
GRAPHICAL
AUTOMATIC PROGRAMMING

Summary

THE DEVELOPMENT, PROOFING, AND MAINTE­

NANCE of computer programs for complex data­
processing systems represents a difficult and in­
creasingly costly aspect of modern systems design,
especially for those systems requiring real-time
processing. The problem is aggravated by the ab­
sence of a lucid means of representing the opera­
tions performed by the program or its internal and
external interfaces and the associated communica­
tion gap between engineers and programmers.

A major step toward the solution to this prob­
lem is believed to have been achieved. It consists
of an entirely new approach devised to provide
systems engineers with the capability of designing
entire complex data-processing programs by direct
use of a modern computer graphics terminal. The
name "Graphical Automatic Programming"
(GAP) has been suggested for this technique. Its
four principal features are summarized below.
1. Data Flow Circuit Language-The essential
basis for the Graphical Automatic Programming
technique is the configuration of the program into
"Data Flow Circuits," which represent the pro­
cessing to be done in a form directly analogous
to the diagrammatic representation of hardware
circuits. Data Flow Circuits represent a "universal
language" with a form intimately familiar to engi­
neers and at the same time directly translatable
into computer programs. The Data Flow language
consists of a "vocabulary" of some 30 basic data­
processing "elements," each of which represents
an operation equivalent to the execution of a
specific set of instructions in a general-purpose
computer. These "Data Circuit Elements" are
configured by the designer into an engineering-

2

A. Kossiakoff

type Data Flow Circuit representing the data
processing desired, as if they were equivalent
hardware functional elements. The designer can
also assemble and define special circuit elements
for his own use.

The correspondence between the individual
Data Circuit Elements and actual computer in­
structions makes it possible for the designer to
assess the approximate time for executing each
circuit path and the total core required to store
the instructions. This permits him to balance the
performance requirements for accuracy and ca­
pacity against the "cost" in terms of memory and
execution time during the initial design of the
circuit. This capability can be of utmost impor­
tance in programming high-data-rate real-time sys­
tems, especially those having limited memory
capacity.

2. Application of Computer Graphics-Each
Data Circuit is designed by the engineer with the
aid of a graphics terminal, operated by a time­
shared computer such as the IBM 360/ 91. The
circuit elements are selected, arranged, and con­
nected using a light pen and keyboard and dis­
played in a manner similar to that used in compu­
ter design of electronic circuits.

The display program stores the circuit descrip­
tion in an Element Interconnection Matrix and a
data "Dictionary." This is checked automatically,
and any inconsistencies in structure are immedi­
ately drawn to the designer's attention.
3. Trans/ormation 0/ Graphical into Logical
Form-The computer then executes a transforma­
tion program, which converts the Data Flow
Circuit automatically into an operational sequence,
representing the sequential action of the circuit

:\PL T echn ical D igest

elements as they would be serially processed by
the computer. In the next step, the computer
converts the operational sequence into computer
assembly code for the computer driving the
graphics terminal. The program logic is checked
out by using sample inputs and examining the
outputs. Errors or omissions can be corrected im­
mediately by the designer by modifying the faulty
connections or input conditions in the circuit.
4. Integration and Testing of Complex Pro­
grams-When checked out, the circuit is assem­
bled by the computer with other blocks of the
total program. The result is checked for proper
operation. At any desired stage, the individual
circuits or their assemblies can be translated into
the machine assembly code of the particular com­
puter on which the operational program is to run,
which can be fed directly into the assembler of
the operational computer. Subsequent modifica­
tions to the program can be made by calling up
the circuit to be altered, making the changes with
the display terminal, and invoking a program to
find and change other affected sections.

In this wayan entire complex computer pro­
gram can be designed, documented, and managed
through the use of Data Circuit language by direct
interaction between the systems engi,neer and the
graphics terminal. It is hoped that this technique
will be capable of producing system software at
a fraction of the time and cost achievable by cur­
rent methods.

Introduction
The general-purpose digital computer found its

first practical application in the forties in calcu­
lating more extensive tables of mathematical func­
tions than had been practicable to produce by
mechanical calculating machines. Few viewed the
appearance of these devices as a breakthrough in
technology. In fact, there was considerable specu­
lation as to what would be left for them to do
after the computation of function tables had satis­
fied all reasonable requirements.

As things have turned out, the digital computer
did not run out of work when the most important
mathematical tables were finished. Computers
were applied with great success to problems in
scientific and engineering analysis requiring highly
complex mathematical calculations. They were
also found to be extremely useful for economically
storing large masses of data sorted in a way that
permits almost instantaneous retrieval of a partic-

September - October 1969

ular set of data. This capability is being exploited
in major libraries and in almost every business.

