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Data from ancient astronomy can be applied to a study of the 
effects that govern the long-term evolution of the solar system. 
This field of application is now growing almost explosively. 
Many results obtained during the past few years are negative in 
the sense that they show "well-established" results of a few 
years ago to be either unfounded or wrong, and at present we 
have little understanding of the mechanisms involved. However, 
we have reason to hope that our understanding will grow rapidly 
in the next few years. 

AROUND 1950 IT WAS FASHIONABLE IN MANY 

~scientific circles to talk about the difference 
between basic and applied research. Most of these 
discussions never yielded a useful definition of the 
difference, perhaps because the discussants usually 
based their approach upon the subject matter of 
the research. It may be more fruitful to base the 
definition upon the motivation of the research 
worker: If the goal of the worker is to understand 
something simply for the sake of understanding, 
the research is pure. If the goal is to use material 
from one field as an aid to understanding a dif­
ferent field, the research is applied. 

In this sense, the research that I have done in 
ancient (and medieval) astronomy is applied, even 
though the subject is usually considered to be 
among the purest of the pure. The manner of my 
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involvement in ancient astronomy illustrates the 
peculiar turns and the unexpected shifts in direc­
tion that often arise in the pursuit of a research 
goal. 

Celestial navigation is based upon observing the 
sun, moon, planets, and stars. In order to find out 
where he is, the navigator must use a position of, 
say, the sun at the time he observes it, and the 
position that he uses is necessarily based upon 
prediction. An American navigator takes the posi­
tion of the sun from the American Ephemeris and 
Nautical Almanact, sometimes through the inter­
mediary of a navigator's handbook. Navigation by 
means of the Navy Navigation Satellite System 
(Transit) is based upon observing a satellite in 
the system, and the navigator must use the posi­
tion of the satellite at the time of the observation. 
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This position, like a position used in celestial navi­
gation, must be a predicted one. 

Provision of a predicted position to the navi­
gator has always been one of the most difficult 
problems in the Transit System. When the system 
was first devised2

, we did not think that it would 
be possible to predict the position with enough 
accuracy for more than about half of a day, and 
the satellite memory, the configuration of the 
ground support system, and the computing pro­
cedures were all designed to cope with this limi­
tation. 

After we completed the teething stage of the 
system, some of those in the program turned their 
attention to the possibilities of predicting satellite 
position for a longer interval. Many things are 
needed in order to predict position for a long time, 
but a minimum is clearly an accurate knowledge 
of the force system acting on a satellite. About 
1964, as a part of studying the force system, I 
calculated the perturbation acting on one of the 
navigation satellites as a result of the sun's gravi­
tation, and I subtracted this perturbation from the 
observed ephemeris of the satellite. When I did so, 
I was surprised to find that the position still con­
tained a perturbation with the same time depend­
ence, but merely reduced in amplitude. After some 
consideration, I found3 the source of this remain­
ing perturbation: Solar gravitation distorts the 
mass distribution of both the solid earth and the 
oceans, producing what is called the solar tide. 
The perturbation in question arises from the gravi­
tation of the mass that participates in the solar 
tide. 

The solar tide is a complex function of time 
with a complicated power spectrum. For definite­
ness here, we may concentrate our attention on 
the component whose period is half of a solar day; 
this component can be described by means of an 
amplitude and a phase angle. The obvious way to 
account for the tidal perturbation upon the satel­
lite motion is then to find the amplitude and phase 
angle from measurements of the tides. In order to 
explain why the obvious procedure does not work, 
it is necessary to describe the tides in a little more 
detail. 

The Tide-Raising Force and Response 
Tides caused by the moon are actually about 

twice as large as those caused by the sun, but their 
effects on satellites are considerably less. The rea­
son is concerned with the frequency of revolution 
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of the sun or moon. The tidal distortion due to a 
lunar tide revolves with the moon and that due to 
the sun revolves with the sun. The effect of either 
tide depends upon the frequency of revolution of 
the sun or moon with respect to the satellite orbit. 
Thus the frequency of the lunar tide is about 
13 times the frequency of the solar tide, so far as 
the dynamics of satellites are concerned. As a re­
sult, the perturbation due to the lunar tide is 13/ 2 
or ~ 1/ 6 of that due to the solar tide. 

For this reason, much of the discussion of this 
paper will be in terms of the solar tide. Most of 
the discussion of the tide-raising force and re­
sponse will apply to the moon as well as to the 
sun, at least qualitatively. 

