
L. LEE PRYOR 

DEVELOPING AND MANAGING 
A LARGE COMPUTER PROGRAM 

Successful development of a large computer program requires careful planning and coordination. 
The mana.gement t~ch~iques described in this article are the techniques learned during development 
of the orbIt determInatIon program for the Navy Navigation Satellite System. 

INTRODUCTION 
The development of large computer programs is a 

management art with its own subtleties. The absence 
of these subtleties is frequently experienced by 
managers caught in the software quagmire-software 
that is 900;0 "complete," behind schedule, going to 
be completed next week ... and then next 
week . . . and then next week. Managers who realize 
that adding more people will make bad things get 
worse are painfully aware that something has gone 
awry. Just as bad is to have things going well and lose 
one or two key people from a software effort. 

We will describe here our way of implementing 
large computer programs. Our definition of "large" 

-is a program that requires 10 to 20 people several 
years to complete, e.g., the Orbit Determination Pro­
gram (OOP) that we wrote for the Navy and that has 
been an ongoing development since 1959. One char­
acteristic of a large computer program is that if it is 
of any consequence it is never completed. More typi­
cally, the program continuously evolves in response 
to changes in the operating environment (changes in 
computer hardware, instrumentation, physical 
models, print formats, constants, etc.). The program 
had best be designed to accommodate change. To do 
otherwise is to create a dinosaur having limited 
evolutionary potential. 

The current OOP is coded in PL/ llanguage and con­
sists of 176 subroutines with about 15,000 source 
statements. The generated machine instructions are 
about a million bytes on an IBM 3033 computer. A 
structured overlay scheme permits the program to 
run in a region of 600K bytes. A typical orbit com­
putation takes about 10 minutes of 3033 time. On the 
operational computer, an IBM 360/ 65, it executes in 
one hour. The program is supported by seven 
"utilities" that are part of the executable program 
library. The total cost for development of the pro­
gram is estimated to be $3 million. 

DESIGN OBJECTIVES 
A number of design objectives were established at 

the beginning of the project. Some probably resulted 

Volume 2, N umber I , 1981 

from the fact that the predecessor program, which 
survived for 17 years, was coded entirely in assembly 
language. It was recognized that the program would 
process all possible data types, e.g., bit string data, 
character string data, integers, floating point 
numbers. It was also recognized that the vehicle 
machine, defined by Brooks' (Chapter 12) as the 
machine on which the program would be built, would 
be APL's IBM 360/91. The target machine, defined 
as the machine for which the software was being writ­
ten,' would be the IBM 360/65. (The IBM 360/65 
was nearly equivalent in computing power to the then 
operational IBM 7094.) Nevertheless, one objective 
was to develop a program that would be as machine­
independent as possible. 

Programs with a projected lifetime of 10 to 15 
years undergo continuing stages of maintenance. Ac­
cordingly, it was desirable to have a program code 
that would be readable by many users. The system of 
the previous generation depended entirely on sequen­
tial access devices (tapes) and, therefore, had some 
obvious limitations (e.g., the data had to be time­
ordered, and data and results files had to be syn­
chronized). 

The newer computer systems were oriented toward 
direct access devices (disks) and the requirements of 
the program were better served by direct access logic. 
Hence, the OOP was designed to be file driven and 
controlled, and presently uses 20 distinct data files. 
The file-driven nature of the program permits adjust­
ment of the program to changes in operational condi­
tions without the need to recompile any source code. 
New satellites in the constellation or new station 
equipment are examples of new entries in a peripher­
al data file. Time-dependent functions that cannot be 
modeled, such as the position of the earth's axis of 
rotation, the ultraviolet activity of the sun, or the ac­
tivity index of the earth's magnetic field, are also 
kept as data files. Even fundamental constants in the 
gravity model of the earth (an array of about 900 
coefficients) can be changed by means of a data file, 
i.e., without disturbing any logic in the program. 

It was desirable from an operational standpoint to 
make the program as automatic as possible. The pro-

39 



gram must run reliably for 10 orbit computations per 
day and should not require the attention of computer 
technicians or analysts for routine daily operations. 
A graceful embedding in the operational environ­
ment meant that the program had to have numerous 
threshold tests and error messages, and that the pro­
gram had to make many decisions internally. 