A third type of application of enormous impor­
tance has been in the automation of operating sys­
tems. The Whirlwind computer, developed to
automate the handling of radar information in
the SAGE continental air-defense system, was one
of the historic landmarks in the evolution of very­
high-speed high-capacity digital computers.

The problems associated with these three appli­
cations of general-purpose digital computers are
fundamentally very different. The application as
a high-speed mathematical calculator involves the
transformation of a set of given parameters by
a sequence of specific mathematical transforma­
tions into one or a set of solutions. The storage
and retrieval of data involves the organization of
a filing system with suitable indexing to facilitate
rapid location of the data to be retrieved. The
use of a computer to automate portions of a com­
plex system generally does not require involved
computations or elaborate data retrieval. In this
application, the primary processes are the correla­
tion and classification of data inputs, recognition
of significant events or changes in input conditions
to the system, and translation of these into con­
cise information outputs or actual control signals
to external devices.

The design of computer programs for using
digital computers in automating real-time operat­
ing systems has turned out to be quite different
and much more difficult than designing programs
for the computing and data-handling applications.
Thus the enormOllS potential impact of the use of
modern digital computers in automating such sys­
tems has been impeded by the very large ex­
penditure of manpower, and hence of time and
money, in the design of satisfactory large-scale
computer programs. In many instances the devel­
opment of the so-called "software" (in contrast to
the "hardware," or equipment) is widely regarded
as the limiting factor in both time and cost of
system development.

Operation and Programming of a General­
Purpose Digital Computer-For those with
only general familiarity with the problem of de­
signing computer programs, a brief discussion of
how a general-purpose computer operates and
of aids available to programming is necessary to
provide a background for the description of the
Graphical Automatic Programming techniques.

3

The general-purpose digital computer consists
of a central processing unit (CPU), a random
access memory unit (Core), and peripheral "in­
put-output" (I/ O) devices. The central processing
unit contains a set of circuits, each designed to
execute a specific operation on one or more digital
"words" which represent numbers or characters
making up the data. The execution of each opera­
tion is called for by a coded word called an "in­
struction." A sequence of instructions calling for
a series of operations is called a "program." The
instructions are stored in part of the random­
access memory, along with data words in various
states of processing. Data are entered into the
computer by means of punched cards, tape, or
disk. Control signals are usually entered through
special interrupt connections. Results are read
out in the same form as data inputs, or as printed
copy, plots, or graphic displays. They may also
be used to control various devices directly.

The main task in effectively using a general­
purpose computer in a given application is the
development of a satisfactory computer program.
Since the individual operations of the central
processing unit are very elementary, a relatively
long sequence of instructions must be written to
accomplish most data-processing tasks. Care must
be taken to insure that adequate space is reserved
in memory to hold data inputs and partially pro­
cessed information. Where the process involves
decision points and "branches" into alternative
paths, it is not unusual to make mistakes in the
proper sequencing of instructions. Sequencing er­
rors are inherently difficult to locate, so that "de­
bugging" of the program is usually the most time­
consuming part of the job.

The actual instructions stored in the computer
to execute a given program are made up of binary
code. The lowest language readily intelligible to
a programmer is called "assembly language." This
is a direct representation of machine code for each
instruction, in characters which convey meaning,
as for example "LDA(M)" which means "Load
the contents of memory location M into die A
register." The assembly language can use names to
refer to memory addresses and labels for instruc­
tion locations. This notation makes it possible to
write a program without assigning particular loca­
tions in memory for data files (or arrays) and the
instructions themselves. Each computer model has
its own assembly code notation and its own "as-

4

sembler" which automatically translates the assem­
bly language program into machine instructions.

Since the program in assembly code requires
a separate instruction for each elementary machine
instruction, it is very laborious to use in designing
complex programs. For this reason several "pro­
gramming languages" have been developed which
enable the programmer to write concise "higher
level" instructions. This involves development of
a program called a "compiler," which translates
the high-level instructions into the assembly code
for a given computer. Since much of the detailed
housekeeping is done by the compiler, the pro­
grammer's task is greatly facilitated.

The most widely used computer language has
been "FORTRAN," which was developed by IBM
for programming mathematical calculations. "AL­
GOL" is a more sophisticated algebraic language.
For programming data storage and retrieval opera­
tions, such as those used predominantly in busi­
ness applications, "COBOL" is widely used. More
recently mM combined the best features of FOR­
TRAN and COBOL into "PL/ I" (Programming
Language One) to handle both types of program.
In addition to these general-purpose languages, a
variety of higher level programming aids have
been developed to handle special applications.