Let us focus attention upon the points marked 
0, 1, and 2 in Fig. 1; point ° is the center of 
the earth. The sun's gravitation attracts all parts 
of the earth toward it, and it is this attraction that 
makes the earth orbit about the sun. However, the 
sun's gravitation is slightly greater at point 1 than 
at point 0, and hence the sun tends to pull point 
1 away from the center. Similarly, the sun's gravi­
tation is greater at point ° than at point 2, and the 
sun tends to pull the center of the earth away from 
point 2. If we refer the effects to the center 0, then, 
the sun tends to pull both points 1 and 2 away 
from the center, as is suggested by the ellipse in 
Fig. 1. 

As the earth rotates with respect to the sun, 
each part of it is urged up and down twice a day 
by the tide-raising force. In other words, we have 
a physical system, the earth, that is subject to a 

TO THE SUN 
~--- .. 

Fig. 1-The origin of the solar tide. The sun's gravi­
tation pulls point 1 away from the center 0, and it 
pulls the center 0 away from the opposite point 2. 
Since the distortion takes place at constant volume, 
the points along the vertical in the figure move toward 
the center, and the resulting figure of the earth is an 
ellipsoid whose long axis points at the sun. 
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periodic perturbing force with a period of 12 
hours. The nature of the response depends upon 
the physical characteristics of the system being 
forced. Actually, the earth contains several com­
ponents that have different characteristics and 
hence different responses. 4 

First, there is the liquid core. Because it is close 
to the center, the tide-raising force on it is small 
and we can neglect its response. 

Second, there is the solid part of the earth, 
whose characteristic periods are considerably 
shorter than 12 hours. Theories of the earth in­
dicate that the response should be in phase with 
the disturbing force and that the amplitude should 
be of the order of 25 cm at the equator. Direct 
measurements of the body tide, as it is called, give 
results that are approximately in agreement. 

Third, there is the ocean. The ocean consists of 
a number of basins that interact relatively little 
with each other and have different dynamic char­
acteristics. Thus it is more appropriate to speak of 
the oceans when dealing with the tides. In some 
oceans, the response is in phase with the tide­
raising force (direct tide), and in others, the re­
sponse is out of phase (inverted tide). From the 
standpoint of the gravitational potential due to the 
tides in all the oceans, we can speak of a resultant 
ocean response, but it is a matter of great delicacy 
to decide whether the resultant is direct or in­
verted, and what its amplitude is. 

In order to find the resultant ocean tide then 
we need careful measurements made on an ~cean~ 
wide basis, but this is just what we did not have 
ten years ago. Until recently, it was not possible 
to measure the ocean tide except at the shore, 
where conditions are greatly distorted by the pres­
ence of the rigid crust. The response in the middle 
of the ocean cannot be inferred with confidence 
from measurements made at the distorting edges. 
Thus it is not possible to calculate the tidal per­
turbation on a satellite solely from external evi­
dence. a 

The continual motion of the earth and ocean in 
response to the tide-raising force must be accom­
panied by friction. The first-order effect of friction 
in a vibrating system is a shift in phase between 
the perturbation and the response, without a 
change in amplitude. From the properties of the 

:t Some techniques of measuring the tides in the open ocean have 
been developed within the past few years, and at some time it will 
be possible to find the ocean tide by direct measurement. 
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materials involved, we may speculate that friction 
in the ocean tide is consideFably more important 
than friction in the body tide. 

Direct measurements of the tide cannot give us 
the phase of the total tide, for the same reason 
that they cannot give us the amplitude. 

Tidal Parameters from Satellite 
Tracking Data 

Since it was not possible to take values of the 
amplitude and phase from other data and to use 
them in calculating the tidal perturbation on a 
satellite, it was necessary to find the tidal para­
meters by analysis of the measured perturbation. 
Kozai5 and P have done this, using different satel­
lites and different methods of analysis. The re­
sults agree as well as can be expected. 

The amplitude of response that is found from 
the satellite data is about equal to that which is 
found for the solid earth. In other words the re­
sultant response of all the ocean tides i~ nearly 
zero. However, anyone who has visited the sea­
shore is well aware that the response at most par­
ticular places is far from zero. Thus it must be 
that direct and inverted tides in the oceans have 
about equal importance. 

At present there is no independent method of 
measuring the total tide parameters, and there is 
no assured way of assessing the probable error in 
this result. We can only try to assess the level of 
error that is consistent with the data and the gen­
eral situation. With regard to the amplitude, we 
can speak with fair assurance; it is not likely that 
the inferred amplitude is in error by more than 
about 10 %. 