The program was designed (a) to be machine in­
dependent (it would run on a number of PLiI 
machines); (b) to be readable with a highly­
segmented code for ease of maintenance; (c) to be file 
driven and controlled to permit model changes 
without forcing code changes; and (d) with the target 
machine and running time in mind. 

The selection of language was difficult. We had to 
have a higher-level language for readability and 
machine independence. If there were language limita­
tions, we did not want to compound our problems by 
resorting to a second language for special functions 
(see below); we wanted to operate solely in whatever 
language was chosen. We needed enough efficiency 
to achieve reasonable running time on our target 
machine. "Reasonable" meant that the execution 
time should not exceed that of the older program. 

We needed a broad range of input/output methods 
(sequential indexed sequential, direct access) and a 
broad range of data types. We knew from experience 
that to control storage allocation we would need pro­
gram overlay logic. It was considered desirable to 
have a language that had been defined as a standard. 
Among the candidates at that time, FORTRAN and 
PL/ I were the major contenders, particularly since the 
vehicle machine was an IBM 360/91 and those two 
languages were readily available. FORTRAN had 
already been defined to be a national standard2

•
3 and 

was (and still is) the most widely available higher­
level language. But compared to PL/ I, FORTRAN had 
some limitations: it did not have as much generality 
in input/output methods, in data types, or in control 
of storage allocations. There was pressure from the 
Navy to choose FORTRAN because of its universal ac­
ceptance. But there was pressure from the program­
mers to choose PLiI because it was felt to be a richer 
language and because it had the compile time facility 
that we saw as a powerful tool in establishing pro­
gram standards and conventions. PL/ I'S data and 
program structure features, its interrupt handling 
"on conditions," and greater choice of input/output 
methods made PLiI more attractive than FORTRAN. 
Finally, the Navy yielded the point and PLiI was ac­
cepted. Later, PL/ I was also defined to be a national 
standard computer language. 4 

THE NEED FOR FOUR LANGUAGES 
One of the petty tyrannies of the current computer 

world is that we cannot avoid dealing with the soft­
ware systems that control the various peripheral de­
vices on the computer and or allocate storage within 
core. This, in turn, forces us to "speak" three other 
languages in addition to PL/ I, the mother tongue; 

40 

four languages are actually needed to implement the 
orbit determination program. Basically, of course, 
the program is coded in PL/ I. But to run the program 
one must allocate files and create data sets; run utility 
programs; and route output to disk files, printers, or 
card punches. All this requires a knowledge of the 
Job Control Language. Creation of the program 
from its subroutine components involves the use of 
program overlays and if one wishes to be system­
independent, one must be very careful in the selection 
of system modules. These factors require knowledge 
of the operating system ' s linkage editor which has its 
own language (LKED). There are machine language 
(MACHINE) considerations in the design of data struc­
tures and choices of input/output methods. In par­
ticular, bit string lengths, integer precision, floating 
point precision, character string lengths, and struc­
ture alignments were chosen to reflect the underlying 
machine language. 

DOCUMENT ATION 
I t was planned from the beginning that the pro­

gram listing would be the definitive document on 
each subroutine. That program listing was aug­
mented, wherever necessary, with pages of analytical 
text to provide the "complete" program documenta­
tion. The program documentation evolved along 
with the program in a series of internal memoranda 
that were accumulated in looseleaf notebooks. When 
the time came to publish the document for release to 
the user, a final editing of those working papers 
became that document. Moreover, the documenta­
tion accurately reflected what was programmed. 
Brooks I (p. 169) has pointed out the advantages of 
using self-documenting programs to reduce the need 
for coordinating two independent media (program 
and document). 