Problems in Design of Real-Time Pro­
grams-Unfortunately, while these higher level
languages are very helpful in programming com­
puters for use in mathematical analysis and busi­
ness applications, they do not lend themselves to
the design of real-time programs for complex auto­
mated systems. In such applications, the program
has to provide for accessing and outputting data at
times required by the system timing, often in
a period of a millisecond or less, and it must have
a system of priorities which interrupts lengthy
operations in favor of those requiring immediate
action. It must be subject to external commands
by operators, to adapt tc.e processing priorities or
modes to changes in the operational environment.
The higher level languages obscure the relation
between the operation called for and the time re­
quired for its execution, and hence can inadvert­
ently produce a program which later proves to
require unacceptably long processIng times. "Tim­
ing" in scientific or business programs generally
only affects cost. In high-data-rate real-time sys­
tems timing may control success or failure.

Automated systems must often accommodate

APL Technical Digest

large variations in the volume and rate of data
inputs, and in their quality or noise content. The
use of a higher level language obscures the mem­
ory requirement for storing the program code and
data. The resulting inefficient use of the memory is
often a limiting factor on data-handling capacity.
In such systems the use of assembly language, in
which the execution time and memory required
for each instruction is immediately apparent, is
more satisfactory in insuring that the program
meets all system requirements, -aespite the in­
creased labor involved in the detailed coding.
These characteristics make the design of computer
programs for real-time systems vastly more diffi­
cult and tedious than the preparation of programs
for batch-type computational tasks.

An even more basic difficulty in the preparation
of effective programs for computers which serve
as permanent elements in complex automated sys­
tems is the "communication gap" between the
engineers and the programmers. The design speci­
fications on the program are prepared by engineers
to fit the characteristics of the data inputs and the
rate and accuracy requirements of the processed
outputs. Capacity is often dictated by operational
factors. At the time he has to make these specifica­
tions, the system engineer does not have effective
means to estimate reliably the complexity of the
program that will result. The programmer, in tum,
has little discretion in altering the specifications
to meet the limitations on computer capacity and
processing times. Accordingly, the development
of the system computer program is effectively an
open-loop process, and often results in an over­
sized and unbalanced product after an inordinate
expenditure of effort and time.

Data Flow Circuit Language
The fundamental new concept which constitutes

the essential basis of the techniques of Graphical
Automatic Programming is the representation of
a computer program in a "language" consisting of
circuit networks in a form directly analogous to
diagrams used by engineers to layout electronic
circuits. This representation focuses attention on
the "flow" of identifiable data inputs, quantized
in the form of digital words, through alternative
paths or "branches" making up the total data­
processing network. The switching of data flow
at the branch points of the network is done by
control signals generated in accordance with the
required logic. These control signals are equivalent

September - October 1969

to "jump" instructions in the digital program. The
term "Data Flow Circuit" will be used in referring
to this representation.

The development of the Data Flow Circuit
representation has required the definition of a
set of "elements" which constitute the building
blocks of the circuit. Each element has a dual
meaning: to the engineer it represents a transfer
function and to the programmer it represents a
set of computer operations. Before describing
these building blocks, it is illuminating to compare
the general form of a typical computer program
with its equivalent Data Flow Circuit.

A computer program representative of a practi­
cal example of real-time programming is illus­
trated in Fig. 1. It lists the code of one of the
processes used in a program for automatic track­
ing of target returns from a three-dimensional
search radar. This program is written for the
Honeywell DDP-516 computer-a small modem
high-speed machine, with a relatively simple but
versatile set of instructions.

The figure shows both the DDP-516 machine
code and the corresponding assembly code for
each instruction. The machine code is listed in
the columns of numbers on the left side of the
figure, and the equivalent assembly code is listed
in the middle columns of characters. The same
code will be used in examples described in later
sections of this paper. The text at the right lists
comments written by the programmer for his own
reference in "debugging" or modifying the pro­
gram. The program consists of some 100 instruc­
tions. Since it does not have an obvious form or
structure, a typical program such as this is difficult
to follow by anyone except the programmer who
wrote it.

The representation of the same process in the
form of a Data Flow Circuit is shown in Fig. 2.
The solid (red) lines represent the flow of data
in the form of digital words, and thus trace the
successive operations on a given data input. The
dashed (blue) lines represent control signals trans­
mitted to gates which activate particular opera­
tions or data paths, and thus effect branching in
the operational sequence.

