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THE NEAR-TERM POTENTIAL OF 
DOPPLER LOCATION 

In this paper we explore the precision that can be obtained in locating a point on the earth's 
surface by analyzing the Doppler shift in the signals from a near-earth satellite. When we limit the 
discussion to the use of techniques that have been demonstrated in the laboratory but that may not 
have been introduced into field use, we find that the precision obtained by using the data from a 
single pass of a satellite should be about 18 centimeters. It should be possible to improve the 
precision by using data from more than one pass in the usual statistical fashion. 

BACKGROUND 
Suppose that a source of sound waves is located at 

the point SI in Fig. 1, and suppose that a listener is 
located at the point R I . In some number of seconds, 
t, say, the listener receives some total number of 
waves or cycles of sound, W say. The frequency that 
he hears is (Wit) hertz and this is the same as the 
frequency i T sent out by the source. That is, 
i T = Wit. 

Now suppose that the source moves from the point 
SI to the point S2 during these t seconds, so that the 
source increases its range r from the receiver by the 
amount ~r. The wave front that just reached R I in 
the first case now reaches only to the point R 2 , which 
is the distance 6.r from R I • The listener, in this case, 
does not receive the waves that lie in the distance 6.r 
during the time t. If each wave has a wavelength A, 
the number of waves that he fails to receive is ~rIA, 
the number of waves that he does receive is W -
(~rIA), and the frequency iR that he hears is this 
number divided by t. Let r denote the rate at which 
the total range r is changing, so that r = (~r It) . 
Then 

(1) 

This is the basic equation of the Doppler shift. If a 
source of sound is moving away from the listener, the 
frequency that he hears is shifted downward by an 

Fig. 1-The origin of the Doppler shift. A source of sound 
located at S1 sends out a wave train that is received at R1 , 

and a certain number of waves are received at R1 in time t. 
If the source moves from S1 to S2 during the time t, moving 
a distance M away from R 1, the wave train that formerly ex­
tended to R 1 now extends only to R 2 , and the listener fails 
to receive all the waves contained in the distance M in the 
time t. Thus he hears a lower frequency if the source is mov­
ing away from him. 
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amount proportional to the velocity r of the source. 
I f the source is moving toward the listener, r is 
negative, and the frequency is shifted upward. 

Little has been written about the history of the 
Doppler principle, but I believe that the following is 
basically correct: The principle had long been 
recognized in its application to sound. In 1842, the 
Austrian physicist Christian Johann Doppler pub­
lished a paper in which he pointed out that the same 
principle should apply to light, and this is the con­
tribution that led to naming the effect after him. It is 
possible that he also changed the principle from a 
qualitative one to a quantitative one by deriving Eq. 
1 or its equivalent. 

In the case of sound, the effect perceived is a shift 
to a lower pitch if the source is receding and to a 
higher pitch if the source is approaching. In the case 
of light, the perceived effect is a shift of color toward 
the red if the source is receding and toward the blue if 
the source is approaching. In the case of radio 
transmissions, which we can neither see nor hear, we 
do not have the physiological sensations of pitch and 
color. We simply say that the received frequency iR is 
decreased or increased, as the case may be. 

Light and radio transmissions are different 
examples of electromagnetic radiation, and the same 
relations apply to both. Equation 1 is not correct for 
light, because of quantum and relativistic effects . 
The important quantum and relativistic effects are 
two in number: 

1. If the source and the receiver are not at the 
same gravitational potential, a quantum of 
radiation changes its energy as it passes from 
one to the other. This is usually called the 
"gravitational red shift, " because in astronomy 
we usually deal with the light emitted from the 
surface of a star. As the quantum climbs out of 
the gravitational potential well of the star, it 
loses kinetic energy; losing kinetic energy for a 
quantum means that its frequency decreases 
and its color shifts toward the red. However, 
the shift is toward the blue if the receiver is 
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deeper in a potential well than the source is. In 
precise work with the radio signals received on 
the surface of the earth from an artificial 
satellite, this "blue shift" effect must be taken 
into account. That is, the signals increase in 
frequency as they fall from satellite altitudes to 
the surface. 

2. Even if the source and receiver are at the same 
gravitational potential, the exact form of Eq. 1 
is not correct because it is not consistent with 
the way that we must combine velocities in 
relativity theory. 

These effects are the same general size for near­
earth satellites and they are of opposite sign. For 
satellites in the orbits that have been used in the 
Doppler navigation system, the combination of the 
two effects changes the received frequencies by about 
2 parts in 10 10 of the transmitted frequency. It is thus 
necessary to take the effects into account when we do 
Doppler work of high precision. However, it is not 
necessary to consider them in order to understand the 
principles and capabilities of Doppler location. In 
almost all of the remaining discussion, then, I shall 
assume that Eq. 1 is correct. 

When we derived Eq. 1, we assumed that the 
source was travelling directly away from the receiver. 
However, since the wave fronts are spherical as they 
spread away from the source, the number of waves 
that do not reach the receiver depends only on the 
amount by which the range changes in the time t. 
Hence the quantity f that appears in Eq. 1 is to be 
interpreted as the range rate, regardless of the details 
of the motion, which cause the range to be changing. 

In some studies, however, it is convenient to look 
at the details of the motion. In order to do this, we 
use Fig. 2. Here r is the range vector from the receiver 
R to the source S at some instant, and v is the velocity 
vector of S at the same instant. The angle ex is the 
angle between the two vectors, as drawn. The range 
rate f is obviously equal to v cos ex. We let fD denote 
the amount of the Doppler shift, in the sense of 
received minus transmitted frequency. At the same 
time, we replace the wavelength A by clfT, in which c 
is the velocity of light. This gives us 

THE PRINCIPLE OF 
DOPPLER LOCATION 

(vic) fT cos ex 

(fIe) fT . (2) 

There are several ways of looking at the process of 
locating a position by means of the Doppler shift. 
Different ways of looking at the process lead to 
understanding different aspects of it. 

Suppose that an artificial satellite in a near-earth 
orbit comes over the observer's horizon. At this time 
the range vector r is almost in the opposite direction 
to the velocity vector v, so that the angle ex is near 
180 0

• From Eq. 2, we see that the Doppler shiftfD is 
large and positive. As the satellite comes closer, ex 
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decreases. It becomes 90 0 when the satellite is at the 
point of closest approach, where f = 0, and finally, 
as the satellite goes over the horizon, the angle ex is 
nearly zero. The interval from the time the satellite 
appears over the horizon to the time when it disap­
pears is called a "pass". The variation of fD with 
time during a pass is shown schematically in Fig. 3. 

We suppose that the position of the satellite is 
known as a function of time, and therefore we know 
where it is at the time when fD = 0 in Fig. 3. Since 
ex = 90 0 at this time, the observer is in the plane that 
passes through this .position and that is perpendicular 
to the velocity vector v at the same time. In the usual 
case, which is the only one we shall consider, the 
observer is also on the surface of the earth. Thus he 
lies on the curve that the plane cuts from the earth's 
surface. 

Imagine for the moment that the satellite passes 
directly through the observer's position. In this case, 
ex remains 180 0 until the satellite reaches this position 

~~---------------~ 

Fig. 2-Relations between range, velocity, and range rate. 
The vector, points from the receiver R to the source S, and 
the source S has the vector velocity v. Then the range rate t 
equals v cos a. In some studies, it is convenient to write the 
Doppler shift in terms of v and a rather than of t. 

fO 

Time 

Fig. 3-The schematic variation of the Doppler shift f D with 
time during a pass of a satellite above the observer's 
horizon. An observer on the surface of the earth can find his 
position from the position of the satellite at the time when 
f 0 = a and from the derivative of f 0 at the same time. At 
this time, usually called the time of closest approach, the 
range r is a minimum. 
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and it then changes abruptly to 0°. The slope of the 
curve where fo = 0 in Fig. 3 is thus infinity if the 
"miss distance" is zero. The slope is finite for any 
real miss distance, and it becomes steadily smaller as 
the miss distance increases. Thus there is a one-to­
one relation between the slope of the fo curve at 
closest approach and the miss distance. Since we 
already know that the observer is on a particular 
curve in space, knowing the miss distance locates him 
at one of two points. Typically, the points are 
separated by thousands of kilometers, so the ob­
server immediately knows which of the two points 
applies to him. Thus, by using the time of closest 
approach, and the slope or derivative of the Doppler 
curve at that same time, the observer can locate 
himself. 

We can view the process of location in a different 
way by looking at Fig. 2 again. If we measure fo at 
some instant, we can calculate a from Eq. 2. The 
observer therefore lies on a cone whose vertex is at S 
and whose axis is the direction of v. This cone in­
tersects the earth's surface in some curve. Measuring 
fo at a different time gives another curve cut from 
the earth's surface, and the observer lies at the in­
tersection of these two curves. Thus we see that the 
observer can locate himself by measuring only two 
points on the Doppler curve of Fig. 3. Measuring 
more than two points on the curve provides 
redundancy and therefore increased accuracy. 

