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THE SEPARATION OF OCEANIC TEMPERATURE 
FINESTRUCTURE AND INTERNAL MOTION 

Thermistor data taken in the ocean with instrumentation systems such as the APL towed 
oceanographic chain show both high and low irregular variability - a manifestation of the 
finestructure of vertical temperature profiles. Making physically plausible assumptions about the 
nature of the fluid motion results in a data processing technique that permits temperature data to be 
separated into an undisturbed vertical profile and underlying fluid displacements. This technique is 
demonstrated on simulated and actual towed-thermistor-chain data and is shown to be superior to 
other methods that are based on interpolated isotherms or averaged profiles. 

INTRODUCTION 
Vertical temperature profiles taken in the ocean ex­

hibit small-scale variations that make difficult the in­
terpretation of temperature data in terms of fluid 
motion. In regions with small local temperature gra­
dients, small fluid displacements result in small 
temperature variations, whereas in regions with large 
local gradients, small fluid displacements may result 
in disproportionately large temperature fluctuations. 

The problem is illustrated most simply by consider­
ing the temperature measured at a fixed point in the 
oceanic thermocline. A typical vertical temperature 
profile consists of a series of irregular steps. These 
steps are composed of regions of relatively constant 
temperature called layers and regions of rapid tem­
perature variations called sheets. Fluid motion causes 
the whole structure of sheets and layers to heave and 
subside past the fixed observation point, and the 
temperature time series data reflect this oscillation. A 
simplified example of this phenomenon is shown 
schematically in Fig. 1. Figure la illustrates a vertical 
temperature profile that consists of two relatively 
thick layers separated by a very thin sheet. If a 
sinusoidal wave were induced in a body of water hav­
ing this profile, the interface would oscillate up and 
down with time as shown in Fig. 1 b. A temperature 
sensor located at the fixed depth shown would alter­
nate being in one layer or the other, with correspond­
ing square-wave time-series response as shown in Fig. 
1 c. Clearly, the raw temperature data cannot be used 
to infer fluid motion directly. The apparent square­
wave behavior of the temperature data is an example 
of finestructure contamination. 

If the vertical temperature gradient in the ocean 
were uniform instead of irregular, the vertical 
displacement t of a fluid element would be propor­
tional to the variation in temperature T according to 
the relation • 

(at) -I ( _) 
t = az T - T , (1) 
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Figure 1 - Simplified example of finestructure contamina­
tion: (a) temperature profile showing two layers separated 
by a sheet; (b) sinusoidal oscillation of the interface; and (c) 
resulting temperature record. 

where t is the average temperature and z is depth. In 
a layered structure, however, such is clearly not the 
case. In fact, spectra and coherences of temperature 
fluctuations observed in this way in a layered sea may 
have little to do directly with the spectra and coher­
ences of displacements. Similar fluctuations occur 
for measurements of temperature along a horizontal 
traverse. 

The reasons for this ubiquitous finestructure in 
stably stratified regions are not yet clear. Such mech­
anisms as double-diffusive processes, intrusions, and 
internal wave breaking have been proposed as possi­
ble explanations for its existence. I However, this ar­
ticle is concerned only with the interpretation of tem­
perature data in terms of fluid motion. In what 
follows, the models of finestructure contamination 
are first reviewed briefly. It is then shown that, by us­
ing the passive finestructure model and by making 
physically plausible assumptions about the character 
of the fluid motion, finestructure contamination can 
be greatly reduced. Referring to the simple example 
of Fig. 1, it is shown that there is a method for input­
ting only data like those shown in Fig. lc and deriv­
ing data like those shown in both Figs. la and 1 b. 
This result is achieved by separating temperature 
data into an undisturbed vertical temperature profile 
and underlying fluid displacements. The physical as­
sumptions are incorporated into a displacement field 
action, and the separation is uniquely specified by 

19 



mInImIzmg this action. This technique is demon­
strated on simulated and actual towed thermistor­
chain data, and its superiority over other methods is 
also shown. 

MODELS OF FINESTRUCTURE 
CONTAMINATION 

Phillips, 2 Reid, 3 Garrett and Munk,4 McKean, 5 
and others 6-8 model finestructure contamination in 
the following manner. The temperature field is given 
by 

T(x,t) = To [z + ~ (x,t)] . (2) 

All of the small-vertical-scale irregularify is con­
tained within the undisturbed temperature profile 
To (z). Because no horizontal space or time variation 
is incorporated, this profile is referred to as "pas­
sive." In addition, all the models assume that the dis­
placement field is a linear internal wave field. Real 
oceanic finestructure should, of course, have a de­
pendence on space and time that is not caused solely 
by the space-time variations of internal waves. How­
ever, it is assumed that any space or time dependence 
of To (z) is so slight that it can be ignored. In fact, 
Garrett and Munk4 verify the assumption that the 
finestructure is indeed a sufficiently slowly varying 
function of space and time. They show that the fine­
structure contribution to spectra occurs at scales that 
are small compared with the persistence of the fine­
structure. 