The situation is quite different with regard to 
the phase angle. Kozai's method is not particularly 
sensitive to the phase, so I shall discuss only my 
own results. The inference of the tidal phase from 
the satellite is sensitive to the spatial orientation 
(position of the node) of the satellite orbit. When 
an inference procedure is sensitive to the value of 
a parameter, it is highly desirable to use data in 
which the parameter is well distributed over its 
possible range of values. By an unfortunate acci­
dent, the only orbits that were available at the 
time of my work had their nodes distributed only 
over about half of a circle, and there is thus a 
possibility of a serious bias. 

The phase angle obtained from the satellite data 
is about 2° . Specifically, this means that the longi-
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tude of the place where the tide is high is 2 0 east 
of the longitude of the sub-solar (or sub-lunar) 
point, on the average. I estimate the maximum 
possible effect of the bias just mentioned as a 
factor of two. If this is correct, the phase angle is 
between 1 0 and 4 0

• 

The parameters found for the solar and lunar 
tides are approximately equal. 

Tidal Friction and Other Non­
Gravitational Effects in Astronomy 

The phase angle of the tides has important con­
sequences in astronomy that have been studied 
intensively for about three centuries. Thus it oc­
curred to me that these astronomical studies might 
supply a partial check on the satellite results. 

Consider friction in the lunar tide first. This 
friction converts mechanical energy in the earth­
moon system into heat, but since it is internal to 
the system it does not change the total angular 
momentum. Since the earth's rotation contains 
most of the rotational energy of the system, the 
effect is to take angular momentum from the 
earth's spin and transfer it into orbital angular 
momentum of the moon. Since the earth is rea­
sonably rigid, it can decrease its angular momen­
tum only by decreasing its spin rate. The moon is 
a satellite, however, and it can increase its angular 
momentum only by moving into a larger orbit and 
consequently decreasing its orbital angular ve­
locity. 

In other words, friction in the lunar tide tends 
to give a negative acceleration both to the earth's 
spin and to the moon's orbital angular velocity. 
So far as we know, this is the only source of a 
lunar acceleration that is large enough to be mea­
surable. There are several other sources of an ac­
celeration of the earth's spin, however. 

There is friction in the solar tide. This friction 
is internal to the system consisting of the earth 
and sun; it takes energy from this system without 
changing its angular momentum. It does this by 
transferring angular momentum from the earth's 
spin to the earth's orbital motion around the sun. 
The effect on the orbital motion is about 7 or 8 
orders of magnitude too small to be measured with 
present techniques. Thus, for present purposes, 
friction in the solar tide gives a negative accelera­
tion to the earth's spin without affecting the orbital 
motion of the earth, and also without affecting the 
orbital motion of the moon. 
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There are many other possible sources of a spin 
acceleration, several of which are discussed by 
Jeffreys and by Munk and MacDonald. 4 Many of 
them cannot be evaluated quantitatively in our 
present state of knowledge. Many, but by no 
means all, arise from processes that are internal 
to the earth. These can change the spin only by 
acting on the moment of inertia; an example is a 
possible change in the mean temperature of the 
earth. 

In summary, there are a number of non-gravi­
tational effects that are changing the spin rate of 
the earth and the orbital motion of the moon. We 
are not able to evaluate the resultant of these ef­
fects quantitatively from evidence that is external 
to astronomy, and hence we must attempt to esti­
mate the resultant on the basis of astronomical 
data. In particular, if we can estimate the accelera­
tion of the moon from astronomical data, we shall 
have a test of the tidal phase that was inferred 
from satellite data. 

Solar Time and Dynamical Time; 
Some Notation 

Let I denote the moment of inertia of a body 
that is in angular motion, let e denote an angular 
coordinate, and let T denote the torque that is 
acting on the body. A common form of the equa­
tion of motion is then 

T = ~ (I de). 
dt dt 

(1) 

Most texts on mechanics point out that Eq. (1) is 
valid only if we impose certain restrictions on the 
positional coordinate system in which we measure 
e. Fewer texts point out that there are also certain 
restrictions on the time base. (See Table 1 for the 
principal nomenclature in this discussion.) 

As an example of what we mean by time bases, 
let us suppose that the "big bang" theory is cor­
rect, and let 0 be the epoch of the bang. Suppose 
that t is a time base that is 0 at the bang and that 
increases monotonically thereafter. Let 

s= In (t+ 1). (2) 

Then both sand tare 0 at the epoch of the bang, 
and both increase inexorably toward infinity there­
after. Is there any property that makes t, say, a 
more useful time base than s? 

The concept of time and of its measurement 
poses deep philosophical problems that can be 
answered only with difficulty if at all. I shall at-
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tempt to short-circuit them by use of Eq. (1). 
Let us measure T, I, and (J in Eq. (1). Instead of 
regarding Eq. (1) as a law of physics, we adopt 
it as the definition of time t. A time base defined 
by means of Eq. (1), or of an analogous equation, 
can be called dynamical time. This definition by 
no means answers all problems connected with 
defining time; for example, it presupposes that we 
have a way of defining the torque T that is inde­
pendent of Eq. (1). In the physical sciences, a 
time base that is dynamical is more useful than 
one that is not. 