Still a third way to look at the process of location is 
to use what is often called "integrated Doppler". In 
order to measure the Doppler frequency, the ob­
server must have an oscillator of known frequency. 
For the moment let us suppose that its frequency is 
exactly equal to fT' The observer beats his local 
oscillator against the received frequency, and the 
difference is fo. Instead of attempting to measure fo 
at two or more instants, the observer counts the 
cycles of the beat note and measures the time 
required for the beat note to go through some 
number N of full cycles; N is a number that the 
observer chooses for convenience. 

Suppose that the count of N cycles begins at time t 1 

and ends at time t2 • Between these times, the satellite 
moves from point SI to point S2 in Fig. 4. Now N is 
the number of cycles that the observer fails to receive 
if the source is moving away from him, or the extra 
number that he does receive if the source is moving 
toward him. In either case, NA is the change in the 
distance to the satellite; that is, it is the difference 
between the distances to the points S 1 and S2 . 

The difference in distances defines a hyperboloid 
of revolution whose foci are points SI and S2' so the 
observer lies on this hyperboloid in Fig. 4. Thus he 
lies on the curve of intersection between the surface 
of the earth and the hyperboloid. If he repeats the 
process, he generates a second curve, and he lies at 
the intersection of the two curves. 

This way of looking at Doppler location brings out 
the relation between Doppler location and location 
by ranging. In location by ranging, a satellite emits 

18 

time signals at times t 1 and t 2 , say, as measured on its 
own clock. The observer receives the signals at later 
times, say at tl + Ot l and t2 + Ot2 , as meaured on 
his own clock. The differences Ot l and Ot2 place the 
observer on the surfaces of two spheres whose centers 
are the corresponding satellite positions and, if the 
observer is on the surface of the earth, these spheres 
determine his location. 

Suppose that we want an accuracy of 10 cen­
timeters in position. Since the time signals travel 3 x 
108 meters per second, both clocks must have errors 
of less than one third of a nanosecond. This exceeds 
the present capabilities of measuring time on an 
absolute basis; therefore ranging by this method 
cannot be done. Instead, the observer must time at 
least three signals sent from the satellite and use the 
information to determine the offset between his clock 
and the satellite clock at the same time that he 
determines his position. Thus the observer does not 
actually measure the range at any time. Instead, he 
measures the amount by which the range changes 
between two times, and he repeats this measurement 
as often as he needs to. 

Thus, contrary to a widespread belief, Doppler 
and ranging systems measure the same thing, which is 
the change in range between two times. Hence both 
systems supply exactly the same kind of information; 
the ranging systems do not have an innate superiority 
in the kind of information that the user obtains. 1 If 

• E 

Fig. 4-Location by integrated Doppler. The observer 
counts the total number of cycles in the Doppler shift while 
the satellite moves from S1 to S2 ' This number, times the 
wavelength, is the difference between the distances from 
the observer to S1 and S2; the observer is therefore on a 
hyperboloid of revolution whose foci are S1 and S2' At the 
same time, he is on the surface of the earth, which is 
represented by the circle whose center is E. The observer is 
therefore on the curve of intersection of the hyperboloid 
with the earth . A second count of cycles then locates the 
observer. 
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the kind of information is the same, Doppler systems 
have an innate engineering superiority. 

If we use "information" in the technical sense that 
it has in information theory, we may say that a mea­
surement of a range difference amounts to a transfer 
of a certain number of bits of information from the 
satellite to the observer. The precision of the 
measurement is directly related to the number of bits 
transferred, which in turn is proportional to the 
amount of energy transferred. Hence, if a Doppler 
system and a ranging system provide the same 
precision of location from a single pass, the energy 
transferred is the same, the time is the same, and the 
average power transmitted is the same. In the 
Doppler system, the average power and the peak 
power are the same. In the ranging system, the peak 
power exceeds the average power by orders of 
magnitude, and the efficiency is necessarily lower. 

In other words, if the same power and the same 
levels of technology are used in both systems, the 
Doppler system is inherently more precise than a 
ranging system. 

THE PRACTICE OF 
DOPPLER LOCATION 

A short while ago, we assumed that the observer 
uses a local frequency equal to the transmitted 
frequency, and that he measures fD by beating the 
received frequency against his local frequency. He 
would encounter severe difficulties if he actually did 
this, because the beat frequency would pass through 
zero at the time of closest approach in Fig. 3. It is 
difficult to maintain precision if this is allowed to 
happen, because the dynamic range required of the 
measuring apparatus becomes infinite. 

In all Doppler satellite systems that have been used 
to date, the observer chooses his local frequency so 
that it differs from f T by more than the possible 
amount of the Doppler shift f D' A satellite in a near­
earth orbit has a speed of about 7000 meters per 
second, or slightly more, so that vic is about 
2.4 x 10 - 5

, or about 24 parts per million. Hence, 
according to Eq. 2, the maximum value of f D is about 
2.4 f T x 10 - 5

, so that the received frequency f R can­
not differ fromfT by more than this amount. The ob­
server therefore sets his local frequency, say f s , so 
that it differs fromfT by more than 24 parts per mil­
lion. An offset of about 50 parts per million, or per­
haps somewhat more, has proved to be convenient. 

When this is done, the beat frequency, which is 
what the observer directly measures, can never go 
through zero. After he measures the beat frequency 
(or counts its cycles in the integrated Doppler 
method), the observer calculates the Doppler 
frequency (or the count of its cycles) by using the 
difference f s - fT' I shall use f A (from the German 
abstand) to denote this difference. 

In order to find his position with high precision, 
the observer needs to know the difference f A with 
high precision, but he does not need to know either 
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f T or f s with high precision. It is sufficient to know 
only nominal values of the two individual 
frequencies. 

In finding his position, the observer does not ac­
tually use the simple approaches described in the pre­
ceding section, except perhaps in simple demonstra­
tions or expositions. Unless he uses the method of 
integrated Doppler, he starts by measuring the beat 
frequency at a set of times t i • I shall denote the 
resulting set of measured frequencies by f. 

Let us assume that the observer has a map which 
gives his distance from the center of the earth as a 
function of his latitude YJ and his longitude A. If so, 
he knows fully his position with respect to the center 
of the earth once he finds the two coordinates YJ and 
A. Since he knows the orbit of the satellite, he could 
calculate the Doppler frequency fD at the time ( if he 
knew YJ and A. In other words, fD at the time t i is a 
function of YJ, A, and t i. Further, the frequency fi 
measured at the time t i equals fD plus f A' except for 
experimental error. That is, 

(3) 

for each value of i. The observer then uses statistical 
procedures to find the values of YJ and A that give the 
best fit in Eq. 3, using any definition of "best fit" 
that he chooses. 

If he uses the method of integrating the Doppler 
frequency, the observer starts to count cycles at some 
measured time and counts continuously until the end 
of the pass. He then reads the times t i at which the 
count takes on a convenient set of values. As in the 
frequency method, he can calculate what the count 
should be as a function of f A' YJ, A, and t i , and he 
proceeds as before to find the values of YJ and A that 
make the measured values best fit the calculated 
ones. For simplicity, most of the discussion of this 
paper will be based upon the frequency method of 
Eq. 3, but the reader should remember that all the 
discussion applies equally to the integrated Doppler 
methqd, if appropriate modifications are made to the 
terminology. 

Only cost limits the number of parameters that can 
be found in this way. For example, the observer may 
have a local oscillator whose frequency is not known 
accurately. In this case, he may simply take fA' along 
with YJ and A, to be an unknown parameter that he 
finds from Eq. 3. The parameter f A is strongly 
determined by the measurements. 

In a more complicated example, the observer may 
not know his distance from the center of the earth, 
which we may take as equivalent to not knowing his 
altitude. The altitude must be taken as another 
unknown parameter. The difficulty in doing this 
comes from the fact that the time of closest approach 
and the range at closest approach are the geometric 
parameters most strongly determined by the data. 
Suppose that there are two observers, both at the 
same range at closest approach. Suppose further that 
they are at different altitudes, so that they are at 
different horizontal positions if they are at the same 
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range. Under these conditions, there is almost no 
difference in their measured frequencies (for the 
same f A)' Hence it is not possible to solve accurately 
for both the altitude and the horizontal position by 
using the data from a single pass. 

All that the observer needs to do in order to find 
all three coordinates is to use two passes. These can 
be two different passes of a single satellite, or they 
can be single passes of two different satellites. If his 
position is, say, on the port side of the satellite in the 
first pass, he should choose the second pass to be one 
in which he is on the starboard side. The range lines 
at the two closest approaches then cross at a strong 
angle, and all coordinates are strongly determined. 

A still more complex problem comes from the need 
to know the orbit of the satellite. In order to find the 
orbit, we have a network of tracking stations, 
suitably dist ributed at known locations over the 
surface of the earth, and we measure the Doppler 
shift at each station for each pass over some con­
venient interval, say two days. We then chose the six 
orbital parameters that give the best fit to the 
resulting set of data. I f necessary, we also find a 
separate value of f A for each pass observed at each 
station. However, if we have atomic frequency 
standards at the stations, and if we have a crystal 
oscillator of high quality in the satellite, we may 
assume that all station frequencies are known and 
that the transmitted frequency varies with time in 
some simple way, such as quadratically. 