The polygons in Fig. 2 represent the 12 main
functional elements in the circuit. The shape of
the element and the number and types of signal
inputs and outputs indicate the general type of
function it performs, while the characters inside

5

01811
0 185
0186
0181
0188
0189
0190
019 1 00)250-00200645
0192 003251140401
0193 gg~~~~ 6°6~/f~132J 019 ..
0195
0 196 00J2511-0020061111
0191 00J255 00'103401
0198 003256 00)031116
0199 003251 00'10]11104
0200 003260 00200612
0201 00)261 00]0]1116
0202 003262 0010]'10'1
020] 00)263 1001100
020" 00)26'1 n1ll01
0205 003265 00303417
0206 003266 1000110
0201 003261 00103"03
0208 00]270 00200612
0209 00]211 a 01011t20
0 210 003272 00'10]110"
0211 00]21] 00203401

0212 g~~~~~ g ~~ g~:~~ 0213
02" 003216 a 01 0])17
02 15 003277 ° 01 03310
0216 OOHOO 002006 12
0211 00])01 00)0]'121
0218 00H02 0040]"04
02 19 00]]0) 0020)1101
0220 OO)lOq 00)0)'122
0221 00)105 00603404
0222 003]060060] 42)
0223 003)07-00" 0064/1
0224
0225 00H10 00200612
0226 003311 141H O
0221 00)312 0'10514

g~~; 00))13 o 0)0)'121t
00H14 006 00602

0230 0'.)])15 -0 04 00645
0231 00H 16 -00103241
0232
02)] 003J17 0020)401
023 4 00H20 ° 06 0)42]
02)5 003321-0011006'"
0 236 0 0]322 - 00 1 012'17
0237

00H2) g~~: 00200612
00H211 0 OJ 0]'121

0240 00)325 0 06 031123
0211 1 003326 -0 04 006114
02112 003321 o 01 03310
02'3
02114
0 245
0246 00]))0 00200602
021f7 00))]1 0'1011 76
0248 003332 o 03031f25

g~;~ 00ll3) 0011 03ltO'
00H)4 -0 02 006115

025 1 003335 0110416

0252 003336 003031125

g~~! 003331 0040)405
00])40 006 0)1104

0255 00)]41 00'103406
0256 003342 007031104
0257 003H3 00103'104
0258 0033'111 1001100
02'59 00)3115 1CJ1'J01
0260 00HII6 01103426
0261 00H.7 0010]]52
0262 003350 0010JJ52
0263 gg~~~i 0010B63
026 11 00203406
0265 00H5J 01103427
0266 00H511 0010HS5
0261 00)] 55 00703'130
0268 00)356 g'l~: ~~421 0269 00llS1
0270 00H60 g g~ g~:~~ 0271 OOll61
0212 00Jl62 00101165
0213 003363 00203'106
0214 00)3611 o 010 H57
0215
0216
0277 001J65 00200612
0218 001166 1411110
0219 00H61 0'10574

g~:~ 00H70 00)03112"
003371 00600602

0282 003372 00)0]'116
0283 00))1) 00'10)405
0284 0033 711 -0 02 006115
0285 003375 003031116
0 286 OO H76 006 03 1105
0287 00H77 011011 71
0288 OOlllOO 0060111011
0289 0031101-004006115
0290 00)1102 0010H17
0291

0292

g~:~ ~g~:g~
0295 003~05

0296 OOH06
0 297 003110 7
0298
0299
0300
0)0 1 ~
0)02

00)410 000100
00]411 000010
0034 12 003771
0034U 000030
0011114 0'11000
00311 15 0 1bOOO
00)4 16 000077
0031111 177176
0031120 007000
0031121 007077
00)1122 170000
00)42] 010000

gg~:~~ 000007
017760

003426 OHl400
00)421 031100

gg~:~~ 062200
171700

-IIIPUTS-
Un) : r (1) DELTI l!!el) 10) 00) DELT l 1(6)

(TD41)-= I ODRESS OF nEft II TO STORE VITH 1'0BPllT
"(1) v() l(3) O() DELTI RUd

(TOS1)::IDDRESS OP ITEI'! IN TD STORE UTH FORU T B(10) E(6)
(BGEL)::BBJG UO ELEY. ISSOCIlTED WITH (HIT). POBBIT S{ l O)