Figure 2 shows a model example of the effects of 
finestructure contamination on temperature frequen­
cy spectra. The particular model shown is that of 
Garrett and Munk, 4 but the qualitative effects of 
finestructure are common to all the models. For a 
relatively low Cox number, C I (ratio of root mean 
square to mean temperature gradient), the finestruc­
ture softens the spectral break at the Brunt-V aisala 
frequency N (the frequency at which a small, neutral­
ly buoyant particle will oscillate when displaced from 
its equilibrium depth in a vertically varying field) and 
dominates the spectrum at higher frequencies. For a 
larger Cox number, C2 , the break at N may be totally 
obscured and accompanied by a break in slope for 
frequencies less than N. There is general agreement 
that large Cox numbers are associated with high 
degrees of contamination. It has been shown by 
Phillips2 and others that finestructure is responsible 
for a loss of vertical coherence in temperature even if 
the vertical motions causing the temperature fluctua­
tions are perfectly correlated. 

Although it is not a method of separation, one way 
of reducing finestructure contamination is to com­
pute the depth of a single fixed temperature. This 
depth is known as an isothermal depth, and the locus 
of such isothermal depths is called an isotherm. In 
principle, exact isotherms have no finestructure con­
tamination. However, any real data set allows only 
approximate isotherms to be calculated. The errors 
induced by these approximations limit their utility. 
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Figure 2 - Moored temperature frequency spectra for the 
Garrett and Munk4 model showing finestructure con· 
tamination. The model is shown for (a) internal waves only 
(no finestructure contamination), (b) low Cox number Cl 
(ratio of root mean square to mean temperature gradient) 
resulting in low contamination , and (c) higher Cox number 
C2 resulting in higher contamination. 

One technique that has been demonstrated by 
Pinkel9 is to compute successive isotherms from a 
continuously profiling temperature sensor. The sen­
sor is raised and lowered so that it always crosses a 
particular isotherm. However, it usually takes several 
seconds to complete a profiling cycle; hence, scales 
shorter than the profiling period are not attainable by 
this method. 

Another technique that is applicable to moored or 
towed thermistor chains is to compute interpolated 
isotherms. The errors inherent in interpolating iso­
therms can be seen by the following considerations. 
Because of data rate limitations and limitations of 
relative sensor accuracy, any towed or moored ther­
mistor array must have a finite number of sensors 
that are separated in the verticai dimension. Thus, 
isotherms must be interpolated between adjacent 
thermistors. However, temperature finestructure in 
the ocean causes variations that are often smaller 
than a given sensor spacing. The result is an interpo­
lation error caused by finestructure contamination. 

Figure 3 shows some isotherms simulated from the 
GM76 model,l o a specified temperature profile taken 
from one of the St. Croix experiment CTD (conduc­
tivity, temperature, depth sensor) casts, II and the re­
sulting interpolated isotherms for a 2-meter sensor 
spacing. As should be expected, the interpolated iso­
therms agree well with the exact isotherms at depths 
over which there is little temperature variation. How­
ever, in regions where there are large variations, large 
interpolation errors result. Nonphysical spikes and 
steps that are not representative of fluid motion are 
typical of actual oceanographic interpolated iso­
therm data. 
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Figure 3 - Comparison of 
isotherms and interpolated iso­
therms for the temperature profile 
shown and simulated GM76 
data. 1o Isotherms are chosen so 
that their initial depths are 2 
meters apart. 
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In addition to isotherms, another method that has 
been used in the past for computing displacements is 
to calculate an average profile and then compute 
displacements from this profile. 12 Unfortunately, the 
process of averaging tends to smooth out all the 
small-scale structure of the profiles. Since the profile 
varies smoothly, the irregularities of temperature 
data are transmitted to the resulting displacements. 
Figure 4 shows an example of this effect. The temper­
ature data used to generate Fig. 2 are averaged over 
the horizontal, and the displacements calculated 
from this average profile are shown in Fig. 4 along 
with the exact specified displacements. The result 
shows large errors for regions where there are sharp 
variations in the undisturbed profile. 
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THE METHOD OF SEPARATION 

It will now be shown that making physically plausi­
ble assumptions about the character of oceanic tem­
perature variations leads to a well-defined method of 
separating temperature data into a finestructure com­
ponent and a motion component. The first major 
assumption is that the passive finestructure model 
can be applied directly to real oceanic temperature­
time series . Of course, any temperature field T(x, t) 
can be written as a displacement r of some profile. 
The problem is to find the undisturbed profile To ( z ) 
for which the vertical displacements are relatively 
free from nonphysical irregularities. Any instan­
taneous profile at a point (from, say, a CTD cast) 
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will always be strained and advected by fluid motion 
and therefore would not represent a true undisturbed 
profile. 