We find the most complex problem when we 
consider the other things we must know in order to 
calculate the satellite orbit; I shall now leave the 
relatively trivial frequency problems to one side. We 
assumed in the preceding paragraph that we know 
the coordinates of all the tracking stations. Further, 
we tacitly assumed that we know all the parameters 
that enter into determining the force field acting on 
the satellite. Actually, of course, there are un­
certainties in our knowledge of station coordinates 
and force-field parameters. If we trace out the effect 
of these uncertainties upon the location of points, we 
find that there is a limit to the accuracy of location . 
In the present state of affairs, this limit is a moderate 
number of meters. 

In making this statement, I deliberately said "loca­
tion" instead of "Doppler location." We find the 
same limit, in the sense in which the word has just 
been used, with all uses of satellites. In finding this 
limit, it does not matter whether we measure the 
Doppler shift, the range, or the optical position. It 
does not matter whether we use the one-way Doppler 
system, the two-way radio systems such as radar or 
the NASA range/range-rate system, the most precise 
camera systems, or laser systems. Further, the same 
limits apply to surveying systems that are purely 
ground based or that use ranging between aircraft and 
ground sites. 

The reason for this comes from the connection 
between the shape of the earth and its gravity field. 
By the shape of the earth, we mean the shape of the 
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surface called "mean sea level." This surface is the 
shape of the actual ocean surface, after we average 
out the waves and tides, when we are at sea. On land, 
we extrapolate the ocean surface inland by means of 
bubble tubes on our levels; the bubble tubes always 
give us the direction that the water surface would 
have if the water could percolate freely into the 
continents. 

Except for small effects that we must account for 
in practice, but that we can ignore in this general 
discussion, mean sea level is a surface on which the 
potential energy (including the centrifugal potential 
due to the earth's rotation) of a kilogram mass is a 
constant. Thus, if we knew the parameters of the 
gravitational force field exactly, we would know the 
shape of the surface at sea level. Conversely, if we 
knew the shape of the surface, we could calculate the 
parameters of the force field. 

We specify the shape of the sea level surface by 
giving the local earth radius at any point. That is, at a 
given latitude and longitude we give the number of 
meters from the center of mass of the earth to the 
surface at that point. At present, the uncertainty in 
the local earth radius is a moderate number of 
meters. If there is an uncertainty in the shape of the 
surface, there must also be an uncertainty of the 
same general amount in locating points on the 
surface. This uncertainty is a characteristic of the 
surface and of our knowledge of it, and it does not 
depend upon the method we use to measure position. 

The limit on positioning that is imposed by our 
ignorance of sea level will be called the geodetic limit. 
In the next section, I shall try to assess the near-term 
effect of the geodetic limit. This means trying to 
answer the question: Can we decrease this limit by 
further research, or are we too near some minimum 
limit that is imposed by basic geophysics? The 
geodetic limit is common to all systems of location. 
In later sections, I shall try to assess the near-term 
level of all factors that are known to limit the ac­
curacy of location by Doppler methods using ar­
tificial earth satellites. 

THE GEODETIC LIMIT 
In discussing the geodetic limit on the accuracy of 

location, we must distinguish between the global 
problem and the local problem. In the preceding 
section, I was tacitly talking about the global 
problem, which is: For any given latitude and 
longitude, what is the uncertainty in the earth radius? 
As I have said, this is a moderate number of meters. I 
refrain from stating a specific number, because 
different research centers make different estimates. 
All current estimates, however, are of the order of 5 
or 10 meters. 

Now pick a specific latitude TJo and longitude Ao. 
Let ro be our current estimate of the earth radius at 
this point. Suppose that further research ultimately 
shows that ro is, say, too large by 5 meters. We 
express this by saying that the error is + 5 meters. 
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Next let us move away from this point by 0° .01 in 
some direction; 0° .01 is about 1 kilometer (km). If 
the error in the earth radius is + 5 meters at the first 
point, can we put limits for the error at the second 
point? The answer is provided by the direction of the 
sea-level surface. 

The same information that lets us calculate the 
gravitational force field and the sea-level surface also 
lets us calculate the direction of the sea-level surface 
at any point. At present, the uncertainty in this 
direction is a few tens of seconds of arc. For the sake 
of illustration, let me use 20" as the uncertainty at 
the point with coordinates YJo and Ao; this is about 
10 - 4 radians. If we predict the radius at a point 1 km 
away, the uncertainty is about 10 - 4 km, which is 
about 10 centimeters (cm). Thus if the error in the 
earth radius is + 5 meters at the first point, it must be 
between + 4.9 and + 5.1 meters at the second point. 
In other words, we can find the relative position of 
two neighboring points much more accurately than 
we find the position of either point individually. 

Finding the relative positions of neighboring 
points is the local problem and finding the position 
of any point with respect to the center of mass of the 
earth is the global problem. The geodetic limit is 
much greater for the global problem than for the 
local problem at present, and it has also been much 
greater throughout the past. 

The first artificial satellite was launched on 4 
October 1957. At that time, the global accuracy of 
location was a few hundred meters. Only a few areas 
had been the subjects of intensive local surveying. 
They included Europe, the contiguous United States 
plus southern Canada, Australia, and some other 
smaller areas. Within one of those areas, the local 
accuracy was a few tens of meters, but the accuracy 
of locating the areas with respect to each other was 
hundreds of meters. Now the global accuracy has 
been improved by an amount that is close to two 
orders of magnitude. Several programs have con­
tributed to this progress, but we can safely say that 
the dominant new contributions have been made by 
satellite programs. 

Large extrapolations are always dangerous, but a 
moderate extrapolation is usually safe. On the basis 
of present knowledge, it is safe to say that the 
geodetic limit can almost certainly be decreased by 
another order of magnitude, to the point that is a few 
tens of centimeters on the global basis and less on a 
local basis. Perhaps it is better to say that improving 
geodetic accuracy to this level is more a political 
problem than a technical problem. The improvement 
mentioned is within reach of present technology, but 
it will take money. Whether the necessary programs 
are to be funded is a matter of national priorities and 
political decisions. 

We can be rather sure of our ability to improve the 
geodetic limit because there are no physical effects 
that might interfere whose existence has even been 
suspected. If there were any effects that might in­
terfere, it is almost certain that they would have given 
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us some premonitions of their existence. However, in 
order to achieve an improvement by an order of 
magnitude, we shall have to revise our ideas and 
approaches in two important ways. 

The Adoption of a New Reference Surface 

Until the present time, we have assumed that the 
physical surface of the ocean is a surface of fun­
damental physical importance, namely a surface of 
constant potential. If the waters of the oceans were at 
rest, this assumption would be correct. Actually, the 
waters are not at rest, and the assumption is in­
correct. The waves and tides quickly average to zero, 
and they do not affect the validity of the assumption. 
However, there are well known currents that are 
permanent or nearly so, and they must be driven by 
physical forces. Since the forces cannot exist unless 
there are differences in potential, the ocean surface 
cannot be a surface of constant potential. Estimates 
of the forces required to drive the currents are dif­
ficult to make, but those estimates that exist indicate 
that the mean ocean surface departs from a surface 
of constant potential by amounts that may range up 
to a meter. Hence we shall probably have to abandon 
the ocean surface as our reference surface and learn 
how to use a constant potential surface in its place, if 
we are to improve the geodetic limit by an order of 
magnitude. 

The Introduction 
of Time-Dependent Coordinates 

Even at the present level of accuracy, it is no longer 
possible to speak of the latitude and longitude of a 
place as if they were constant. Both the North and 
South Poles move rather irregularly over areas about 
the size of a baseball infield, and each polar motion 
changes both latitudes and longitudes. Doppler 
location already provides a standard method of 
following the poles. 2 The earth tides also change the 
coordinates of points by amounts that will have to be 
included if we are to speak of accuracy exceeding a 
meter. Most importantly, we know that portions of 
the earth's crust move with respect to other portions 
at rates of a few centimeters per year. In order to 
cope with this phenomenon, we must abandon the 
idea of defining a coordinate system by the use of one 
or more "fixed" points such as the Greenwich 
Observatory. We must learn to define an "earth­
fixed" coordinate system even if all the points in the 
system are in motion. 3 The coordinates of an 
identifiable point such as a brass marker must then 
be given as functions of time in this system. 

ATMOSPHERIC DRAG 
ON A SATELLITE 

Two forces that are not gravitational in origin 
affect the motion of a satellite. One is the drag 
produced by the residual atmosphere that is still 
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found at satellite altitudes; the other is the force 
produced by the pressure of solar radiation. 