The time base by which we lead our daily lives, 
and by which I believe all peoples have led their 
daily lives, is solar time. Solar time is just the 
angl~ b~tween some fixed directLo!1 }n th~_ ea!th, 
such as our local earth radius, and the line from 
the center of the earth to the center of the sun, 
projected onto the plane of the equator. b Within 
the present century, it has been realized that solar 
time is not a dynamical time base and that it fails 
at a level of accuracy of the order of 10-7 or 10-8

• 

It is now useful to introduce some notation. In 
the rest of this paper, T will denote solar time. 
t will denote a dynamical time base that is related 
to T by 

(3) 

in which the subscript 0 refers to an epoch that is 
close to the present; it is not necessary to specify 
this epoch rigorously in this paper. A prime will 
denote a derivative with respect to T and a dot 
will denote a derivative with respect to t. 

Let (J denote the angular position of some body 
in the solar system; a particular body will be 
identified by means of an appropriate subscript. 
v will denote the corresponding angular velocity 
with respect to T, and n will denote the angular 
velocity with respect to t: 

n = e = d(J / dt, v = (J' = d(Jj dT = n(dt/ dT). (4) 

We also need the accelerations it and v' with re­
spect to t and T, respectively, which are related by 

v' = li(dt/ dTF - n(dt/ dT)3 (d2T/ dt2
). (5) 

We have been indoctrinated to think that the 
Copernican, or heliocentric, picture of the solar 
system is the correct one and that the ancient geo-

b Strictly speaking, what I have just defined is called apparent solar 
time, but most of the discussion will tacitly relate to mean solar 
time. Since apparent time can be converted to mean time without 
the use of Eq. (1) , I shall ignore the distinction in order to save 
space. 
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centric picture is wrong. Actually, the difference 
between the pictures, if it has any importance at 
all, is important for philosophy; it is a mere matter 
of convenience so far as the physical sciences are 
concerned. For present purposes the geocentric 
picture is more convenient. In it, so far as major 
effects are concerned, we can represent the posi­
tion of the sun by a single coordinate (J s, called 
the mean longitude of the sun; we can represent 
the position of the moon by a coordinate (J M, called 
the mean longitude of the moon, and we can rep­
resent the spin orientation of the earth by a co­
ordinate (J.e, which will be called the angular posi­
tion of the Greenwich meridian. 

In the literature in this field, it is customary to 
use the following units: 

An angle is always measured by seconds of 
arc; 
Time is always measured by means of the 
Julian century, which means 1 00 Julian 
years, or exactly 36525 days. 

These units are so well understood in the literature 
that they are usually omitted, and explicit state­
ments of them will be omitted in the rest of this 
paper. 

We want to apply Eq. (5) to any of the angles 
(Js, (JM, or (Je. In doing so, we remember that solar 
time T, except for units, is equal to (Je - (Js. This 
fact allows us to calculate d 2T / dt2

• Further, since 
dTj dt = 1 at an epoch close to the present 
(Eq. (3)), we can take dT/ dt as unity with 
enough accuracy for the historical period, al­
though not for geological time. This gives us 

, . lie - Ii s 
v=n-n--­

ne - ns 
(6) 

for the relation between v', an acceleration with 
respect to solar time, and Ii, an acceleration with 
respect to dynamical time. In using Eq. (6), we 
can take lis = 0 to high accuracy, and this ap­
proximation is usually made. 

The Fundamental Problem in the 
Use of Ancient Data 

The specific problem that led us to consider the 
use of astronomical data was, as we said above, 
the estimation of the amount of tidal friction. 
From a less narrow point of view, we want to 
study non-gravitational effects in the solar system, 
but, in doing so, we want to separate tidal friction 
from other effects. I shall use the term "non-fric-
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tional effects" to mean the totality of all non-gravi­
tational effects other than tidal friction. 

The best information we have says that the ac­
celeration of the moon results only from tida 
friction, at the level of accuracy that concerns m 
here. If this be so, we can calculate the amOUll1 
of tidal friction from an estimate of the lunar ac­
celeration. However, the acceleration we need in 
order to calculate tidal friction is JiM, the accelera­
tion with respect to dynamical ' time, rather than 
VM', the acceleration with respect to solar time. 