A condition is required in order to specify uniquely 
the undisturbed temperature profile and the cor­
responding displacement field. A natural condition 
that is consistent with the models of finestructure 
contamination is that the displacement field be a 
linear internal wavefield. It is certainly true that there 
must be nonlinearities in the displacement field. 
However, it is generally believed that these nonlinear­
ities are perturbative in nature so that, to a first ap­
proximation, we can assume linearity. With this as­
sumption, the displacement field t(x, t) satisfies the 
linear internal wave equation of motion. Given 
T(x, t), the equation of motion, and Eq. 2, it is theo­
retically possible - but in practice very difficult - to 
solve for To (z) directly. However, there is an alter­
native formulation that facilitates solution. This 
alternative employs a quantity known as the action 
(the integral of energy over a time interval). 

If we define the action, S [n , as 

and require that the displacement field be such that 
S [r] is a minimum, then the linear internal wave 
equation follows. The technique of deriving hydro­
dynamic equations of motion from a principle of 
least action is well known and has been used by 
Whitham, 13 Olbers, 14 and others. Nonlinear effects 
can be easily incorporated into the action by the addi­
tion of perturbative terms. The action written in Eq. 
3 is for the constant N case in the absence of mean 
shear. 

We now state the first major theorem: given a tem­
perature field T(x, t) and that there exist an un­
disturbed profile To (z) and a linear internal wave 
displacement field t(x, t) such that T(x, t) 
To [z + t(x, t)], then To (z) is given by the profile 
that minimizes the action S. The proof of this theo­
rem is obvious: since r is required to be a minimum 
of S and for a fixed T, To specifies r by means of the 
passive finestructure model, then To must be such 
that S is a minimum. 

This theorem is intuitively very appealing. By as­
signing the subsequent action with a correspondingly 
large value, the theorem recognizes that a wrong 
guess for the temperature profile would cause anom­
alies in the form of irregularities and high gradients 
for the displacement field. A better guess for the 
undisturbed profile would give a field r with reduced 
irregularity and gradients and with a resulting smaller 
action. The best profile would be the true undis­
turbed one that contained all the structure of sheets 
and layers. The corresponding displacement field 
would be smoothly varying and the action would be a 
minimum. 

The theorem specifies a unique method of separat­
ing finestructure effects from those of fluid motion if 
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the temperature field is completely known. Unfortu­
nately, such four-dimensional data are difficult to 
obtain. Such constraints, therefore, limit its practical 
utility. What would be more useful would be a 
method that could be applied to two-dimensional 
data such as those from a towed or moored ther­
mistor chain. 

Consider a two-dimensional temperature field, 
T(x,z), that is specified in only a vertical dimension 
and in one horizontal dimension. Such a field could 
be completely measured by a thermistor chain with 
infinite sensor density and towed at infinite speed. 
Assuming passive finestructure, there is a corre­
sponding displacement field specified in two dimen­
sions t(x,z). There does not exist an equation of mo­
tion for this two-dimensional field because the mo­
tion is in four dimensions. 

However, there does exist a quantity S2 [t(x,z) ], 
which may also be referred to in physical terms as an 
action, that completely specifies the probability space 
of the two-dimensional field t(x,z) .1 5 The subscript 
2 is used to distinguish it as a two-dimensional prob­
ability action as opposed to the four-dimensional ac­
tion S[t(x,t)]. Basically, S2 [t(x,z)] provides the 
probability weighting for the occurrence of a single 
realization t(x,z), and the most probable field con­
figuration is given by its minimum. 

We now state the second major theorem: given a 
two-dimensional temperature field T(x,z) and given 
that there exists an undisturbed profile To (z) and a 
two-dimensional displacement field t(x,z) such that 
T(x,z) = To [z+ t(x,z)], then the most probable 
profile To is that which minimizes the probability ac­
tion S [t(x,z) ]. The proof of this theorem is also 
straightforward: since S2 [n is required to be a mini­
mum at the most probable r and, for a fixed T, To 
specifies r by means of the passive finestructure 
model, the most probable To must be such that S2 [n 
is a minimum. 