The structure of the upper atmosphere is highly 
complex; it varies drastically with latitude, longitude, 
altitude, and time. 4 To describe the matter loosely, 
solar heating "boils" matter up from the lower at­
mosphere, and dissociates many of the molecules 
found in the lower atmosphere into their constituent 
atoms. The atoms, being lighter and perhaps more 
heated, then diffuse upward, so that much of the 
atmosphere at satellite altitudes is atomic rather than 
molecular. This process of producing upper at­
mosphere is continually being opposed by the ten­
dency of the atoms to recombine into molecules. 

From this fact, we expect the density of the 
daytime atmosphere to be greater than that of the 
nighttime atmosphere, and measurements show that 
the ratio of day to night densities at 1000 km altitude 
or above may be ten or more. However, the "hot 
spot" is not directly under the sun; because of time 
lag in the diffusion process, the hot spot is somewhat 
east of the subsolar point. 

Most of the solar spectrum is not effective in 
boiling up the upper atmosphere. Because a key 
effect is molecular dissociation, the far ultraviolet is 
most effective. While most of the solar spectrum is 
extremely stable, the intensity of the far ultraviolet 
varies over a large range. It varies with sunspot cycle, 
with a period of about 11 years, but it also varies 
sporadically from day to day. The far ultraviolet is 
completely absorbed by the upper atmosphere, so its 
strength cannot be monitored at ground level. 
However, it is highly correlated with the solar spec­
trum in the microwave region (wavelengths of 10 to 
20 cm) and with the magnetic activity of the sun, 
which can both be monitored at ground level. Thus 
we can monitor the temporal variations of the upper 
atmosphere with reasonable accuracy by ground­
based observations. 

Under typical conditions, experience with the 
satellites in the Navy Navigation Satellite System 
shows that the upper atmosphere may give them a 
drag acceleration of about 10 - 6 centimeters per 
second per second. Over a period of 14 orbital 
revolutions, about one day, this displaces the satellite 
in the direction of its orbital motion by about 100 
meters; I shall use the latter as a standard figure to 
which all other drag results will be normalized. In 
spite of the size of this displacement, the drag limit 
on the accuracy of location is certainly no more than 
10 cm on a global basis, as I shall now show. 

To start with, we can determine the parameters of 
the satellite orbit by using the data over an interval of 
one day. The orbital period found this way is the 
average period over a day, and the simple fact of 
letting the period be fitted to the data cuts the 
maximum drag error by a factor of six. However, we 
are not restricted to this action. On the basis of much 
experience with the satellites in the navigation 
system, we have calibrated Jacchia's theory4 so that 
it yields the actual drag experienced by the satellites, 
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with considerable accuracy. When the satellites are 
used for real-time navigation, it is necessary to use a 
predicted value of drag in the orbital calculations. 
When the satellites are used for locating places in a 
research program, however, we can analyze the data 
after the fact and use the monitored values of solar 
activity. 

More simply, and probably more accurately, we 
can take the calibration constant for Jacchia's 
theory, or some equivalent parameter, as an 
unknown to be determined from the tracking data at 
the same time that we determine the other orbital 
parameters. When we do this, the orbit is determined 
as accurately as the data and our geodetic knowledge 
allow, and the drag does not impose any limit to the 
accuracy of the process. 

In writing this, I have assumed that the atmospher­
ic density does not change markedly with time during 
the tracking interval. If the density does change with 
time in a way that we cannot follow in detail, we 
must ask what limiting accuracy may result. 

Suppose that the density function changes linearly 
by a factor of two within the tracking interval of a 
day, and that we find the orbit by using an average 
density that gives the best fit. The change in density 
puts a cubic function into the displacement of the 
satellite, and the cubic is antisymmetric about the 
middle of the interval. Thus it is effective for only 
half of the interval, since the average is removed by 
the tracking process, and the average is the value at 
the center of the span. Since the variation is as the 
cube of the time, it is small during most of the in­
terval. Further, the orbital period found for the 
satellite automatically adjusts to give the best straight 
line fit to the cubic, and this reduces the residual 
effect even farther. The algebra to find the residual 
effect is trivial, and I shall give no details. 

The result is the following: If the average density 
has the value needed to give a total displacement of 
100 meters in a day, if the density varies by a factor 
of two within the day, and if the average density is 
found by a fitting process, the standard deviation of 
the residual error is 43 cm. 

This does not represent the limit, however, because 
it is the error that is present when we make no at­
tempt to eliminate it. We can reduce the error in 
either of two ways: 

1. Since we can monitor the solar activity, we can 
take the time derivative of the density from the 
monitored activity, and fit out the average in 
the process of finding the orbital parameters. 
This would surely leave no more than about a 
fourth of the error, or about 10 cm. 

2. If we cannot satisfactorily remove the error, for 
reasons that we cannot foresee, we can still take 
advantage of the fact that changes by a factor 
of two in one day are rare. Since we do not have 
to use all of the data in a research program, we 
can simply omit data gathered during a day 
when solar activity is changing rapidly. 
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In conclusion, it seems safe to say that the global 
limit imposed by drag acting on the satellites is less 
than 10 cm. 

RADIATION PRESSURE 
At an altitude of 1000 km, the electromagnetic 

pressure exerted by the solar radiation is about ten 
times the drag ' pressure exerted by the residual at­
mosphere. If the forces acted in the same direction, 
the resulting perturbation would be 1000 meters in a 
day; a perturbation of this size might pose a serious 
problem. Luckily radiation pressure does not act in 
the same direction as drag, as we can see with the aid 
of Fig. 5. 

The solar radiation arrives from the right in Fig. 5. 
I f the satellite is symmetrical about this direction, the 
resulting force acting on it is directed toward the left, 
away from the sun. If the satellite is not symmetrical 
about the direction to the sun, the resulting force 
may also have a component perpendicular to the 
direction of the sun. 5 If the radiation pressure is to be 
calculated accurately, one of three conditions must 
be satisfied: The satellite must be symmetric. If not, 
it must rotate so rapidly that it seems symmetric on 
the average over a reasonable time. I f it meets neither 
of these conditions, we must know its configuration 
and its orientation in space at all times. Under any 
circumstances, the force component away from the 
sun is considerably larger than the perpendicular 
component. In this error analysis, we can consider 
only the component away from the sun. 

The component of force that is tangential to the 
orbit is largest when the sun lies in the plane of the 
orbit, and this is the condition shown in Fig. 5. The 
smaller of the two circles whose center is E represents 
the earth, and the earth's shadow is the lightly 
hatched region to the left of the earth. Within this 
region, there is no radiation pressure. 6 The satellite 
emerges from the shadow at point A, and from there 
to point B the tangential component of force is 
opposed to the velocity. From B around to C, where 
the satellite enters the shadow again, the tangential 

B ~ 

Solar radiation 

Fig. 5- Radiation pressure acting on a satellite. The 
smaller circle whose center is E represents the earth, and a 
satellite travels around it on the circle ABC. Solar radiation 
impinges from the right. The earth's shadow is shown by 
the shaded region, and there is no radiation pressure within 
this region. 
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component is in the same direction as the velocity. If 
the orbit is circular, the net displacement in a full 
revolution is zero. 

The distance from A to B is about a third of a revo­
lution, but the tangential component is small over 
much of this distance. If we say that the radiation 
force opposes the velocity for a fourth of a revolu­
tion, we shall have the right size of the effect. In 14 
revolutions, the perturbation would be 1000 meters if 
the force were actually tangential. In a quarter revo­
lution, the displacement is only (1 /56Y~ x 1000 
meters, and this is about 40 cm. That is, the displace­
ment is about 40 cm when the satellite reaches B, but 
this is cancelled by the time it reaches C. We can 
surely calculate this high frequency effect with rea­
sonable accuracy, and therefore it imposes no ap­
preciable limit upon the accuracy of location, even 
on a global basis. 

If the orbit is not circular, the time spent between 
A and B need not be the same as the time between B 
and C, and there may be a net displacement during a 
full revolution and over a day. This displacement is 
of the order of 1000 meters times the eccentricity of 
the satellite orbit. For satellites used in navigation or 
other processes of location, we deliberately make the 
eccentricity small; the eccentricities of the satellites in 
the navigation system are about 0.01. Hence the 
cumulative effect of radiation pressure over a day is 
about 10 meters, a tenth of the effect of drag. By 
taking suitable precautions, we expect to cut the 
residual effect of drag to less than 10 cm. Since the 
radiation pressure, being almost constant in time, is 
more tractable, we can expect to cut its residual effect 
to less than 1 cm. 

ELECTRICAL NOISE 
There are several sources of electrical noise in a 

system of Doppler location. We have phase jitter in 
the satellite's oscillator and in the observer's oscilla­
tor, we have ambient radio frequency noise at the 
observer's antenna, and we have internal noise in the 
observer's receiver. 

The oscillators used so far in the navigation 
satellite system are quartz crystals in multiple-walled 
Dewar flasks, with active temperature control in the 
space between the outer pair of walls. The oscillators 
used in both the satellite and the ground system are 
basically the same. Because the frequency of a crystal 
oscillator is a function of temperature, the operating 
temperature is chosen to be the temperature at which 
the derivative of frequency with respect to tem­
perature is a minimum. For the crystal cuts used, the 
operating temperature has been about 50°C. 

