom center results. 
Finally, because there is no ambiguity concerning 
track 3 (i.e., the only column in which it appears 
consists solely of 3 's), the third report is taken out of 
the matrix to form a new cluster of its own, as shown 
at the lower left of the figure. 

Report 
2 

2 

3 

Hypothesis number 4 1 

5 2 

6 2 

7 2 
Report 8 2 
2 3 4 9 2 

1 1 3 3 
Determine 
potential 10 

2 2 3 2 associations 11 
3 1 3 4 12 
4 2 3 3 13 
5 2 0 2 14 

15 2 

16 2 

17 2 

18 2 

19 2 

Report 20 2 

3 21 2 

13 2 

2 

Report 
2 

1 1 Form offshoot 
2 2 2 clusters 2 

3 4 3 

error outliers. It also includes a capability for detect­
ing major changes in platform course that require au­
tomatic reinitialization of the filter. 5 

As reports continue to enter the system, a point is 
reached when some older measurements contribute 
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negligible information concerning the current state of 
ocean traffic, yet their retention adds to the overall 
storage burden. Consequently, it is expedient to de­
lete such reports from the tentative updated hypoth­
esis matrix n ~+ I. The report deletion function in the 
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Association Probability Calculations 
A new report received by the cor relator / tracker 

can conceivably be associated with any track of any 
previous hypothesis. To determine which associa­
tions are most likely to be correct, it is necessary to 
calculate the probability of each candidate report as­
sociation hypothesis. 

Suppose it is desired to calculate the probability 
that new measurement M n +) is associated with track 
j in the kth prior hypothesis, H; . This association of 
the new report is denoted by A f . (Track j can repre­
sent either a previously existing track in H; , a new 
track, or a false track.) In essence, it is desired to cal­
culate the probability that a new hypothesis H,7,+ ) is 
correct, where H ,7, +) is the combination of prior 
hypothesis H; and the association Af. This prob­
ability is conditioned on all of the received measure­
ments (denoted M n

+ ) = 1M), M 2 , ••• , M n , M n + ) D 
as well as on the correct hypothesis at prior step n be­
ing one of the hypotheses in on. (The event that the 
correct association hypothesis is in on is denoted by 
H n.) Then, by Bayes' rule, the probability that 
H,7,+) is correct is calculated by 

E E p(Mn+ 1 I H;, A [ , M n) P(A[ IH;, Mn) P(H; I Hn, Mn) 

where the summations are taken over all new associ­
ations and prior hypotheses. The third factor in the 
numerator is the probability of the prior hypothesis; 
its presence makes the calculation recursive. The sec-

current algorithm eliminates the reports that have an 
associated measurement time that precedes the most 
recent report measurement time in O~+ ) by more than 
a given age threshold. Old reports are deleted from 
all clusters at this point. 

After old reports are deleted from O~+ ), it may be 
found that two or more of the hypotheses associate 
all of the remaining reports with ship tracks in an 
identical manner. Depending on the corresponding 
state estimates, these hypotheses may be judged to be 
equivalent. If so, they are merged into a single hy­
pothesis. The probability of the resultant hypothesis 
is the sum of the probabilities corresponding to the 
merged hypotheses. The state estimates for each of 
the associated tracks are taken from the more likely 
of the two merged hypotheses. 

The next step involves further pruning of the tenta­
tive hypothesis matrix to eliminate remaining low 
probability hypotheses. The desire is for the final up­
dated hypothesis matrix, on+), to contain no more 
than a preset number of candidate hypotheses. In 
preparation for receipt of the next report, the re­
maining hypothesis probabilities are renormalized. 
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ond factor is the a priori probability of making a 
particular association of the new report without 
knowing anything about the report. The first factor 
in the numerator is the likelihood of the new report. 
This likelihood function is based on a uniform prob­
ability density function if the association A/' of 
M il + ) is with a new track or false track. If the associ­
ation is with a previous track in H;, the likelihood 
function is based on a Gaussian density function. In 
the latter case, evaluation of the likelihood requires 
use of the jth track filter innovation vector i i' and 
error covariance matrix Bi . These are extrapolated 
(or interpolated) to the time, t n +) , of the new report. 
If M n + ) also contains a unique ship identification, 
the likelihood computation may include an addi­
tional Bayesian calculation of the likelihood of the 
identification. 