LOA - TOS1
CftA
SHZ
JlIP 8CE .0 PREVIOUS HIT UTIY

COI'!PlBE BIT UTH PBEVIOOS EIfTR!
LOI - TO~ t
STA RC'rq

~:: =~;~
LOI HIT

~~~ ;b~~ 
SPL 
TCl 

::: "'1177776 

SEE IF EQUAL UP 'f0 LIST BIT 

t~: :i; :~TB:~r t~ ~~~! . H~~ IG. BourllB 

~~: ;b;~oo 
LOl HCT4 

;b~~OO EITIlCf' 1 PIOI'! Pin. ElTlt 

PHC2 1 (PUl) G.T. 1 ( HIT ) 

~~= ~~: ~~~~~T ;iT ~.;~E~:G~1~~~ID III1 TIS 
~;: =b~~71 lUllcr I 110 DEL'U • PI 011 HIT 

LOA SCU 
=1170000 UTIlC1' " liD • PlOI!! urn 

IOD HCTt CO!lIlJ! IIT8 BIT 

~~~_ ;~~~OOO lD U IC!' 

PO BlI SECOID" VOID 01 CG Inn
PHCl LOI RIt

ICI EITUCT DELTI I lRO! HIt
l iS If

::~ ;~~L 100 Hl.Dli COOIOIIlTES B(10 }E{6,
SU - TD51 stOB! II to STOI!
J II P - PRC IETU"

PR~~\~1 (PI:~~oG.T. 1 (BIT), lDtllCE I 110 IBTU ••

:~:_ ;~~~OOO
J!p . PRC

.0 PREYlOOS urn
HCE LDI HIT

I II "'11071 ! I TI1CT 1 11 0 DELTI • 110" HIT ;:!. ~~~rDO ST~:; :;\0 rlBlE

HIT COOIDIIlTI lYEI1GUG (EQU1L l RPLITO OIS)

::;0::0 C~::~:I:;T:; I::;I o:E~:~~;iT~E:I~~S .~; I ORTH BCI LDI BGEl
LGI 2

~~!. ~~~r60 81I1I'G 0 1 1111 BIT

LGB 2

~;: ~~~~760
lDD HCT t HCTl
SUB HCTl
SU8 RCTl
SPL
TCl lBS . ULOE OF DlfPEBUC!
ClS
JftP
JftP
JO P
LDl
ClS
JftP
so.
lDD