In order to apply the above theorem to a given 
temperature field T(x,z), it is necessary to derive a 
specific form for the action S2 [n. First, we assume 
that t(x,z) can be represented as a homogeneous, 
Gaussian, random field. Gaussianity and horizontal 
homogeneity have been verified for long-wavelength 
oceanographic isothermal displacement data. Ver­
tical symmetry has also been verified. 16 If vertical 
scales are restricted to those smaller than the varia­
tion of the Brunt-V aisala frequency profile, the as­
sumption of vertical homogeneity is not unreason­
able. 

Since it is well known that the spectra are domin­
ated by long wavelengths, one can also make an ap­
proximation that is accurate for long wavelengths. 
One then obtains an approximation to the action 
S2 [n that is an effective action: 
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The appropriateness of the effective action to 
various vertical scales can be clarified by the follow­
ing discussion. Let L be the scale variation for the 
average Brunt-V aisala frequency profile (typically 
larger than a few hundred meters) and let h be an 
average width of a layer (typically of the order of 
meters). Internal wave displacements with vertical 
wavelengths A.z ~ h are not significantly affected by 
finestructure variations of the profile but, rather, by 
the large-scale variation L. On the other hand, a ver­
tical data window much smaller than L can lead to a 
constant-N assumption that subsequently implies 
vertical homogeneity. Consequently, the effective ac­
tion (Eq. 3) is appropriate to the choice of a vertical 
window size Wz of the order of tens of meters that is 
between hand L; i.e., h ~ Wz ~L. The spectrum for 
this window size is then dominated by the longest 
wavelengths in the window. 

We now have a well-defined method for separating 
two-dimensional temperature data into an undis­
turbed profile and a vertical displacement field. 
Given T(x,z), To (z) is specified by the requirements 
that T(x,z) = To [z + sex,z)] and that SE [n be a 
minimum. Note that the only assumptions used in 
deriving SE [n are those of Gaussian distribution, 
homogeneity, and the dominance of long wave­
lengths. It is not assumed that S is a linear internal 
wave. 

The numerical implementation of this method is 
accomplished by means of nonlinear programming 
and optimization methods. The multiparameter min­
imization is carried out by starting with an initial 
guess for the profile. The particular initial guess is 
not important except to reduce computation time. 
The action is calculated for a few points near the 
guess, and the profile is updated to a point with a 
lower action. This procedure is repeated until the 
lowest action is obtained. There are many different 
methods for implementing this optimization, such as 
gradient, Newton, and simplex methods. Results us­
ing the modified Fletcher-Powell method l 7 are 
discussed in the next section. 

DEMONSTRATIONS OF THE METHOD 

The method of separation is now demonstrated for 
simulated and actual towed thermistor-chain data. 
The superiority of this technique over methods based 
on interpolated isotherms or averaged profiles is also 
shown. Three cases for which the method was dem­
onstrated are discussed. 

In the first case, a simulated displacement field and 
an undisturbed temperature profile are selected in 
order to determine if the method would reproduce 
the original displacement field and undisturbed pro­
file. A data window is selected that extends 28 meters 
in the vertical and 150 meters in the horizontal. These 
are scales for which interpolated isotherm errors are 
significant. The data are sampled every 2 meters in 
the vertical and 0.6 meter in the horizontal. The dis­
placement is chosen to be a vertically coherent sine 
wave with a wavelength of 19.2 meters and an ampli­
tude of 1 meter. This kind of displacement field is 
characteristic of a thermistor chain that moves as a 
rigid body and is driven by surface-wave-induced 
motion of the towing ship. The temperature profile 
assumed to be the undisturbed profile is from a CTD 
cast taken during the St. Croix experiment. II The 
profile is sampled every 1 meter in the vertical. Using 
the passive finestructure model results in the temper­
ature data shown in Fig. 5. The sine waves are now 
distorted by the nonlinear variations of the finestruc­
ture. The large amplitude temperature variations 
reflect sheets and the small amplitude variations re­
flect layers. The corresponding average-profile dis­
placements are illustrated in Fig. 6, which shows 
large errors for regions where there are sharp varia­
tions in the undisturbed profile. In fact, the root 
mean square error is comparable to the error for in­
terpolated isotherms: viz., 25.4 and 32.5 centimeters, 
respectively. The interpolated isotherms and exact 
isotherms are shown in Fig. 7. 