Finally, after deletion of low probability hypoth­
eses from the resulting hypothesis matrix 0 11

+ ) , it is 
necessary to renormalize the remaining probabilities 
to obtain P(H,7/ ) IHII + ), M II +) . This is done ac­
cording to 

where 

The summation on r is over all hypotheses remaining 
in 011 + ) after hypothesis matrix pruni.ng in the corre­
lator/ tracker processing. 

The hypothesis matrix is then examined to see if 
any reports have unambiguous associations. Any col­
umn of the hypothesis matrix containing all identical 
entries corresponds to a report for which every hy­
pothesis makes the same association. In other words, 
the association is made for that report with probabili­
ty 1. One or several columns of identical entries with 
no references in any of the other columns indicate 
that there is no ambiguity in associating the corre­
sponding reports, and only those reports, into a sin­
gle track. The columns are removed from the old 
cluster to form a new cluster with the single hypoth­
esis that all of the reports are associated with the 
same target. A column with all entries indicating 
false alarms corresponds to a report that has been 
identified as a false alarm with probability 1; such a 
column is deleted from the hypothesis matrix. 

Finally, 0" + I for each cluster is scanned to deter­
mine which tracks are still active in the hypothesis 
matrices. This provides useful output from the algo­
rithm and facilitates formation of the report/ track 
associations when the next report is received. The 
most likely hypotheses, their probabilities, and the 
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corresponding track parameters are output at the 
conclusion of report processing. 

EXAMPLE OF CORRELATOR/TRACKER 
PERFORMANCE 

The preceding section described the overall func­
tioning of the correlator I tracker algorithm. In this 
section, a simple example is analyzed pictorially to il­
lustrate some of the features discussed before. In the 
example, two ships move along straight-line paths 
that are perpendicular. Sensor reports on ship 1 are 
assumed to come in every hour on the hour, while re­
ports on ship 2 arrive every hour, 15 minutes after the 
hour. There is a small amount of noise in the mea­
surements, and each reported 90070 ellipse is actually 
circular with a 10 nautical mile radius. None of the 
reports supplies any unique identification informa­
tion, so the correlator must depend only on the po­
sitional data. 

Figure 3a shows the 22 reports (correctly asso­
ciated together) that were used for this example, 
along with the estimates generated by a tracker. Fig­
ure 3b shows the most likely hypothesis produced by 
the correlator I tracker 2 hours after initiation of 
operation (after five reports have arrived). There is as 
yet no confusion, and the pictured hypothesis is, in 
fact, the correct hypothesis. However, the fifth re.: 
port is close enough to both tracks that they have 
been combined into one cluster. (Until the fifth re­
port was processed, two clusters existed, one for each 
track.) The single cluster is indicated in Fig. 3b by the 
untinted area surrounding all the reports. One hour 
later, when two more reports have been processed, 
Fig. 3c shows that the most likely hypothesis (accord­
ing to the correlator) is not the right one; the third re­
port from ship 2 (the red one) had been incorrectly 
associated with the track for ship 1 (blue). Observe 
that there is still just one cluster. 

Figure 3d demonstrates how later reports can cause 
the correlator to revise decisions of previous associa­
tions. Three new reports have arrived, and now the 
top-rated hypothesis is the correct one; the third re­
port from the red target (the sixth report overall) is 
now correctly associated with the other reports from 
that target. 

As more reports are processed, it may be seen that 
the decision revision can also work to a disadvantage. 
In Fig. 4a, the next two reports have been processed, 
and still another hypothesis has risen to the top. In 
this hypothesis, the fourth report from the blue tar­
get (the seventh overall) has been incorrectly asso­
ciated with the red target. Another feature of the cor­
relator I tracker algorithm appears for the first time in 
Fig. 4a, namely, report deletion. For the example an­
alyzed here, a time window of 5 hours was used. That 
is, any report over 5 hours old is deleted from the 
hypothesis matrix and, consequently, from the pic­
ture. When the twelfth report arrived (with an obser­
vation time of 6.25 hours), the first report (made at 
1.00 hours) was therefore deleted and is missing from 
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Fig. 4a. Five hours later, the situation appears as 
shown in Fig. 4b, wherein the reports that were caus­
ing most of the confusion have been automatically 
deleted (along with all the other old reports) because 
they are more than 5 hours old. Notice that since 
there are no longer any ambiguities between the 
tracks, the single cluster has been split into two 
clusters. 