The phase jitter of the oscillators has been 
measured by comparing two oscillators with each 
other. For example, we can start counting cycles of 
both oscillators at some instant and end the count of 
both at some later instant. The interval over which 
the count is measured is called the averaging interval. 
We then divide the difference between the counts by 
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the time interval to get a frequency difference, and 
we further divide this by the operating frequency to 
get the relative frequency difference. Finally, we find 
the standard deviation of the relative difference from 
zero. 

For the oscillators used in the navigation satellite 
system, the noise level found in this way7 is typically 
60 parts in 1012

• Since two oscillators are involved in 
the measurement, the noise contribution of each os­
cillator is this number divided by ..fl. I shall round 
this quotient to 40 parts in 1012

• These numbers are 
for an averaging interval of 1 second. 

We routinely measure the noise level of the data 
obtained by the Doppler tracking stations of which 
there are two types. One type uses a simple whip 
antenna, while the other uses a helical antenna with a 
gain of about 10 dB. In a recent sample, for an 
averaging interval of 1 second, the first kind showed 
a noise level of 81 parts in 10 12 while the second kind 
showed a level of 57 parts in 10 12 . Since the noise 
measured this way includes the effects of two 
oscillators, one in the satellite and one in the station, 
the noise measured with the helical antenna is almost 
exactly that expected from the oscillators alone. If 
this is so, it means that the receiver noise is small 
compared with the oscillator noise; it further means 
that the helical antenna reduces the ambient noise to 
the point that it is also negligible compared with the 
oscillator noise. 

The noise generated in the receiver itself is 
probably about the same in both types of station, so 
the difference between the two noise levels should be 
mostly the result of ambient radio noise. It seems 
that the helical antenna provides about as much gain 
as is useful with the present type of oscillator. 

With the aid of computer simulations, Guier and 
Weiffenbach8 have developed the following semi­
empirical formula for the position error E caused by 
noise: 

E = 2.5 X 1013 N - Y' ll centimeters. (4) 

In this, Il is the noise level for one-second averaging, 
and N is the number of seconds for which data are 
obtained. It is explicitly assumed that Eq. 4 applies to 
the data obtained during a single pass of a satellite 
and that we attempt to find only two coordinates 
from that pass. However, we do not need to make 
any substantial change if we derive all three coor­
dinates, provided it is understood that at least two 
passes must be used if we do this. It is also assumed 
that the satellites have an orbital altitude of about 
1000 km. 

Under these conditions, N is about 625 for a single 
pass. If we use this value, 

E = 10 121l centimeters. (5) 

Thus a noise level of 60 parts in 1012 produces a 
location error of about 60 cm for a single pass. 

There have not been many chances to test Eq. 5 
experimentally because other sources of error out-
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weigh the noise under most conditions of use. 
However, for a few days during the spring of 1971, 
we did have the opportunity to operate two Doppler 
receivers simultaneously at the Applied Physics 
Laboratory. We were able to obtain data from nine 
satellite passes, using two receivers operating from a 
common antenna but with separate local oscillators. 
We were also able to obtain data from eleven passes 
in which the receivers had a common antenna and 
also a common local oscillator. The results of these 
20 passes are summarized in Table 1. 

In order to understand the table, we must know 
what is meant by the number of deleted points in the 
second column of the table. The sets were of the 
integrated Doppler type, in which the count of cycles 
was read about every 25 seconds, with about 30 
counts being obtained during a single satellite pass. 
In a time series of measurements, especially those 
obtained by radio apparatus, there will frequently be 
some readings that are not valid measurements. A 
burst of external noise, a line transient, or the like, 
may cause a reading that is characteristic of the noise 
rather than of the phenomenon being studied. In 
order to find such readings, we first find the 
parameters that give the best fit to the series of 
readings, find the standard deviation of the residual, 
and try eliminating all residuals that are more than 
three standard deviations. We repeat the process with 
the remaining series, and continue in this way until 
the process stabilizes. If no more than, say, 10070 of 
the series are deleted in this way, we usually accept 
the remaining readings and use them. 

It is not clear that this acceptance is valid. If a 
reading is deleted, it indicates some sort of 
malfunction, using the term in a very general way. It 
may be that the malfunction was confined to the time 
interval in which the deleted reading was made, but it 
may well have had some existence outside the interval 
that was at a level too low to be detected. Hence, the 
best choice may be to ignore an entire series if even 
one reading or point is deleted. 

We have tested this idea in Table 1. The table gives 
statistics on both the measurements obtained with 

Table 1 

COMPARISON OF TWO DOPPLER RECEIVERS AT 
THE SAME LOCATION OPERATING SIMULTANEOUSLY 

Oscillator 

Separate 

Common 

Number 
oj 

Points 
Deleted 

0 
1-3 
0 

1-2 

Number 
oj 

Passes 

4 

5 
4 

7 

Measured 
Separation 

(cm) 

32 
177 

15 
69 

a 
(cm) 

95 
205 

39 
113 
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separate oscillators in the two receivers and on the 
measurements obtained using a common oscillator 
for both sets. For each of these conditions, we first 
exhibit those passes in which no point was deleted 
from the series obtained with either receiver. We then 
exhibit those passes in which some points were 
deleted, perhaps from only one set or perhaps from 
both. In this sample, out of about 60 readings ob­
tained by both receivers during a pass, a total number 
of deleted points ranges from 1 to 3 when the 
oscillators were separate and from 1 to 2 when the 
oscillators were common. This difference must surely 
be an accident; there is no fundamental reason why 
more points should be deleted in the first case. 

From each pass, we infer a position for each 
receiver and subtract the positions to find the 
measured separation. The separation is a vector , and 
the table gives the magnitude of the average vector 
separation. It also gives the standard deviation of the 
magnitude, taken about zero rather than about the 
mean. 

The difference in performance between the passes 
with no deletions and those with one or more 
deletions is quite striking. From the table, we may 
tentatively draw two conclusions: 

1. In precise work, we should delete an entire pass 
if we delete even one point from either receiver; 
doing so pays off more rapidly than using all 
passes and relying upon statistical im­
provement. 

2. When we use only passes in which no points are 
deleted, the error produced by noise is some 
tens of centimeters, in accordance with Eq. 5. 

As we expect, the noise is greater with separate 
oscillators than it is when we have a common 
oscillator in both ground sets. In view of the small 
sample, attempts at more detailed analysis of the 
data are probably not warranted. 

In summary, theoretical considerations indicate 
that the noise contribution to Doppler location from 
a single pass in which no points are deleted is of the 
order of 50 cm, even when we use only a whip an­
tenna. The small amount of experimental data that is 
available confirms this estimate reasonably well, but 
it is desirable to obtain more data. 

If we accept this figure, we should ask how many 
passes are needed in order to reduce the error to 10 
cm. We need to use 25 passes in order to obtain this 
reduction, and we can use about half of the total 
passes. Thus about 50 passes will be needed. This is 
the number of passes obtained in 4 or 5 days. 

The preceding discussion applies to the oscillators 
that are now in service. During the past year, we have 
been doing laboratory tests on a new type of 
oscillator called NP4. The tests performed so far 
indicate9 that the noise level of these oscillators is an 
order of magnitude below the level of the oscillators 
now in service. If this laboratory improvement can be 
carried over into field equipment and satellites, the 
noise contributions will fall to about 5 cm for a single 
pass. 

Volume 2, N umber 1, 1981 

OSCILLATOR DRIFT 
AND TIMING ERRORS 

We saw in the section on the practice of Doppler 
location that the user may determine f A' the dif­
ference between his local frequency standard and 
that in the satellite, at the same time that he deter­
mines his position. If necessary, he can make a 
separate determination of f A for each pass that he 
uses. We must now ask how sensitive his inferred 
position is to errors in f A. For example, suppose that 
he uses a satellite frequency supplied by the operators 
of the satellite system, that he measures his local 
frequency by some means independent of the satellite 
system, and that he combines the two frequencies to 
findfA' instead of inferring it from the Doppler data. 
What error in location will he make? 

The error depends somewhat upon the exact 
relative geometry of the observer to the satellite 
orbit, but we can calculate a representative error by 
averaging over all geometries. The result is the 
following rule of thumb: 

1 part in 10 13 in frequency 

= 1 centimeter in position. (6) 

Equation 6 is not new. On the contrary, it has been 
considered standard for so long that I do not know 
where it originated. 

The requirement in Eq. 6 is so stringent that the 
user who wants precise results must probably infer f A 
from the satellite data, even if he is a user who can 
afford an atomic frequency standard. 

Since the user does not need an absolute knowl­
edge of either his frequency or that in the satellite, 
the next limitation comes from a drift in the 
frequency of either oscillator. When the Doppler 
navigation system was designed, atomic standards 
were .still rather exotic, so the system was designed to 
use crystal standards both for ground observers and 
in the satellites. The worst oscillator that has been 
used in the system 7 has a drift rate of about 1 part in 
10 10 per day. A pass lasts about 15 minutes, or about 
0.01 days, so that the frequency change during a pass 
is about 1 part in 1012

• According to Eq. 6, this gives 
a position error of about 10 cm if no attempt is made 
to counteract the error. This is in the worst case. The 
error is about 1 cm in the best case. 