It is safe to assume that atomic time provides a 
much better embodiment of a dynamical time base 
than does solar time. In consequence, studies of 
the position of the moon as a function of atomic 
time give us an estimate of JiM, and there have 
been three such estimates. 6 The results scatter 
somewhat, but it is probably fair to represent 
them by 

JiM = -40 ± 10. (7) 

However, estimating the value of JiM in this way 
is just on the verge of the possible. The time in­
terval available for the estimate is only about 15 
years (0.15 century), and the measurable effect 
on the position of the moon is about 0" .05. Fur­
ther, the data samples used in the three studies 
have considerable interdependence. These condi­
tions favor the possibility of experimental errors 
that are common to all three studies, and it is con­
ceivable that the true error in Eq. (7) is greater 
than that given. 

The phase angle of the tides required to pro­
duce nM = - 40 is about 4° , whereas the value 
from satellite data that is quoted above is about 
2° . As we shall see below, the larger value has in­
dependent confirmation and, in the present state 
of knowledge, it is more likely to be correct. 

At the time I began my studies of non-gravi­
tational effects , the data with an atomic time base 
were not available, and it was therefore necessary 
to work with solar time. The lunar acceleration 
that we derive from the astronomical data is, in 
consequence, VM' rather than nM. Now, if we apply 
Eq. (6) to the moon, inserting the known values 
of ne and ns, and make the assumption ns = 0, 
we find 

VM' = nM - 0.036 601 lie, (8) 

in the system of units that has been adopted. Thus 
we cannot get nM from v It/ unless we know n~ . 

In order to get ne, we apply Eq. (6) to the sun, 
getting 
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vs' = -0.002 738 ne. (9) 

It looks, therefore, as if the problem is simple: 
We measure vs' and VM' by means of astronomical 
data and solve Eqs. (8) and (9) simultaneously 
for nM and ne. These values in turn can be used 
to give us the frictional and the non-frictional 
parts of the non-gravitational effects. The diffi­
culty arises from the nature of the data available. 

Data from modern times are of course the most 
accurate, but they are affected only slightly by the 
accelerations. Thus we find it hard to estimate the 
accelerations from modernc data. As we go back 
in time, the effect of the accelerations goes up as 
the square of the age of the data, but the a..ccuracy 
of the observations goes down. 

It turns out that squaring the time probably 
wins out over the decreased accuracy, at least back 
to classical Greek times, but this victory is won 
at a price. The price is that most of the data re­
late to the moon and not to the sun. Thus we have 
highly detailed knowledge of VM', but we have rela­
tively poor knowledge of vs' and hence of the 
accelerations with respect to dynamical time. I 
should qualify this by pointing out that the state­
ment rests upon the data that have been most 
studied. These data come primarily from the 
Greek, Islamic, and European cultures. The situa­
tion may be altered if and when more data from 
China, India, and possibly other areas become 
available. 

It is interesting to look briefly at two examples 
of ancient data. One example gives an estimate of 
vs' and the other gives an estimate of VM'. 

Hipparchus's Solar Data 
In the years from -161 to -127 BC, the great 

Hellenistic astronomer Hipparchus made a series 
of observations of the vernal and autumnal equi­
noxes on the island of Rhodes. He probably made 
several observations of the solstices as well, but 
only one, of the summer solstice of -134, has sur­
vived. Except for one isolated observation of the 
summer solstice of -279, Hipparchus's data are 
the oldest solar data that have been published. I 
estimated vs' from them in Chapter II of an earlier 
work. 7 

After the observations by Hipparchus, it is al-

c Modem, in astronomical parlance, is often used to signify the 
period since the adoption of the telescope and the pendulum clock 
roughly three centuries ago. 
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most a thousand years before we find any more 
solar observations. Islamic astronomers began 
making systematic observations in 829', and I have 
analyzed many of their equinox and solstice ob­
servations. 7, 8 The Islamic data are not as useful 
as we might at first expect, unfortunately, because 
they are predominantly of the autumnal equinox, 
and observations of an equinox are subject to 
severe bias. There are two possible ways of over­
coming the bias. 

The bias made by a single observer tends to be 
equal and opposite for vernal and for autumnal 
equinoxes. Thus we can remove most of the bias 
if we can use a significant body of observations 
of both equinoxes made by the same observer. 
This is what we are able to do with Hipparchus's 
data. 

We can also remove the bias if the observer 
constructed a theory of the sun from his observa­
tions, provided we understand his theory and that 
we have the crucial parameters in it. All theories 
of the sun since the time of Hipparchus, including 
the modern theories used in preparing the great 
national ephemerides, d involve four basic para­
meters. In modern theories, the parameters are 
called the eccentricity, the mean longitude of peri­
gee, the mean motion, and the mean longitude at 
the epoch. Older theories have various forms, but 
the parameters in them are either equivalent to 
these four or can be converted into them. 