Figures 3, 4, and 5 demonstrate the two factors 
that can cause changes in the rankings of hypotheses. 
First, when several hypotheses have comparable 
probabilities, new reports that cause relatively small 
changes in probability can result in major switches in 
the relative ranking of hypotheses. This phenom­
enon, seen in Figs. 3c, 3d, and 4a as three different 
hypotheses assume the number one ranking, is also il­
lustrated in Fig. 5. From 4 to 6 hours, the correct 
hypothesis moves from third to fifth to third to first 
to second while its probability changes only slightly. 

The other factor that causes changes in hypothesis 
rankings is hypothesis merging, which results from 
report deletion. As ambiguous reports are deleted, 
starting at 8.25 hours, the correct hypothesis rapidly 
rises to the top because it is merged with other, now 
identical, hypotheses. By the end of this example, the 
hypothesis shown in Fig. 4b is the only significant 
one remaining. 

ALGORITHM TESTING 
The correlator/ tracker described in this article has 

been subjected to testing using real-world data col­
lected during recent Fleet exercises. Unfortunately, 
the value of such testing is limited by the general lack 
of "truth" concerning the real-world sensor reports. 
In particular, the true associations of the reports and 
the actual positions of the ships were not known for 
the bulk of the data. Consequently, extensive testing 
in the future will make heavy use of models designed 
to simulate ship motion and sensor reports realistical­
ly. Because ship motion is simulated, "true" ship 
positions are known. However, no matter what data 
are used in testing, quantitative assessment of corre­
lator/ tracker operation requires the evaluation of 
specific measures of performance. Although the de­
velopment of quantitative correlator I tracker mea­
sures of performance is still in the preliminary stage, 
several basic measures have already been identified as 
meaningful. Three of these were used to evaluate the 
correlator/ tracker's performance on the example just 
described. The results are shown in Table 1 (based on 
using the most likely hypothesis in all clusters). 

Radial error is a standard measure of the location­
al accuracy of the correlator/ tracker (particularly the 
tracker). It is defined as the distance between the ac­
tual position of a target and its position as estimated 
by the correlator/ tracker. 

"Freedom from impurity," P r j indicates the puri­
ty of the tracks developed by the correlator. When­
ever the correlator identifies a given track with a par­
ticular target, P F is defined to be the number of re­
ports in the track that were observations of the actual 
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Figure 3 - The performance of the correlator/tracker algorithm is illustrated with a simple two-ship cross ing-track ex­
ample. Black plus signs mark the reported position of a ship; the colored squares and c ircles give the pos it ion and 90 % con­
fidence ellipse as est imated by the tracker at update. The colored arrows pOint to the estimated pos ition of a ship projected 
by the tracker to the time of the next report in the track. The tip of each arrow is connected with a green line to the estimated 
position as updated using the next report. Figure 3a shows the true associations of al l 22 reports used in the example. 
Figure 3b illustrates the situation as determined by the correlator/tracker soon before confusion begins. In Figs. 3c and 3d , 
the most probable hypothesis (according to the correlator) is shown after two more and five more reports , respectively, have 
arrived. Notice that the sixth report was associated incorrectly in Fig . 3c, but correctly in Fig . 3d. In Figs. 3b, 3c, and 3d , only 
one cluster is maintained by the correlator, as indicated by the untinted area enclosing all the reports in each figure . 

target divided by the total number of reports in the 
track. Thus, a P F value of 1.0 implies that all the re­
ports in the track were truly observations of the tar­
get whose identity was associated with the track; a 
value of 0.5 implies that only 50070 came from the tar­
get whose identity was associated with the track. 
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Conversely, "freedom from inconsistency," CF , 

indicates how consistent the correlator was in its as­
signment of reports of a given target. Whenever a 
track is identified with a target, CF is defined as the 
number of observations of the target that went into 
the identified track divided by the total number of 
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Figure 4 - The example begun in Fig . 3 is continued in Fig . 4a, as two more reports are processed , and the most likely hy­
pothesis is shown. Since the first report was over 5 hours old, it was deleted. Note that the associations of reports six and 
seven have changed again . After all reports have been processed , the most likely hypothesis is as shown in Fig. 4b. Since 
the reports causing confusion have been deleted, this hypothesis is the only significant one remaining. Although only one 
cluster exists in Fig. 4a, by the time of Fig . 4b the ambiguities between the two tracks have disappeared and two distinct 
clusters have been formed. 
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Figure 5 - The correlator/tracker may make incorrect de­
cisions, but they are not final -dr permanent decisions. 
Although the algorithm ranks the correct hypothesis as low 
as fifth most probable (at 4.25 hours), later reports cause 
the relative standings to change, and it settles at number 
two from 6.25 to 8.25 hours. At that point, confusing reports 
begin to be deleted, so that hypotheses are merged. The 
probability of the correct hypothesis increases rapidly, and 
that hypothesis finishes at the top. (The probabilities given 
in this figure are calculated by the correlator and are nor­
malized after each report , so that the probabilities of the 
hypotheses remaining after pruning at each step add to 
one.) 