It is quite simple to counteract the drift error. The 
frequencies of the oscillators in both the satellites and 
the ground equipment can be monitored and the 
a verage drift rate can be determined. If necessary, 
the measured drift rates can be used in the calcula­
tions of position. The question then is not the size of 
the drift but the amount that the rate over an interval 
of 15 minutes can depart from the average. We have 
not attempted to make measurements of this sort, 
but there can be little question that the deviations 
should be considerably smaller than the average. 
Thus the drift contribution to location error should 
probably be measured in millimeters rather than 
cen timeters . 
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Let us now look at the requirements on the ac­
curacy of measuring time. The satellites in the 
Doppler navigation system move somewhat less than 
1 cm in 1 microsecond; for simplicity, let us say that 
the rate is exactly 1 cm per microsecond. Obviously, 
then, a timing error of 1 microsecond means a 
position error of 1 cm. 

The ground stations in the Doppler navigation 
system maintain their own atomic time and 
frequency standards. At appropriate intervals, a 
portable cesium clock is transported from the Naval 
Observatory to each ground station in turn and back 
again; this serves to keep all the clocks in the system 
accurately set. At the time of the resetting provided 
by the visits of the portable clocks, the errors are 
typically 10 microseconds. Thus an observer who 
kept exactly the time of the Naval Observatory would 
make an error of 10 cm in his position on a single 
pass. This error would average to zero almost im­
mediately, however, for the reason that will now be 
explained. 

We remember from the section on the principle of 
Doppler location that the observer first locates 
himself in a plane that is normal to the satellite orbit 
and that passes through the position of the satellite at 
the time of closest approach. He then finds his 
distance from the satellite at the same time by using 
the slope of the Doppler curve at closest approach. If 
his clock is correct while the one used by the satellite 
system is in error, he makes an error in the position 
of the plane but not in his distance from the satellite. 
In order to simplify the discussion, let us suppose 
that the observer is at the equator. A mistake in the 
position of the plane means an error in latitude; there 
is no error in longitude under the assumptions made. 

Now let us suppose, for example, that the observer 
at the equator uses the satellite on a pass when it is 
going north. Let us further suppose that the timing 
errors are such that he puts himself 10 cm too far 
north. Later he observes the satellite when it is going 
south. On this pass, he puts himself 10 cm too far 
south. His average position is correct in spite of the 
timing error. The same conclusion holds for any 
position of the observer, but the language involved is 
more complicated if he is not at the equator. 

This conclusion should not be taken to mean that 
timing errors are unimportant and that they can be 
allowed to take on any size. There are second order 
effects of timing that may not average out and that 
can be serious if the errors are too large. However, if 
the timing errors are 10 microseconds or less, the 
second order effects are less than 1 cm. 

We have seen that the error in the time used within 
the Doppler navigation system is of the order of 10 
microseconds. It is this large because there has been 
no requirement to keep it smaller. If there were a 
requirement, there is little question that the time 
error could be held to 1 microsecond or less. 

Any user can maintain the same error if he wishes 
to take the trouble. However, we must consider the 
user who has only a crystal frequency standard and 
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clock. If the reliability of his frequency standard is 1 
part in 10 10 per day, his time can drift by 10 
microseconds per day. If he is going to maintain a 
timing accuracy of 10 microseconds, he must 
calibrate his clock almost daily. 

There are various ways in which he can do this. If 
he is going to use the satellites in the Navy Navigation 
Satellite System (the Doppler system), his simplest 
procedure is to use the satellites themselves. Each 
satellite in this system transmits a timing signal every 
2 minutes. The timing signals are controlled by a 
clock that in turn is controlled by the same oscillator 
that controls the transmitted frequency. The timing 
signals are monitored by four stations in the ground 
system that are equipped with cesium time and 
frequency standards, and the clock in each satellite is 
reset every 12 hours on the basis of the monitoring 
data. Thus the errors in the satelilte clocks are held to 
a few microseconds. 

We must now ask about the precision with which a 
ground station can compare a timing signal with its 
own local clock. Ten years ago, this precision was 21 
microseconds for the timing signals obtained during 
a single pass. 7 Since 10 passes or more can be 
received in a day, the timing error can be reduced to 
about 7 microseconds. This leads to a location error 
that is actually somewhat less than 7 cm for a single 
pass. Because of the automatic averaging that results 
from the satellite motion, this quickly reduces to 1 
cm or less, as we explained above. 

REFRACTION 
We now turn to the processes that affect the radio 

signals as they travel between a satellite and a user on 
the ground. Since the space between a satellite and 
the ground is never a vacuum, the signals interact 
continuously with the matter that is encountered 
along the signal path. At altitudes above, say, 100 
km, the dominant interaction is with the electrons 
that make up the ionosphere. The positive ions found 
there affect the signals much less than the electrons 
because they are much more massive, while the 
neutral material is too rarefied to have an appreciable 
effect. In the troposphere, however, the neutral 
molecules provide the dominant interaction. 

Hence we need to consider refraction in the 
ionosphere and refraction in the troposphere. The 
nature of the refraction is quite different in the two 
regions, but there is a certain general principle that 
applies to both; that principle is the subject of this 
section. 

We let n denote the index of refraction of the 
material that is found at any point between the 
satellite and the ground. The index n is a function of 
the properties of the material and, since these 
properties (such as density) change continuously with 
position, n is also a continuous function of position. 
Further, since the properties at a specific point in 
space obviously change with time, n is also a function 
of time. However, the time scale of the temporal 
changes in n is usually long compared with the dura-
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tion of a satellite pass. Hence we shall neglect the 
time dependence of n. 

Suppose that the satellite is in a certain position. 
We assume that the radiation that it emits from this 
position is propagated according to Fermat's princi­
ple, and we construct the wave fronts that result from 
that principle. At any point, we say that the ray 
direction is the direction that is perpendicular to the 
wave front at that point. We then trace the ray path 
that leads continuously from the satellite to the user 
on the ground. 

Now let s be the coordinate that measures length 
along the (curvilinear) ray path. Since the index of 
refraction is a function of position, it can now be 
regarded as a function n (s) along the ray path. The 
quantity called the optical path length is the integral 
of n (s) with respect to s. When we review the discus­
sion in the section on the principle of Doppler 
location, we see that the quantity called the range is 
actually the optical path length. That is, all the 
considerations of the first section remain valid 
provided that we define r as 

r = J n (s) ds. (7) 

The index of refraction between a satellite and the 
ground is always close to unity, and its maximum 
deviation from unity is between 10 - 3 and 10 - 4

• Thus 
the ray path is always close to the straight line be­
tween the satellite and the receiver. This means that 
the difference !::::.r between the optical path length and 
the straight line distance is, to first order, 

!::::.r = J (n (~ - 1] de, (8) 

in which de is an element of length along the straight 
line. 

Since the optical path actually follows a curved 
path rather than the straight line, there is a con­
tribution to !::::.r that is proportional to the difference 
in length between the curved path and the straight 
line; this contribution is of order [n (s) - 1] 2 . Still 
other contributions involve higher powers of the 
parameter n (s) - 1. Thus the quantity r can be 
expanded as a power series in this parameter. 

REFRACTION IN THE IONOSPHERE 

At any point in the ionosphere, there is a certain 
density N of electrons. For a given value of N, the 
index of refraction n can be written in the form 

00 

n = 1+ E (CXJfT i ). (9) 
i=2 

Note specifically that there is no term proportional to 
fT -I , although all other negative powers of fare 
present. The coefficients CXi do not depend upon the 
frequency, but they do depend upon several other 
things. They depend upon the electron density N, and 
they therefore depend implicitly upon position for 
this reason. Some of them depend upon the magni-
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tude of the magnetic field, and these depend im­
plicitly upon position for this reason also . Those 
which depend upon the magnetic field also depend 
upon the angle between the magnetic field vector and 
the ray direction, and they further depend upon the 
polarization of the radiation. 10 

The two independent components of polarization 
are the circular components, namely the right-hand 
and the left-hand components. If a signal is trans­
mitted with only a right-hand component, say, it will 
have only a right-hand component all the way to the 
point of reception. At any point along its path, it will 
have an index of refraction n r • If the signal starts 
with only a left-hand component, it will arrive with 
only a left-hand component, and it will have an index 
n f • 

Now suppose that the signal is transmitted with 
linear polarization. If there were no ionosphere, the 
polarization would remain linear and the observer 
could receive it readily with a linear antenna such as a 
whip. However, the linear polarization consists of 
right-hand and left-hand components of circular 
polarization with equal strengths. Since these 
components have different indices of refraction, they 
travel with different velocities. When the com­
ponents are recombined at the receiver, the result is 
that the direction of the resulting linear polarization 
is constantly rotating, so that the polarization is 
sometimes aligned with a whip and is sometimes nor­
mal to it. The signal strength falls to zero at these 
times. 