LANGUAGE-INDEPENDENT STANDARDS 
Orbit determination is primarily a problem of 

physics and mathematics. Some program standards 
and conventions could be adopted independently of 
the language chosen and oriented to the analysis 
behind the problem. It is important for the program­
ming staff to develop its own standards. The staff is 
in the best position to know what specific standards 
are needed but, more importantly, developmen,t 
within the staff provides the strongest motivation to 
conform to the standards5 (Section II). These stan­
dards were also applied to the assembly-language 
predecessor of the PL/ I Orbit Determination Pro­
gram. Some of the language-independent standards 
that were adopted are the following: 

1. There is a pool of fundamental constants from 
which all other constants are derived. 

2. Units of length are consistently carried internal­
ly in earth radii. As a consequence, all lengths 
are about unity, and anomalies (errors in the 
first several significant figures) are easy to see. 

3. Units of velocity are carried internally in earth 
radii per second. 

Johns Hopkins A PL Technical Digest 



4. The time scale is UTe (Universal Time Coor­
dinated) and time is specified in a format of 
three numbers consisting of the year minus 
1900, the day number of the year (J anuary 1 
= 1), and the seconds of the day. The format 
for time is designated "epoch." 

LANGUAGE-DEPENDENT STANDARDS 

5. The program processes data from one satellite 
at a time. Where combined solutions involving 
more than one satellite are needed, they are ac­
complished by writing summary files and com­
bining the summary files with an independent 
program. 

6. Each major subprogram processes data in en­
tities of one pass of a satellite over a station. 
This seemingly arbitrary decision added logical 
order to the program. 

7. Satellites and tracking stations are always iden­
tified by unique numbers. Associated with 
these numbers are files of station and satellite 
characteris tics. 

The language-dependent standards took advantage 
of features within PLiI. The fact that commentary 
could be injected into and interspersed between 
statements meant that the right-hand side of each 
page could be entirely devoted to explanatory com­
ments. Uniformity of definition for many of the 
basic program components was insured by means of 
the PLiI compile-time library. This library contains 
data definitions and macros (program statements 
that are generated at compile time) that can be in­
cluded with the programmer's code at compile time, 
hence relieving the programmer of having to produce 
redundant blocks of code with each subroutine. 
Those blocks of code, which must be identical be­
tween subroutines, are kept in one place-on the 
compile-time library-thus insuring identity between 
subroutines (Fig. 2). Some examples of items from 
the compile-time library include the following: 

8. Subroutines are liberally endowed with com­
mentary giving program name, programmer, 6 

function, date of implementation, modifica­
tion dates, input and output description, 
references for algorithms, and descriptive com­
ments along with the code (Fig. 1). 

1. The precision of the variables. (All the algebraic 
computations are performed in floating point 
double precision, and we wished to insure that 
all variable were declared with the same preci­
sion). 

2. The declarations and values for all fundamental 
and derived constants such as pi, the speed of 

/ * ADEN ATMOSPHERIC DENSITY */ 
1* FUNCTION SUBROUTINE */ 
/ * PROGRAMMER : ARIE EISNER DATE: 9/19/68 */ 
1* REVISED: 8/03/70 */ 
/ * PROGRAMMER : L.L. PRYOR CHANGED FOR MAGSAT DATE : OS/29/80 */ 
/ * LOWER ALTITUDE THRESHOLDS */ 

/* PURPOSE: */ 
1* ADEN COMPUTES ATMOSPHERIC DENSITIES AND IS BASED ON THE */ 
/* JACCHIA 1965 MODEL. THE PROGRAM WAS MODIFIED TO GENERATE */ 
1* DENSITIES FOR ALTITUDES ABOVE 500KM AND EXOSPHERIC TEMP. */ 
/* OF 600-2100 DEG.-K. PROCEDURE ASSUMES BOUNDARY AT 500KM, */ 
/* DETAILS MAY BE FOUND IN S1A-413-68 BY ARIE EISNER . */ 
/* IN ADDITION TO ADEN THREE ADDITIONAL ENTRIES ARE PROVIDED : */ 
/ * 1.ADENI - DENSITY INIT., GENERATES BOUNDARY VALUES AT */ 
/* 500 KM AND ALLOCATES CONTROLLED STORAGE. */ 
1* ADENI MUST BE INVOKED ONCE PRIOR TO THE FIRST */ 
/* CALL TO ADEN. */ 
1* 2.ADEND - NEW DAY ENTRY, MUST BE INVOKED WHENEVER DAY */ 
1* NUMBER CHANGES. COMPUTES SOLAR AND SEMIANNUAL */ 
1* CONTRIBUTIONS. */ 
/* 3.ADENT - DENSITY TERMINATOR, FREES ALL STORAGE ALLOCATED */ 
1* BY ADEN!. ADENT SHOULD BE CALLED WHEN NO */ 
1* ADDITIONAL DENSITY COMPUTATIONS ARE NEEDED. */ 