In several cases, we have only a single equinox 
observation made by a particular Islamic astron­
omer, but we also have his solar theory in at 
least partial form. We can remove the bias in his 
equinox observation if we have his values of the 
eccentricity and longitude of perigee, or their 
equivalents. When we have these parameters, and 
one or more equinox observations, we can in ef­
fect calculate the solstice observations and the re­
maining equinox observations that he used in 
formulating his theory. In a recent work,9 I have 
used several Islamic solar theories in order to 
estimate vs'. Before I did so, I tested my ability to 
understand and to use the ancient theories by 
working with the theory of Hipparchus, because 
we have both his theory and the observations upon 
which he based it. It is simpler to give the analysis 
based upon his theory than the analysis based 
upon his observations. 

d The standard American ephemeris publication is the American 
Ephemeris and Nautical Almanac, which has already been cited. l 
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Hipparchus's theory, written with the aid of 
modern algebraic and trigonometric notation, can 
be embodied in the equations: 

As = Os + es, 
Os = 330° .75 + 0° .98563 52784 D, (10) 

Ms = Os - 245° .5, 
es = tan-I {2.5 sin Ms/ (60 - 2.5 cos Ms)}. 

In Eqs. (10), As is the longitude of the sun and D 
is the time in days from noon, apparent solar time 
at Alexandria, on -746 February 26. e Os, which 
is called the mean longitude of the sun, is the co­
ordinate that was introduced earlier. Equations 
( 10) agree quite well with Hipparchus's data. 

For example, an observation upon which Hip­
parchus laid considerable weight was an autumnal 
equinox that he put at 06 hours on -145 Septem­
ber 27. For this epoch, Eqs. (10) yield the values 

Os = 182° .173, Ms = -63° .327, 
es = -2° .173, As = 180° .000. 

Thus Eqs. (10) agree exactly with this observa­
tion, to the precision kept in the computations. 

Newcomb's theory!, which uses the fundamental 
epoch of Greenwich mean noon on 1899 . Decem­
ber 31, gives 181 ° .963 for the value of Os at the 
epoch of Hipparchus's equinox. Hence the ac­
celeration has changed Os by about 0° .210 in the 
20.44 centuries between Hipparchus's observation 
and Newcomb's epoch, and 

vs' = 2 X 0.210 X 3600/ (20.44) 2 = 3.6. (11) 

On the basis of considerations that it would take 
too much space to explain, I estimate 0.7 as the 
uncertainty in this estimate. 

Some Coniunctions of the Moon 
At Alexandria, when three-fourths of the night 

between -294 December 20 and -294 December 
21 had passed, the astronomer TimocharislO ob­
served that the star f3I Scorpii was touching the 
northern cusp of the moon. Calculation shows that 
the moon was several days past the third quarter. 

e Strictly speaking, the expression for Os in Eq. (10) is taken from 
the form in which Ptolemy wrote Hipparchus's theory. It is likely 
that Hipparchus used a different fundamental epoch. Whether this 
is so or not, we know that the form in Eqs. (10) embodies Hip­
parch us 's theory and that this theory is based upon his known equinox 
and solstice data. 

f The needed parts of this theory are given in the section called 
"Explanation" in any recent volume of the American Ephemeris and 
Nautical Almanacl • It is necessary to include the phenomenon called 
aberration in order to put Newcomb's theory on a basis that is 
comparable with Hipparchus's theory, since Hipparchus was ignorant 
of abberation. 

17 



Figure 2 shows the most important features of 
the situation. The coordinates in Fig. 2 are celes­
tial longitude and latitude. East (the direction of 
increasing longitude) is to the left in Fig. 2 in­
stead of to the right as we see it on maps. The 
reason is that we look at the earth from the out­
side but we look at the heavens from the inside. 
A small circle indicates the position of the star f31 
Scorpii. 

Figure 2 shows two positions of the moon; the 
visible disc is bounded by solid circle.s while the 
dashed line outlines the invisible part. The posi­
tion to the right, where the longitude of the center 
is 210 0 .275, is the position that the moon would 
have had if v,/ were identically zero and if Ti­
mocharis's measurement of the time were accu­
rate. The other position, which is about 1 0 farther 
east, is the position indicated by Timocharis's ob­
servation. 

If we calculate the lunar position as a function 
of v A/ for the time that was stated, we need the 
value v M' = 17.3 in order to make the calculated 
position agree with the stated position. 