::10089 CO"PlB E OIPP . lITH PI

HC12LGL
l NA
STA
JftP

HCA)LDI

-+) OPPOSITE SIDES OF .OUH

:~!) ~!:~S;i~E OP 1l0RTH

~~~~89 ~~:~1::1 :~;; ~O=I 
-+1 UD 100 OR SUBTlICr 2 PI 
:40289 I S JlBCESSlBY. 
:20189 
, S!fIn SO T8lT BESUL" IS DIVIDED 

;~;~7100 BY 2 • .EITRlCT 10 BIT SZllIWG 

HC'" GO CO"Pl"n nER. ElEVlTION 
HCT) L010 8!UnG SO" HCl2 

CORPUTE lfERlG! ElE'IlTlOI 
HCU LD1 BIT PIBST CO"PUTE ELlY. Of' "Ell HIT 

ICA 
US II 

: ~~ ;~~L !~~R~~~u~E~i:, ~ paoft HIT 

:;: ~~~~ 
LO A- T051 

::~ ~~;~ 
LGa 1 
ADD RCTl 
SU . T051 
J!P PHC2 

1 
1 

l DD !t . o r HIT 
DIVIDE BY 2 
COftBII! linK UnAGE BUBIIIG 

stORE COOROItUTES II TO STORE 

!lTE RLT HCT1 BSS 
HCT2ass 
HCT3 ass 
HCTIIBSS 
TDII1 ! QU 
TDS1 EOD 
KIT EQD 

16114 lDDRESS OF 1'0 STOBE VI'fH f'OB!llTN(J)U3)0(J) 01(6) 
16115 ADDIESS OF TD STOBE VI'fH FOllliT Y e(10) E(6) 
1612 

BGEL :~~ 1602 

Fig. I-Target Coordinate Computation Circuit Program. 

define its specific operation. Thus, the visual con­
figuration of the circuit is descriptive of its general 
operational function. 

The routing of data and control signals among 

6 

TD5 

TD4 

Fig. 2-Target Coordinate Computation Circuit. 

the different branches of the circuit is accom­
plished by a secondary class of elements repre­
sented by characteristic configurations of open 
and closed arrowheads. A closed arrowhead at an 
input to a functional element labeled by a letter 
indicates that the input is only the part of the 
data word which contains the variable represented 
by the label. 

Some of the inherent advantages of using the 
Data Flow Circuit representation for the pro­
gramming of real-time systems can be seen from 
a general comparison between Figs. 1 and 2. The 
ability of following the operations performed on 
each data input in Fig. 2 makes the interaction of 
different variables readily visible. The ease of 
representing branching at decision points and 
tracing the resultant paths through the circuit net­
work reveals possible logical traps to an engineer 
much more readily than the conventional logic 
flow diagram in which the path of data flow is not 
shown. It is easy to spot redundant operations, 
which can be combined. 

Perhaps of equal significance is the fact that 
each circuit element, when used in a given com­
puter, has associated with it a definite set of in­
structions, except for minor variations depending 
on the form of the inputs, and hence the number 
of words in Core, and time to execute, can be 
estimated quite closely at the outset. For example, 
it will be seen later that the COMPARE element, 

APL T echnical Digest 



designated in Fig. 2 by a hexagon marked by the 
characters "CP ," requires four instructions for 
the DDP-516 computer. In general, each signal 
routing element requires an average of one instruc­
tion, while the main functional elements require 
an average of six instructions counting the prep­
aration of data inputs. This knowledge gives the 
designer a measure of the size of the program 
equivalent to the circuit and the approximate 
transit time through any of the possible circuit 
paths. If either the size or time of the equivalent 
program appears excessive, the designer can seek 
to simplify the processing operations at the very 
outset so as to achieve a well balanced program. 

A Data Flow Circuit is conceptually equivalent 
to an actual circuit constructed from a multiplicity 
of special-purpose digital circuit elements. This 
equivalence was in fact the origin of the idea, 
when it was realized that special-purpose digital 
operational elements are becoming so inexpensive 
that they could be used to advantage in high-data­
rate real-time data processing to complement the 
general-purpose computer. 

Digital circuits differ from analog circuits by 
virtue of the fact that in the former the signals 
are "quantized" in the form of digital "words." 
This means that signal transformation and "flow" 
occur by a series of steps rather than continuously. 
A Data Flow Circuit differs from an ordinary 
digital circuit in that the steps are further restricted 
to take place one at a time to correspond to the 
sequence of operations by the computer. Thus, 
while data will flow in parallel paths in a circuit 
network such as that shown in Fig. 2, at any given 
instant signals will be flowing in only one of the 
paths. This characteristic does not detract from 
the high visibility of all of the interactions in the 
process inherent in the diagrammatic representa­
tion. 

Data Circuit Elements-As stated previously, 
in a Data Flow Circuit each functional element 
has a dual meaning. In the engineering represen­
tation it can be considered to be exactly equiva­
lent to a hardware building block, which trans­
forms the indicated digital inputs into a uniquely 
defined set of output signals. In its represen­
tation of a sequence of operations performed by 
a general-purpose digital computer, it corresponds 
to a definable set of instructions in computer as­
sembly language. 

In selecting the building blocks to be used as 
the functional elements of Data Flow Circuits, 

Sep tem ber - O ctober 1969 

each Data Circuit Element was designed to meet 
the following criteria: 

1. It must be sufficiently basic as to have wide 
application in data-processing systems. 

2. It must be sufficiently powerful to save the 