USAGE: / * 
1* 
/* 
1* 
/* 
1* 
/ * 
/* 
/* 
/* 
1* 
/* 
/* 
/ * 
/* 
/* 
/ * 
/ * 
/ * 
/ * 
/* 
/ * 

PARAMETERS TO ADEN ARE : 

NAME 

PAR1(3) 

PAR2(2) 

PAR3(5) 

PAR4(6) 

IPRNT 
DAYN 
ADSUN 
DDSUN 
FCA 

FC 
RLV(3) 
KCP 

VolulI/e 2, N UII/ber I , 1981 

DESCRIPTION 

INPUTABLE PARAMETERS IN SOLAR HEATING 
VARIATION COMPUTATION. (ADENI) 
INPUTABLE PARAMETERS IN GEOMAGNETIC HEATING 
COMPUTATION. (ADENI) 
INPUTABLE PARAMETERS IN SEMIANNUAL 
VARIATION COMPUTATION. (ADENI) 
INPUTABLE PARAMETERS IN DIURNAL 
VARIATION COMPUTATION. (ADEN!) 
DEBUG PRINT FLAG '1'B=DEBUG-PRINT (ADEN!) 
DAY NUMBER (JAN 1 = 1) (ADEND) 
RIGHT ASCENSION OF SUN ON 'DAY'(RAD) (ADEN D) 
DECLINATION OF THE SUN ON 'DAY' (RAD) (ADEN D) 
3-6 MONTH RUNNING AVERAGE OF THE SUN 
SOLAR INDEX S 1.E-22 WATT/M2/CYCLE/SEC(ADEND) 
DAILY VALUE OF S. 
SATELLITE POSITION VECTOR (RO) (ADEN) 
MAGNETIC INDEX (ADEN) 

* / 
*/ 
* / 
* / 
* / 
*/ 
* / 
*/ 
*/ 
* / 
* / 
*/ 
* / 
* / 
* / 
* / 
* / 
*/ 
*/ 
*/ 
*/ 
*/ 

Fig. 1-Program listings are nearly 
self·documenting. Each subroutine 
contains a prologue of descriptive 
commentary. 

41 



42 

light, the rotation rate of the earth, the gravita­
tional constant, and the radius of the earth in 
kilometers, etc. (Some of these constants 
change at rare intervals. This implementation 
assures that the same values are used 
throughout the program and, if changed, are 
changed throughout.) 

3. Fundamental data structure definitions for or­
bit description, time (epoch), and input/output 
records. 

4. Algorithms that are frequently used, such as the 
magnitude of a vector, the cross-product and 
outer-product of two vectors, and operations 
with epoch (year, day, seconds) time. 

5. Entry declarations for all subroutines in the 
system. (This is a PL/ I language feature 
whereby the compiler checks calling sequences 
for validity and prevents errors from incorrect­
ly coded argument lists.) 

6. The satellite property structure. (Each satellite 
has unique properties, some of which are time­
dependent. The overall philosophy is to have 
the programs process data for each satellite in­
dependently. The satellite property structure is 
made available at all levels of the subroutine 
hierarchy so decisions may be made at any 
level.) 

7. The tracking station property structure. (The 
tracking station property entries are unique for 
each tracking station. The structures for all sta­
tions are kept on a peripheral file. The struc­
ture for each particular station is loaded only if 
data from that station are present in the data 
batch.) 