Ptolemy10 quotes altogether eight observations 
of this sort, in which the position of the moon is 
given by referring to the star background. The 
earliest is the one in Fig. 2, and the latest was 
made on 98 January 14. It is interesting that three 
of the observations were made in Rome. When we 
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Fig. 2-Part of the sky half way between midnight and 
sunrise on -294 December 21 at Alexandria. According 
to an observation recorded by Timocharis, the star f31 
Scorpii was nearly touching the northern cusp of the 
waning moon. However, the position of the moon 
would be nearly 1 0 west (to the right) if the moon 
were not being decelerated. 
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analyze all eight observations, we obtain the esti­
mate 

VM' = 8.7 ± 1.9. (12) 

The discrepancy between the value in Eq. (12) 
and the value found from Fig. 2 probably means 
that Timocharis made an error of about 30 
minutes in his statement of the time. 

The Accelerations at Two Epochs 

We have two clusters of data from which we 
may estimate the accelerations of the sun and 
moon. Besides the data that have just been dis­
cussed, there are positions of planets, the magni­
tudes and times of both solar and lunar eclipses, 
and places where solar eclipses were total or nearly 
total. The last type of data has received more 
publicity than the other types, and there is a wide­
spread tendency to consider it as the most valu­
able, or even the only valuable, type. Actually, it 
is no more valuable than several other types. 

The data from around the year zero yield the 
estimatesg 

VM' = 6.5 ± 1.9, 
liM = -41.6 ± 5.9, 

V~'~ 3.6 ! 0.4, (13) 
ne - -1315 - 160. 

The other cluster of data, which comes from the 
first two centuries of Islamic astronomy (say at 
the year 1000), with some admixture from Chi­
nese and European sources, gives results that do 
not differ significantly. 

The value of nM at 0 and at 1000 is rather close 
to the estimate given in Eq. (7), which applies at 
the present time. Also, ne is approximately the 
same at 0 and 1000, but we have no value for the 
present with which we can compare it. If we had 
no other information, these facts would lead us to 
suspect that the accelerations have been nearly 
constant for at least 2000 years. However, we do 
have a large body of data that says, with high 
statistical confidence, that at least one of the ac­
celerations has changed by a large factor at two 
different times within this period. 

The Second Derivative of the 
Lunar Elongation 

The occurrence of eclipses, whether lunar or 
solar, depends upon the angle D between the 
moon and the sun. This angle is called the lunar 

Ii Chapter XIV of a work already cited'. 
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elongation. With a few trivial exceptions that I 
shall not take the time to describe, all old observa­
tions of eclipses give us information about D, and 
in particular they give us estimates of D", the 
second derivative of D with respect to solar time. 
We see from the definition of D and from Eqs. 
( 8) and (9) that 

D" = vM' - vs' (14) 
= nM - 0.033 863 n.e. 

We can evaluate nM and ne only at epochs for 
which we have solar data, and those epochs are 
approximately 0 and 1000, as we have just seen. 
However, data from which we can evaluate D" 
are well distributed in time. I have analyzed7 ,11 

more than 400 observations that give estimates of 
D", with dates ranging from -762 June 15 to 
1288 April 2. The -8th century, which is more 
than a century before the Exile of the Jews in 
Babylon, is represented by five individual observa­
tions, and there is at least one observation in each 
century since then except the + 3rd. When the full 
corpus of Chinese data becomes available, this 
lacuna may be removed. 

Martin1 2 has analyzed a body of lunar observa­
tions made after the invention of the telescope but 
before 1860. We can also estimate a value of D" 
from Martin's work. 

I have divided the total body of observations 
into about 25 groups and have formed an estimate 
of D" from each group. The observations in each 
group are of the same lunar or eclipse phenom­
enon and they are close together in time. The re-
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Fig. 3-Time dependence of the parameters 15" and 
0". 0 is the angular distance from the sun to the 
moon, 0" is its second derivative with respect to solar 
time, and 15" is an appropriate mean of 0" between 
any time and the present. The shapes used for the 
plotted points are not significant here. The figure, with 
a minor change, is reproduced from Medieval Chroni­
cles and the Rotation of the Earth by permission of 
the Johns Hopkins Press. 
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suIts are shown in Fig. 3, which is taken from an 
earlier work11 with minor modification. The dis­
tinction between different shapes of points in the 
figure is related only to the order in which the 
groups were analyzed and has no fundamental 
significance. 

The curve labelled D" in Fig. 3 is the smooth­
est curve that I could bring myself to draw through 
the plotted points. I strongly suspect that the cor­
rect variation of D" is both larger and more 
abrupt than the curve shows. The use of D" as a 
symbol rather than D" indicates a point that could 
not be made conveniently before: the value of an 
acceleration that is directly obtained from the ob­
servations is the mean value between then and 
now, rather than the value at the time of the ob­
servation. h The curve labelled D" is derived from 
15" by the appropriate differentiations, and it is 
the best estimate that we can make of the current 
value of D" at any time. 