designer from excessive detailing of secondary 
processes. 

3. It must have a symbolic form which is simple 
to represent, which is meaningful in terms of its 
characteristic function, but which is not readily 
confused with existing component notation. 

The choice and definition of the basic GAP 
data circuit elements is in an early stage and will 
evolve as experience is gained in applying the 
language to practical problems. At present five 
classes of circuit element have been defined. The 
first four perform direct signal transformations, 
and the last routes data and control signals 
through the circuit. These classes are defined as 
follows: 

SENSE elements test a particular characteristic 
of a data word and produce one of two control 
outputs according to whether the result of the 
test was positive (Yes) or negative (No). 

OPERATOR elements perform arithmetic or 
logical operations on a pair of data inputs and 
produce a data word. 

COMP ARISON elements combine several 
sensing and operator functions in a single element 
to accomplish frequently used data classification 
operations. 

TRANSFER elements bring data in and out of 
the circuit from files in memory and from external 
devices. 

ROUTING elements combine, split, and gate 
the flow of data and control signals in the circuit. 
Some routing elements do not themselves produce 
program instructions, but rather modify those 
produced by the functional elements to which they 
are connected. 

Table 1 lists the elements presently defined for 
initial use of GAP. These include 2 SENSE ele­
ments, 11 OPERATOR elements, 4 COMP ARI­
SON elements, 6 TRANSFER elements, and 9 
ROUTING elements. Others found to be widely 
applicable may be added to the basic vocabulary 
for general use. Facility will be provided for each 
designer to define for his own use special-purpose 
functions as auxiliary elements. Most of these can 
be built up from combinations of the basic ele­
ments, as is true of the COMPARISON elements 
already defined. 

7 



TABLE 1 
OAT A FLOW CIRCUIT ELEMENTS 

SENSE ELEMENTS 
SENSE ZERO 
SENSE SIGN 

OPERATOR ELEMENTS 
ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
AVERAGE 
EXPONENTIATE 
MAXIMUM 
MINIMUM 
LOGICAL AND 
EXCLUSIVE OR 
INCLUSIVE OR 

COMPARISON ELEMENTS 
COMPARE 
THRESHOLD 
CORRELATE 
RANGE GATE 

TRANSFER ELEMENTS 
READ FILE 
WRITE FILE 
INPUT DATA 
OUTPUT DATA 
FUNCTION TABLE 
SHIFT REGISTER 

ROUTING ELEMENTS 
DATA SPLIT 
DATA JUNCTION 
DATA GATE 
DATA PACK 
DATA LOOP 
CONTROL SPLIT 
CONTROL 

JUNCTION 
CONTROL GATE 
SIGNAL SPLIT 

Figure 3 illustrates the symbolic representation 
of typical circuit elements. The top rows picture 
one element of each of the four main functional 
groups, while the bottom rows illustrate four 
ROUTING elements. As noted previously, solid 
lines are used for data signals and dashed lines 
for control signals. 

In Fig. 3 the sample elements are seen to have 
the following types and numbers of connections: 

Element Type 

SENSE 
OPERATOR 
COMPARISON 
TRANSFER 
ROUTING 

Name 

SENSE ZERO 
ADD 
COMPARE 
READ FILE 
DATA SPLIT 
DATA GATE 
CONTROL JUNCTION 
DATA LOOP 

OPERATOR, COMPARISON, and TRANS­
FER elements are provided with an optional con­
trol input to serve as a gate for delaying the func­
tioning of the element until the receipt of a control 
signal from elsewhere in the circuit. The READ 
FILE and DATA LOOP elements have a con­
trol input which serves a different purpose, namely 
to initiate the next cycle of the loop. 

The maximum number of connections for any 
element is six, and for SENSE and OPERATOR 

8 

elements it is four. Connections are numbered 
clockwise with # 1 at 12 o'clock. 

Operation of Data Circuit Elements-The 
characteristics of Data Circuit Elements can 
best be described by examples. Five of the ele­
ments shown in Fig. 3 will later be used in a sim­
ple circuit to illustrate the automatic translation 
of a Data Circuit into a computer program. The 
detailed operation and equivalent code of these 
five elements are described below. 

The function of the COMPARE element is to 
emit a control signal from one of its three output 
connections in accordance with the relative magni­
tude of the two data inputs, x and y. As the signals 
in a Data Circuit flow from an output of one ele­
ment to an input of another, one link at a time, 
the step when a given Data Element performs its 
function and generates an output occurs when the 
final input necessary for its operation arrives. In 
the case of the COMPARE element in its basic 
ungated form, two data inputs are required. When 
the first arrives it is put in a temporary memory 
location. When the second arrives, usually several 
steps later, the element functions and generates 
the appropriate output, which in tHis instance is a 
control output from connection #3, #4, or #5. 

In translating the functioning of the element 
into computer assembly code, th~ conditions at 
the time of functioning must be noted. When the 

Data Control Data Control 
Inputs Inputs Outputs Outputs 

1 0 1 2 
2 1 1 0 
2 1 0 2-3 
1 2 1 1 
1 0 2-5 0 
1 1 1 0 
0 2-5 0 1 
2 1 0 

COMP ARE element is activated by the arrival of 
the input at connection # 2, the corresponding 
data word is in a general register AR, while the 
other data input is in a temporary memory loca­