MEMBER CPI 
DCl(CPI INIT( 3.141592653589793E+Ol, 

C2PI INIT( 6.283185307179586E+OI. 
CHFPI INIT( 1.570796326794897E+O) FlT EXTERNAL ; 

MEMBER CC 

PROGRESS MONITORS 

The initial stages of design required a description 
of the overall logic and major processors, establish­
ment of program standards and conventions , and 
descriptions of data structures and peripheral files. 
Once the initial design was documented, much of the 
work could proceed in parallel, with people working 
independently on input/output packages, data 
utilities, or major processors. At this stage, when the 
initial design has been documented and work is pro­
ceeding in parallel on program components, the basic 
program structure is frozen 1 (p. 42). Progress on the 
programs was monitored by means of a completion 
schedule and a change log. 

The completion schedule was merely a chronolog­
ical chart showing the activities that were proceeding 
in parallel, with an indication of the starting and end­
ing times, and the duration. An example of a comple­
tion schedule is given in Fig. 3. The program was in­
tensively worked on for three years, then was delayed 
for four years, and was finally finished in three years 
(in 1979). The change log provided for upgrading of 
older programs that might have become outdated 
because of revisions in the implementation. Older 
programs could become outdated in several ways. An 
outstanding example is the release of a new compiler. 
The PL/ I optimizer was released during our im­
plementation; after careful evaluation, we decided to 
recompile our entire library with the new compiler. 
There were a few language incompatibilities and thus 
many older subroutines had to have minor modifica­
tions for the new compiler. Other changes were made 
to enlarge record structures for the peripheral files or 

DCl cc INIT( 47.0029315637 1283E+O) 
Fl T EXT; 

/* VELOCITY OF LIGHT IN */ 

MEMBE R CRO 
DCl CRO INI T( 6378. 166E+O) Fl TEXT; 

MEMBER EPHEMP 
DC l 1 EPHEMP CTl, 

2 ID CHAR (8), 
2 RE FXD, 
2 NPAR FXD, 
2 CARTE SSCO, 

2 Rl DDV( 3) Fl T, 

2 FCSMV(3) Fl T, 
2 RlFV(3) FlT; 

MEMBER SSGRE N 
DC l GRE N ENTRY (EPOCHP) 

RETURNS(Fl T); 

MEMBER SSWDG 

/ * VACUUM IN RO/SEC = * / 
/* 299792.5KM/SEC(AMS-55) * / 

/* RO TO KilOMETERS */ 

/* EPHE MERIS RECORD. * / 
/* IDENT = 'EPHEMP' * / 
/ * RESERVED * / 
/ * NUMBER OF PARTIALS */ 
/* CARTESIAN ORB IT INClDS: */ 
/* CEP- EPOCH */ 
/* RRD- RlV-POSIT ION IN RO */ 
/* - RlDV-V El OCITY RO/SC*/ 
/* CARTESIAN ACCELERATION */ 
/* IN RO/SEC**2 */ 
/* SMAll FORCE VECTOR */ 
/* CARTESIAN POSITION */ 
/* WHERE SMAll FORCE WAS */ 
/ * EVALUATED */ 

/* FUNCTION FOR lONGITUDE * / 
/* OF GREENWI CH */ 

DCl WDGI ENTRY(Fl lE,CHAR(* ),CHAR (*) ); / * WRITE INITIAL */ 
DCl WDG ENTRY(Fl l E, RDDP); / * WRITE NEXT POINT */ 
DCl WDGT ENTRY(FllE,CHAR (* )); /* TERMINATE WRITE */ 

MEMBER SSMODEP 
DCl MCDEP ENTRY (EPOCHP); 1* NOR MALI ZE EPOCH */ 

Fig. 2-Compile time text included from a 
common source insures uniform definitions 
between subroutines. 

Johns Hopkins A PL Technical Digest 



for internal data formats. The change log (Fig. 4) is a 
tool for continuing maintenance and is continuing 
even now after the program has been operational for 
two years. 

PROGRAM ACCOUNTING 

Some means of maintaining an orderly accounting 
of program components is necessary in the develop­
ment of a large program. The method established 
with the Orbit Determination Program took advan­
tage of the file handling utilities of the IBM operating 
system. Central libraries were established for source 
code (PLI) statements), compiled modules, and exe­
cutable versions of the program. Checked-out sub­
routines were stored as source code in the source li­
brary and compiled versions were stored in the load 
module library. The completed components were 
used to generate a production program. All hard­
copy listings were kept in a central file for reference. 