Thus, if an observer uses a simple linear antenna, 
the signal strength will vary from a maximum all the 
way down to zero unless the transmitted signal has 
only a single component of circular polarization. 
Therefore the satellite antennas should be designed 
so that they transmit circularly polarized radiation. 
Since they cannot do so and simultaneously transmit 
equally in all directions, they must have favored 
directions of transmission. This in turn means that 
their orientation with respect to the earth must be 
controlled with a moderate amount of accuracy, in 
order that the favored direction of transmission may 
be pointed at the earth. 

Now we suppose that only a single component of 
circular polarization is transmitted, so that we are 
concerned with only a single index of refraction n; 
this single index is, however, a function of position. 
We saw in the preceding section that the optical path 
length equals the straight line distance, e, plus a 
power series in the parameter n - 1. We see from 
Eq. 9 that this power series becomes a series in in­
verse powers offT that starts withfT - 2 . That is, 

r = e + E «(3Jf/)· 
i=2 

By Eq. 2, the Doppler shift fD equals - (ilc)fT. 
HencefD has the form 

00 

fD = - (flc)fT + E (cxJf/ )· (10) 
i =1 
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If we knew the electron density at all points be­
tween the satellite and the ground for all times during 
a pass, we could evaluate theoretically the coeffi­
cients a ; in Eq. 10. On the basis of present 
knowledge, we cannot hope to calculate the a ; with 
sufficient accuracy by using measured values of the 
electron density. However, by using-various measure­
ments of density as a function of position, we can 
reach an important conclusion: At the frequencies 
that interest us , the next largest term I I after a l 1fT is 
the term a31f T3. Specifically, the term a 21fT2 is 
small compared with the cubic term. 

The frequencies used in the Doppler navigation 
system are 150 and 400 megahertz. If an observer 
uses the higher frequency, and makes no attempt to 
correct for refraction in the ionosphere, he may 
easily make an error that is in the range of hundreds 
of meters. In order to reduce this to 10 cm, the 
observer would have to know the electron density at 
all relevant points with an accuracy better than 1 part 
in 103

, and this is not possible with methods known 
at present. 

In order to reduce the ionospheric refraction error 
to a tolerable level, we make use of two coherent 
frequencies, which are 150 and 400 megahertz in the 
navigation system, as we have just said. Then we 
assume that we can neglect all terms in Eq. 10 above 
the term al l f T' The equation then contains two 
unknown parameters, namely flc and a l . Letfl and 
f 2 denote the Doppler shifts measured with frequen­
cies 150 and 400 megahertz, respectively, and let the 
megahertz be the unit of frequency. Then 

f l - 150 (flc) + (a I /150), 

f 2 - 400 (fic) + (a I /400). 

From these, we find 

343.75 (flC). (11) 

The left member of this relation is a measured 
quantity, and we calculate fl c at each instant during a 
pass from it. The quantity flc in turn is the quantity 
that we use in inferring position, by any of the meth­
ods described in the section on the principle of 
Doppler location. 

In order not to degrade the accuracy when we find 
the difference f 2 - (3/8)fl ' we must take two im­
portant precautions: 
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1. Both frequencies transmitted from the satellite 
must be controlled by the same oscillator, and 
all frequencies involved in the ground equip­
ment must be controlled by a common 
oscillator. 

2. Instead of measuring fl and f 2 independently 
and forming f 2 - (3/8)fl by calculation, the 
frequency f l must be multiplied by 318 by 
means of phase-locked multiplying circuits, and 
the result must be beat against f 2 in order to 
form the difference . The beat frequency is then 
directly measured. 

If the electron density were a function of altitude 
only, with no gradients in the horizontal direction, 
the effect of refraction upon r would be symmetrical 
about the point of closest approach . This means that 
the refraction would not affect the value that we 
measure for the time of closest approach and that it 
would affect only the value of the range at closest 
approach. However , the ionosphere varies systemati­
cally with latitude, and the electron density therefore 
does have a horizontal gradient. In order to study 
this problem as wel·l as other ionospheric problems, 
we equipped several early satellites with three or 
more coherent frequencies. This allows us to solve 
for coefficients beyond a l in Eq. 10. Because of limi­
tations in accuracy, it has been possible to find only 
one coefficient in this way. Since theoretical studies 
show that a 3 is the most important coefficient after 
aI' work with multiple frequencies done so far is 
based upon the assumption that Eq. 10 contains only 
the terms in a l and a 3 , with other coefficients being 
set equal to zero. 

Much of this work has been done by Willman and 
Doyle. II The question studied in their work is the 
following: If we eliminate the coefficient a l by using 
Eq. 11, what is the remaining error in position 
because of higher coefficients? There are two main 
conclusions: 

1. The standard deviation of the remaining error is 
2 meters, although one instance was found in 
which the error was 20 meters. 

2. Because of the latitude dependence of the 
electron density, the error parallel to the 
satellite motion is often as large as the error in 
the range at closest approach. Further, the error 
parallel to the satellite motion is not necessarily 
equal and opposite for northbound and south­
bound motions of the satellite. Instead, the 
error tends to introduce a bias in the latitude of 
the observing station. 

In spite of these results, ionospheric refraction 
does not impose an important limit upon the ac­
curacy of Doppler location. The satellites in the 
Doppler navigation system were basically designed in 
1960, when it was not possible to contemplate a 
frequency higher than 400 megahertz in a satellite 
system that had to achieve routine operational status 
within a few years. Now there would be no difficulty 
in going to frequencies at least three times as high. 
Since most of the error in Eq. 11 comes from the 
term a31fT3, the error in location when we use Eq. 11 
varies asfT - 4. If we triple the operating frequencies, 
we divide the error by 81 . This reduces the standard 
deviation of the error from 2 meters to about 2 cm. 

REFRACTION IN THE TROPOSPHERE 
In the part of the troposphere that is in line of sight 

of a particular ground observer, the index of refrac­
tion is usually a function of altitude only, at a 
particular time. If there is a weather front within line 
of sight, this condition may be violated; we have 
sometimes detected the presence of weather fronts by 
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analyzing the Doppler data from a satellite. 
However, we can tell independently when a front is 
close to a station. Such occasions are moderately 
rare, and thus we can afford to ignore data obtained 
under conditions when the weather is not suitable. 
With this understanding, then, we can say that the 
index of refraction in the troposphere is independent 
of horizontal position and depends only on altitude. 

Refraction is severe when the satellite is near the 
horizon, so we avoid the use of data obtained at low 
elevation angles. In most location work that we have 
done at this Laboratory, we have adopted the 
following rules: 

1. We do not use any data from a pass unless the 
satellite attains an elevation angle of at least 
15 0

; 

2. We discard all data when the elevation angle is 
less than 10 0

, and we use this "cut-off" for all 
passes that are retained under rule 1. 

When we adopt these rules, the worst error that arises 
from tropospheric refraction 7 is about 30 meters, 
and the standard deviation of the error is about 20 
meters. The error never falls below about 12 meters. 

The errors just quoted are those found when we 
make no attempt to eliminate the effects of 
tropospheric refraction, other than eliminating data 
obtained at low elevation angles. Since the index of 
refraction in the troposphere depends but little upon 
the frequency at radio frequencies, we cannot 
proceed as we did with ionospheric refraction. In the 
present state of knowledge, we can attempt to 
eliminate tropospheric refraction only by calculating 
it theoretically. 

Hopfield 12 has made the most intensive study of 
the effects of tropospheric refraction on radio signals 
from satellites, and the following discussion is based 
upon her work. We must start by dividing the 
refraction into a "wet" component, resulting from 
the water vapor in the troposphere, and a "dry" 
component, resulting from all other constituents. 
The dry component, except perhaps under extreme 
conditions, is many times the wet component. For 
purposes of illustration, we may say that the effect of 
the dry component is 20 meters and the effect of the 
wet component is 50 cm. 

To high accuracy, the index of refraction at any 
point in the troposphere is a function of the pressure, 
temperature, and relative humidity. The goal of 
Hopfield's work has been to measure these quantities 
on the ground at the observer's location and to see 
how the refraction effect can be calculated from the 
measured quantities, using thermodynamic principles 
to calculate the variation of the index of refraction 
with altitude. She then compares the integrated effect 
of the index with the effect calculated from detailed 
measurements of tropospheric properties made by 
balloons. The balloon data are obtained from the 
National Climatic Center, a part of the National 
Oceanic and Atmospheric Administration. Hopfield 
has made these studies at sites as diverse as Samoa, 
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Dulles Airport, and a weather ship in the North 
Atlantic. 