In view of the scatter of the data in Fig. 3, we 
cannot rely upon the curves in full detail. How­
ever, it seems safe to assume that D" has had 
approximately the following behavior since -700: 
It was roughly constant at about - 10 from about 
-700 to + 700, it then rose fairly abruptly from 
-10 to about + 30, where it remained until about 
+ 1200. It then fell back to - 10, where it has 
stayed until the present. 

Since D" is a linear combination (Eq. (14» 
of nM and lie, a time variation of D" necessarily 
implies a time variation of at least one of the two 
individual accelerations. Since the value obtained 
for liM in Eqs. (13) is about the same as that in 
Eq. (7), it may be that liM has remained nearly 
constant and that most or all of the variation has 
been in ne. This would imply that tidal friction has 
been nearly constant and that it is the non-fric­
tional effects that have done most of the changing. 
However, this conclusion is far from being estab­
lished, and there is no known theoretical reason 
that requires it. 

Summary 
Our knowledge of the accelerations of the sun, 

moon, and earth has changed drastically within the 
past five years. The values of liM and lie that most 
people accepted five years ago were little more 
than half of those given in Eqs. (13). Further, it 

h The values in Eqs. (11), (12), and (13) are also mean rather than 
current values. 
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was commonly asserted that the mechanism of 
tidal friction had been established, although some 
authorities strongly demurred from this position. 
Some writers had even "proved" that the accelera­
tions have been nearly constant within the his­
torical period. 

We know now that existing theories of tidal 
friction are seriously inadequate, and we know 
that at least some non-gravitational effects have 
changed by large amounts within less than 1000 
years of the present. We do not know whether the 
changes have been in frictional effects, in non­
frictional effects , or in both. 

Since we are dealing with ancient astronomy, 
it may seem paradoxical to say that our increased 
knowledge is a result of an increased volume of 
data, but this is the case. Actually, the change in 
the past few years has not been in the data that 
are known, but in the data that someone has taken 
the trouble to analyze. The volume of data that 
has been analyzed has increased by perhaps an 
order of magnitude in the past 5 years. In the 
history of the physical sciences, such an explosive 
growth in the volume of data has often been ac­
companied by a growth in understanding. We may 
expect this growth to continue in the immediate 
future. 

Thus we stand at an exciting point in the de­
velopment of this subject. Within the next decade, 
we may reasonably hope to have a sound under­
standing of the non-gravitational forces within the 

References 
1 Published annually by the U.S. Government Printing Office, Wash­
ington, D .C., 20402. 

2 See R. B. Kershner, "Present State of Navigation by Doppler from 
Near Earth Satellites," APL Te chnical Digest 5, No.2, Nov.-Dec. 
1965, 2-9. 

3 R. R. Newton, " An Observation of the Satellite Perturbation Pro­
duced by the Solar Tide," Journal 01 Geophysical Research, 70, 1965, 
5983-5989, and " A Satellite Determination of Tidal Parameters and 
Earth Deceleration," Geophysical tournal 01 the Royal Astronomi­
cal SOciety, 14, 1968, 505-539. 

4 I am greatly over-simplifying the subject here. The interested reader 
can find more information in The Earth by Sir Harold Jeffreys, 
Cambridge University Press, Cambridge, 5th Edition, 1970, or in 
The Rotation 01 the Earth, by W. H . Munk and G . J . F. MacDonald, 
Cambridge University Press, Cambridge, 1960. 

5 Y. Kozai, " Effects of the Tidal Deformation of the Earth on the 
Motion of Close Earth Satellites," Publications 01 the Astronomical 
Society 01 Japan, 17, 1965, 395-402, and "Determination of Love's 
Number from Satellite Observations," Transactions 01 the Royal 
Society, A262, 1967, 135-136. 

6 T. C. van Flandem, "The Secular Acceleration of the Moon," 
Astronomical Journal, 75, 1970, 657-658; C. Oesterwinter and C. J. 
Cohen, "New Orbital Elements for Moon and Planets," Celestial 
Mechanics, S, 1972, 317-395; L. V. Morrison, "The Rotation of the 

20 

sun-earth-moon system, the forces that probably 
govern the evolution of the system within astro­
nomical time. 

TABLE 1 

NOTATION 

When using the following list for a symbol with a sub­
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Eqs. (10). 
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s -a generalized time base. 
T -a torque. 
t -the dynamical time base defined by the equa-

tions of motion of the solar system. 
o -an angular coordinate. 
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