Confidence in new blocks of code increases in 
direct proportion with the time that the code has been 
in use. Accordingly, whenever a subroutine had to be 
upgraded or revised, the new version did not replace 
its predecessor in the library but became an addition 
to the library) (p. 149). It was always possible to 
revert to the previous version of a program if revi­
sions inadvertently produced bugs. A naming con­
vention was adopted whereby every subroutine had a 
unique name corresponding to its major entry point. 
These names were used for filing listings and as 
member names in the program libraries. When a suc­
cessor was generated the entry name was unchanged, 
but the library member names were constructed by 
appending an A to the first successor, a B to the se­
cond successor, and so on. Most of our program 
components are in the A or B stage, but there are a 
few especially troublesome and critical components 

Completion time 

1975 1976 1977 

Quarter Quarter Quarter 

Function 1 2 3 4 1 2 3 4 1 2 3 4 

Satellite property file 

Master scheduler I---
Revise data checker - - -
RMS Kepler and message fit 

Message formatting 

Station alerts - -
Finalize data editor 

I mplement point fitting 

Define operational mode 

Library - - -
Bench marks - I--

Docu mentation 

Training - -
Final checkout at APL - -
Prepare operational evaluation -
Technical evaluation - -
Operation implementation 

Support (number of people) 4.0 7.5 7.5 

Vo!ulI/e 2. NUII/ber! . !98 ! 

1. Revise atmospheric drag model to ref lect t he work of Eisner 
and Yionou lis. 

2. Rev ise rad iation pressure model. 

3. I nvestigate use of fi ll words in the message to convey a 
compact ephemeris and solar index number. 

4. Write summary data for automatic backup. 

5. Change the Post-Ed itor Fit to punch a run summary card. 
Change t he PEF to print the summary data in meters rather 
than earth rad ii. Change the breakout criteria in PE F. 

6. Change subroutine GGRD to remove a preprocessor error. 

7. Apply the stat ion equipment delay time to the fiducial t ime 
points. 

8. Change t he Kepler f itt ing program for t he case when eccen­
t r icit y goes negative. Adjust perigee by one-half the period. 

9. Correct an error in the Siftor for the case when TRANET-2 
passes are deleted. 

Fig. 4-Program change log. 

ADEN B 
ADEN C 
CHALWA 
CHALWB 
EDRDDG 
EDRDDH 
EDRDDI 
EDRDMSR F 
EDRDMSRG 

EDRDMSR H 
EDRDSPH A 
EDRDSPH B 
EDRDSPHC 
EGPA 
EGPB 
EGPC 
FADJ 
FADK 

FAD L 
GETSKA 
GETSKB 
GETSKC 
GVPC 
GVPD 
GVPE 
GVPF 

Fig. 5-A sequence code appended to the name of each 
program component indicates evolutionary changes. 

that are in the K, L, and M stages. We were par­
ticularly careful to avoid changing calling sequences 
(argument lists) so that revised subroutines would be 
compatible with their predecessors (Fig. 5). 

PERIODIC REVIEWS 
As programming progressed, there was a natural 

evolution from the component stage to the system in­
tegration stage. We conducted internal reviews of our 
progress about every month and we supplied external 

1978 

Quarter 

1 2 3 4 

-
Fig. 3-Sample completion schedule. 

-
~ -

4.0 

43 



progress reports in a semiformal management 
meeting for the program sponsor and the user group. 
Those reviews provided an opportunity to revise our 
completion schedule and update our change log. The 
reviews also showed some of our initial design 
features to be bad ideas and convinced us to abandon 
them. One feature was "multi-tasking" (using the 
same code to process several independent data 
streams). We thought the program should process 
several satellites simultaneously. That feature was 
available, but we did not need to provide multi­
tasking within the program since the vendor 
operating system has multiprogramming. Another 
feature was an input processor to scan and interpret 
the control data. We elected to use PL/ \ "data­
directed input" in lieu of implementing our own in­
put processor. 