The dry component proves to be quite amenable to 
theoretical treatment. Since the total effect of the dry 
refraction depends upon an integral taken through 
the entire troposphere, it turns out that the dry 
component depends upon the surface pressure only, 
being independent of surface temperature. Hop­
field's theory, based upon a value of surface pressure 
measured at the time of each pass, gives a refraction 
effect that is correct within about 1 part in 500. Thus 
the remaining error resulting from the dry com­
ponent is about 4 cm. Since the error seems to be 
random from pass to pass, so far as we can tell from 
the available data, the error can be further reduced 
by using multiple passes. It seems safe to take 1 cm as 
the limit on Doppler location imposed by the dry 
component, on the basis of present knowledge. 

The wet component is not as amenable to 
theoretical treatment on a relative basis, but we can 
afford a larger relative error since the wet component 
is smaller to start with. Hopfield's current methods 
give an error of about 25% in dealing with the wet 
component. This means that the residual error is 
about 12 cm for a single pass. Again the error seems 
to be random. If we use six passes, which is about the 
number of passes that we can obtain in a day, we 
would apparently reduce the error to 12/V6 = 5 cm, 
but this calculation is probably illusory. It is 
plausible that the error is a function of the weather, 
and the weather is not likely to change in a day. Thus 
we probably have about the same error for all the 
passes obtained during a single day, and we can 
reduce the error statistically only by using passes for 
which the weather is uncorrelated. This probably 
dictates operations over several days. 

The estimates of the refraction error are those that 
apply on a global basis. On a local basis, it is only the 
difference in refraction between two neighboring 
points that matters. We do not have detailed in­
formation about the local variation of the refraction 
effect. However, for points that are within 100 km of 
each other, say, it seems implausible that the dif­
ference should be more than 10% of the total. 
Tentatively, then, we shall say that the local limit is a 
tenth of the global limit. 

SUMMARY AND DISCUSSION 
In the preceding sections, we have studied all the 

known factors that affect the accuracy of locating a 
point by measuring the Doppler shift in the radio 
transmissions from a near-earth satellite. Table 2 
summarizes the limiting accuracy imposed by each 
source, provided that we take full advantage of 
present knowledge and techniques. The table does 
not include the limit imposed by fundamental 
knowledge of the earth's shape and gravity field; that 
limit will be discussed separately. 

In preparing the table, I have assumed that the 
observer uses satellite orbits that have been deter­
mined from orbital data taken over a period of a day. 
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Table 2 

LIMITS ON THE ACCURACY OF DOPPLER LOCA nON 
FROM A SINGLE PASS, RESULTING FROM ALL FACTORS 

EXCEPT GEODETIC ONES. 

Source Limit 
(cm) 

Satellite Motion· 

Atmospheric drag 10 
Radiation pressure 1 

Instrumentation 

Noise 5 
Oscillator drift 1 
Timing 7 

Propagation Effects 
Ionosphere 2 
Dry troposphere 4 
Water vapor 12 

Resultant 18 

·It is assumed that the satellite orbits are determined daily. 

I also assume that he uses data covering a span of a 
day in his clock calibration. Otherwise, I have 
assumed that he uses only data gathered from a single 
pass of a satellite. 

The largest single error in the table is 12 cm from 
the unpredictable part of the refraction due to 
humidity in the troposphere. The next largest error is 
10 cm from the unpredictable part of the drag acting 
upon a satellite. The resultant of all the errors listed 
in the table is 18 cm. 

Although the table is based upon current 
knowledge and techniques, it is not always based 
upon current practice. The only two errors for which 
this point is important are those resulting from noise 
and ionospheric refraction. The limit imposed by 
noise in the present Doppler navigation system is 
about 50 cm rather than 5 cm, and we believe that the 
noise level is set by the oscillators used in the system. 
The design currently used for the oscillators is about 
15 years old. Oscillators that have been tested in the 
laboratory but not used in the field are better by an 
order of magnitude. However, until we have actually 
used these oscillators in both satellites and ground 
equipment, we cannot know for sure that the im­
provement assumed in Table 2 can be achieved in 
field use. 

The current limit imposed by ionospheric 
refraction, on the basis of a single pass, is about 200 
cm rather than 2 cm as it is listed in the table. 
However, this limit varies inversely with the fourth 
power of the operating frequencies, and it is now 
feasible to use frequencies at least three times as high 
as those we are using. Thus it seems safe to say that 
the effect of ionospheric refraction can readily be 
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reduced by two orders of magnitude simply by in­
creasing the operating frequencies. 

With one possible exception, all of the errors listed 
in Table 2 are random. The possible exception is the 
error produced by ionospheric refraction. The 
electron density is a function of latitude7 and the 
residual refraction that is not removed by the two­
frequency technique tends to produce a bias in the 
latitude of the observer. However, it should be 
possible to learn the average latitude dependence of 
the electron density and hence the average bias left by 
the two-frequency method. Subtracting the average 
bias should then leave only a random error. 

Thus it should be possible to reduce the errors far 
below the limits shown in Table 2 simply by using 
many passes. It is probably not safe to say that the 
errors can be made as small as we like by using 
enough passes, because we do not know what 
correlations and biases there may be at error levels 
far below those in the table. However, it seems safe 
to say that the errors could be reduced to 5 cm by 
using multiple passes. This requires using 13 passes, 
if ordinary statistics apply, which is about the 
number of passes received in a day from the satellites 
in the Navy Navigation Satellite System. 

Next, we turn to the geodetic limit. We concluded 
in the section on the geodetic limit that the 
acquisition of additional data, without requiring any 
new observing techniques, would allow us to lower 
the geodetic limit to a few tens of centimeters on a 
global basis and considerably less than this on a local 
basis. Let us use 50 cm as the geodetic limit on a 
global basis that we can achieve in the foreseeable 
future, and let us ask what the limit is in locating two 
neighboring points relative to each other. 

The geodetic errors become uncorrelated for two 
points that are separated by about 90° on a great 
circle; this is 10,000 km in distance. For two ob­
servers separated by 10,000 km, then, the 
geodetically induced error in their relative position is 
70 cm. This is approximately the product of 50 cm, 
which is our estimate of the global limit in locating a 
single point, multiplied by ..fi, since two points are 
involved in a relative location. For two observers 
separated by 0 km, the geodetically induced error is 0 
cm. It should be a reasonable approximation to say 
that the error grows as the square root of the 
separation. Hence, for two points separated by L 
km, the geodetic limit G in finding their relative 
location is approximately 

G = 0.7VL centimeters. (12) 

The limit G is the same for all methods of location, 
whether by Doppler techniques or not, as we saw in 
the section on the geodetic limit. 

Finally, let us estimate the total error involved in 
the relative location of two points, if we use the 
Doppler observations that are obtained in one day. 
We estimate that the non-geodetic factors contribute 
18 cm error in the location of a single point if we use 
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only the data from a single pass. If we obtain 
13 passes in a day, we expect to decrease this error to 
5 cm. However, since two points are involved in a 
relative location, we multiply this by ...fi, obtaining 
7 cm, approximately. 

The total error in a relative location is then the 
square root of the sum of the squares of 7 cm and of 
G cm from Eq. 12. The total error E is plotted as a 
function of L 'in Fig. 6. For separations less than 
100 km , E is dominated by the non-geodetic con­
tribution of 7 cm, which is characteristic of the 
Doppler method. For greater separations, E is 
dominated by the geodetic contribution G, which is 
the same for all methods of measurement. 

In many applications, however, the error E is not 
the error that interests us. Often we are interested 
only in relative motion. For example, we may be 
interested in the relative motion of points separated 
by the San Andreas fault or by other major fault lines 
in the earth's crust. For another, we may be in­
terested in the relative motion of points in a region 
where there has been extensive removal of water, oil, 
or other materials from below the earth's surface. 
For such applications, we want to know the 
minimum change in separation that we can detect 
over an interval of, say, one year. 

The geodetic limit G for any two points is a bias 
that has the same value for measurements made now 

E 
2 
w 

4000 10 000 
Separation L (km) 

Fig. 6-The estimated error E in the relative location of two 
points as a function of their separation L. The geodetic 
error is estimated to be 0.7 VL cm and is independent of the 
method of measurement. The other error component , which 
is estimated to be 7 cm for the observations obtained in a 
single day, is a characteristic of the Doppler method of 
location. The error probably does not increase for separa­
tions greater than 10,000 km, although the figure suggests 
that it does. 
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and a year later. Thus it does not contribute to the 
minimun detectable separation, which depends only 
upon the nongeodetic factors. We saw in Table 2 that 
the nongeodetic factors contain a contribution of 2 
cm from ionospheric refraction , and that this may be 
in part a bias in latitude . The bias part is independent 
of time and thus it does not affect the minimum 
detectable motion. However, it contributes a 
negligible amount whether it is a bias or not, and we 
can ignore it. The other nongeodetic factors are 
random, so far as we know. If they are random , their 
contribution should be 18/IN, in which N is the 
number of passes used. Thus the use of 324 passes, 
which can be obtained in about 30 days , should leave 
a net contribution of 1 cm to the minimum detectable 
motion. However , only experimentation can deter­
mine whether the minimum can be reduced to this 
level by averaging over many observations, or 
whether there are biases that we have so far been 
unable to determine. 
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