observations of the target. Thus, a CF value of 1.0 
implies that all reports of a target were assigned to a 
single track; a value of 0.5 implies that only 50070 of 
the reports were assigned to the track identified as be­
longing to the target in question. Note that for a cor-
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relator that tends to create too many tracks, P F 

would generally be high and C F low; the opposite is 
true for a correlator that tends to create too few 
tracks . 

To produce the numbers in Table 1, calculations 
were made at fixed time intervals (every hour on the 
half hour). (Each of the three measures of perfor­
mance was computed for both ships, and means were 
calculated from the 10 samples corresponding to the 
10 calculation times.) Therefore, the radial error for 
ship 1 is always based on an estimate projected a half 
hour ahead (from update), while that for ship 2 is 
based on an estimate projected a quarter hour ahead. 
For comparison with Table 1, the average sensor re­
port radial error was 1.8 nautical miles for ship 1 and 
2.2 nautical miles for ship 2. 

Table 1 - Correlator/tracker measures of performance. 

Mean Mean Mean 
Radial Freedom Freedom 
Error from from 
(nmi) Impurity Inconsistency 

Ship 1 4.0 0.975 0.915 
Ship 2 4.5 0.937 0.967 

SUMMARY AND FUTURE EFFORT 
This article has described a correlator I tracker al­

gorithm that accepts and processes data from mul-
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tiple sensor systems, making use of not only reported 
geolocational data but also any other information 
that would uniquely identify the ship. Consistent 
with the operational situation, the algorithm handles 
reports emanating from sensors with nonunity detec­
tion probabilities and nonzero false alarm rates; it 
has also been structured to allow processing of re­
ports arnvmg out of sequence. The corre­
lator/tracker automatically creates mUltiple hypoth­
eses, which it evaluates and prunes based on a re­
cursive, Bayesian processing scheme. The capability 
for track initiation and termination is also included. 

The correlator/tracker algorithm described here is 
newly developed and thus has much room for im­
provement. The algorithm should be revised to allow 
processing of additional types of sensor data. This in­
cludes processing of scan data, preassociated track 
data, and reports containing platform line-of-bear­
ing, velocity, or non unique identification informa­
tion. Other potential design improvements are ori­
ented toward increasing algorithm performance and 
reducing storage requirements and computation 
time. These may involve more sophisticated report 
prescreening and report deletion functions, track 
smoothing (rather than interpolation) when handling 
out-of-sequence data, and a feasibility check to dis­
card unlikely associations prior to the probability 
calculation. 

Substantial future effort is required with respect to 
the interface between the correlator/tracker and its 
user. This includes the design of operator decision 
aids and meaningful graphical displays. The algo­
rithm must also be made amenable to operator inter­
vention for the purposes of resolving highly ambig-
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uous associations, overruling correlator decisions, 
and adjusting algorithm control parameters. 

Finally, the correlator I tracker algorithm will re­
quire extensive testing. This testing is necessary for 
choosing optimal control parameters, for assessing 
sensitivity to different operational factors, and for 
determining the utility of the added features men­
tioned above. Quantitative evaluation of the test re­
sults will make use of the measures of performance 
discussed previously as well as several others. Taken 
as a group, these correlator Itracker measures of per­
formance will reflect both the quality of the report 
associations and the quality of the tracker state 
estimates. 

Work is continuing in order to implement these 
correlator Itracker design improvements and to de­
fine the additional measures of performance to use 
when testing the algorithm. As testing of the algo­
rithm continues using real-world data, it will likely 
yield additional insight, leading eventually to an 
automated algorithm that provides the multi sensor 
correlation and tracking capability necessary to 
maintain accurate ocean surveillance pictures in an 
operational environment. 
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