SECURITY 
Program security-preventing the loss or destruc­

tion of our work through some local disaster-was a 
concern. We routinely unloaded all files from our 
central computer from disk to tape and stored our 
tapes locally, but remote from our computer center. 
As we reached the final stages of completion, we 
issued advance copies of the program to the user 
group in California for their review and storage. In 
that way, we satisfied our security problem and also 
provided a close liaison with the future users. 

INSTALLATION 
The program installation at the user site consisted 

of an intensive two week program staffed by six peo­
ple. The first week was mainly concerned with the 
tedious problem of compiling all components and 
running test cases on the user computer system. The 
week included classroom lectures on the physics and 
mathematics theory. The second week continued 
classroom lectures on the analysis behind the pro­
gram, on the program itself, and on data file 
organization. The classroom work was enhanced by 
laboratory sessions where the user staff submitted 
computer runs using the new program. There were 
about 20 people participating from the user staff. 
After initial installation, the user group performed 
experimental runs to test the program and later per­
formed parallel operational runs. That program test 
period proceeded for about a year with continuing 
feedback of questions and problems to the develop­
ment team. 

I offer the following checklist for managing any 
large-scale programming effort: 

1. Establish the design objectives early and have 
them written down. It is important to realize 
that software, if it is to be worthy of the name, 
should be flexible and amenable to change. 
Otherwise the logic would have been im­
plemented in hardware. 

2. Ask the program staff to establish the standards 
and conventions they can agree to follow. I 

44 

think it is important for the staff to establish 
their own standards. Neither management­
dictated nor very elaborate standards will be ef­
fective. 

3. Postulate a completion schedule and revise it 
periodically to match reality. 

4. Maintain a change log in addition to the com­
pletion schedule so that completed components 
that need modification will not be overlooked. 

5. Conduct a periodic review at intervals frequent 
enough to keep everyone informed of progress 
but not so frequent as to interfere with the 
ongoing work. (Weekly or monthly seems 
about the proper frequency for review.) If the 
reviews are not helpful to the staff cut their fre­
quency and change their emphasis. 

6. Have a central file for storage of completed 
programs including listings, source code, and 
documents. Have a procedure for maintaining 
this central file. It is imperative that you have 
all related source codes no matter how slapdash 
and impermanent they may seem. 

7. Have a security plan to protect your files from 
local disaster or inadvertent destruction. 

8. Solicit continuing feedback from the ultimate 
users of the system so that what you construct 
can be incorporated into their operation with as 
little impact as possible. (It is important that 
you work on the problem, not on what some 
specifications says should be done.) It is best to 
plan for three or four preliminary versions of 
the system before the final operational version 
is introduced I (p. 150). 

9. Maintain a distinct line between production or 
operational software and research or 
developmental software. Only developmental 
software that has been thoroughly checked 
should be promoted to operational status. If 
the project is large enough, a similar line 
should be maintained for personnel 
assignments. Those people engaged in opera­
tional computing should offer continuous feed­
back to those engaged in software maintenance 
and development. 

Technology frequently advances on parallel fronts. 
More discerning people have defined and published 
concepts such as "top-down design," "structured 
programming, " and "programming team" 5 that we 
discovered empirically to be very helpful in develop­
ing the orbit determination programs. 

REFERENCES and NOTES 

I F. P . Broo ks, Jr. , The M yfhical Man M onrh , Addison Wesley, 1978. 
2American Natio nal Standards Institute, A merican Nafional Sfandard 
FORTRAN, ANSI X3 .9- 1966. 

3American Natio nal Standards Institute, A merican Nafional Sfandard 
FOR TRAN, ANSI X3.9-1978. 

4American National Standards Institute , American National Standard 
PL/ I , ANSI X3 .53-l976. 

5G. M . Weinberg, The Psychology of Computer Programming , Van 
Nostrand-Reinhold , 1971 . 

61t is very impo rtant that the programmer 's name appear here . If changes 
are required later , we want to know with wh om to talk . The best d ocumen­
tatio n is reall y no substitute fo r a person 's knowledge . 

Johns H opkins A PL Technical Digesf 