An algorithm has been written that numerically 
realizes the separation method described above. The 
particular optimization method used to minimize the 
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Figure 5 - Simulated thermistor­
chain data for 2-meter spacing 
(chain motion case). 
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Figure 7 - Comparison of isotherms and interpolated iso­
therms for the chain motion case. 

effective action is the modified Fletcher-Powell 
method. The initial guess is chosen to be the average 
profile. The optimization iteration is conducted, re­
sulting in a calculated profile that shows little distinc­
tion between the exact and calculated profiles. 

Figure 8 shows a comparison between the calcu­
lated displacements and the exact ones. The gray line 
represents displacements calculated by the algorithm 
while the black lines are the exact specified displace­
ments. Except for the top and bottom traces, the cal­
culated displacement is indistinguishable from the ex­
act one. The root mean square error between exact 
and calculated displacements is 3.4 centimeters. 

The second case in which the method is demon­
strated uses simulated data wherein the displacement 
is a simulation of random data with a Garrett and 
Munk spectrum. 4 This case is shown in order to dem-
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chain motion case. 

Table 1 

COMPARISON OF ROOT MEAN SQUARE ERROR 
BETWEEN CALCULATED AND ACTUAL 

DISPLACEMENTS (centimeters) 

Chain mo­
tion case 

Garrett and 
Munk case 

Interpolated 
Isotherms 

32.5 

27.0 

Average 
Profile 

Displacemen ts 

25.4 

19.1 

Separation 
Method 

3.4 

5.5 

onstrate that the success of the method of separation 
is not specific to the sine wave case previously ex­
amined. The calculated profile resulting from the 
separation algorithm is once again indistinguishable 
from the exact specified profile. Table 1 is a com­
parison of the root mean square errors of these two 
cases, with the errors induced from the methods us­
ing interpolated isotherms or averaged profiles. The 
separation algorithm is a factor of 4 to 10 times bet­
ter than the other methods . 

The final case for consideration is that of actual 
oceanographic data. Figure 9 shows a sample of 
thermistor-chain data taken during the St. Croix ex­
periment. 8

, }} (Figure 10 shows the R/ V Cape towing 
a thermistor chain.) Because of thermistor failures, 
the vertical sampling is not uniform, and this fact 
must be taken into account. The sample of thermis­
tor data clearly shows layers at 122, 138, and 142 
meters and a sheet between 138 and 140 meters. 
When the method is applied to these temperature 
data, the resulting undisturbed profile shown in Fig. 
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11 is obtained. In keeping with our qualitative obser­
vations on the temperature data, there is indeed a 
sheet between 138 and 140 meters and there are layers 
at 122, 138, and 142 meters. The corresponding dis­
placement field shown in Fig. 12 has the relatively 
smooth variations expected of physical fluid motion. 

Application of the other methods results in large 
irregularities in the average profile displacements in 
regions where there are large variations in the undis­
turbed profile. The displacements based on the sepa­
ration method are much smoother and have a smaller 
root mean square displacement. There are also large 
irregularities in the interpolated isotherms for regions 
where there are large variations in the undisturbed 
profile. The processed data from the separation 
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method are much smoother and have smaller root 
mean square values. 

COMMENTS AND CONCLUSIONS 
In this article, a method that enables a separation 

between temperature finestructure and internal mo­
tions is introduced. The method is based on a passive 
finestructure model and a generalized principle of 
least action. Physically plausible assumptions about 
the fluid motion are incorporated into an action that, 
when minimized, yields an undisturbed temperature 
profile containing all the sheet and layer structure 
and a smoothly varying displacement field. The 
method is demonstrated on two-dimensional towed 
thermistor-chain data. Superiority over methods 
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Figure 10 - The RN Cape towing a thermistor cha in. 
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Croix thermistor-chain data) calculated using the separa­
tion method described in the text. In accordance with the 
qualitative observations of Fig. 9, the profile has low gra­
dients (layers) at 122, 138, and 142 meters and a high gra­
dient (sheet) between 138 and 140 meters. 
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based on isotherms or average profiles is also demon­
strated. The method is robust because it was also suc­
cessful for simulated cases that are not contained in 
the assumptions used to derive the action. 

The major assumption of the separation method is 
that the undisturbed temperature profile To (z) con­
tains the entire sheet and layer structure that implicit­
ly is coherent over the horizontal space (or time) 
aperture selected. In the real world, the undisturbed 
profile is expected to have space and time variations 
with finite coherence lengths. By taking a sufficiently 
small window, it is expected that any horizontal 
variation of To with time is relatively negligible. 
What remains to be demonstrated is that To varies on 
spatial scales much larger than the scales that are 
contaminated by finestructure. 
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