tion, M6. The resulting code would have the form 
listed below for computers having a specific 
"Compare" instruction. The instructions in word 
form are listed in the left column and the equiva­
lent instructions in DDP-516 assembly code are 
listed at the right. 

APL Technical Digest 



1. Compare AR with M6 
2. Jump to M3 (if AR > M6) 
3. Jump to M4 (if AR = M6) 
4. Jump to M5 (if AR < M6) 

CAS 
JMP 
JMP 
JMP 

CP6 
CP3 
CP4 
CP5 

In the above, code labels are used to designate 

SENSE 

X 

X 
SENSE ZERO 

COMPARISON 

1 

4 

OPERATOR 
X 

X+V 
ADD 

TRANSFER 

X(n) 

COMPARE READ FILE 

ROUTING 

X X 
DATA DATA 
SPLIT GATE 

V 

IC 

Loopr I 
I 
I r--

' 1 C 
'V 

J X OR V 
CONTROL DATA 
JUNCTION LOOP 

Fig. 3-Examples of Data Circuit elements. 

September - October 1969 

memory locations containing data, as M6 or CP6, 
or instructions, as M3, M4, M5 or CP3, CP4, 
CP5. In the rest of the paper it will be convenient 
to relate these labels, which are entirely arbitrary, 
to the notation of the corresponding element input 
or output connections. 

Like most functional elements, the COMPARE 
element has a connection (# 1) that can be used 
as a control gate when it is desired to make the 
operation conditional on a particular control out­
put from another element. This connection saves 
the use of a separate gating element on one of the 
data inputs. When gating is used, the second data 
input is also temporarily stored in memory (M2) 
and operation of the element occurs when the 
gating input arrives. The. code for the gated form 
of the COMPARE element begins with the in­
struction 

M1: Load M2 into AR CP1: LDA CP2 
followed by the same code as the ungated form. 
The "M 1 :" (or CP 1 :) preceding the instruction 
is a label used in assembly language to indicate 
the destination of a jump instruction. 

The COMPARE element also has another form 
in which either control output # 3 or # 5 is de­
signed as "unconnected." Output # 4 then be­
comes a "greater than or equal to" output. In this 
form an output at #4 will be produced when 
M2 ::::::,. M6. Since such simple variants of an ele­
ment are distinguishable in the diagram by the 
status of specific optional connections, the same 
basic element can be used for several closely re­
lated functions without ambiguity. 

The READ FILE element has the function of 
extracting one or a series of data words from an 
array or file in memory. In its fully connected form 
it is designed to operate in a circuit "loop," ex­
tracting one word of a sequence at each turn until 
the file is empty. If the stepping control input at 
connection # 5 is designated as unconnected, the 
READ FILE element will extract a single data 
word from the file location designated by the input 
at connection #2. 

In the fully connected form of the READ FILE 
element, the input required to generate the code is 
the control input at connection # 6. When this 
input arrives, the element reads out the data word 
located at the address indicated by the initial 
value, n, of the index, i.e. the number of items in 
the file to be read out, which has been stored 
previously at the data input at connection # 2. 

9 



After the extracted word has been processed, 
a "stepping" control pulse is received at connec­
tion # 5. This input causes the index to step to 
the next word on the list. If the incremented value 
of the index shows that no words remain, a con­
trol output appears at connection # 3. If not, the 
next word is read out at connection # 4, initiating 
the next cycle of the loop. 

The translation of the READ FILE element 
into assembly language is written in a single 
sequence of instructions as soon as the first word 
is read out. The differentiation between the initial 
and stepping modes is done by the use of labels 
which indicate the entry points for the two modes. 

The code for the READ FILE element is shown 
below in its generalized form on the left and in 
DDP-516 assembly code on the right. The "IRS" 
instruction in the 516 code stands for "increment, 
replace, and skip" and has the function of incre­
menting the contents of the indicated memory 
location by one and skipping the next instruction 
if the result is zero. "SKP" is an unconditional 
skip instruction. The significance of the other in­
structions is obvious. 

1. M5: Increment M2 RF5: IRS RF2 
SKP 

2. Jump to M3 if M2 = 0 JMP RF3 
3. M6: Load M2 into XR RF6: LDX RF2 
4. Load Ml , X into AR LDA RFl, 1 

M5 is the label of the jump instruction which 
provides the gating input to connection # 5. M6 
is the label corresponding to the readout of the 
first word on the list. Thus an instruction calling 
for a jump to M6 would result in the execution of 
instructions 3 and 4, and eventual return to the 
loop at instruction 1. Ml, X stands for the X'th 
entry in the file whose base address is in Ml, and 
where X is the contents of the index register. 

The DATA SPLIT element routes a data signal 
from one element to as many as five other circuit 
elements. The data input is temporarily stored by 
the code: 

1. Store AR in Ml STA DSI 

The DATA GATE is used to inhibit the flow 
of a data signal until a control signal is received. 
At that time the data input, which had been stored 
in a temporary memory location, Ml, is reloaded 
into the general register for subsequent processing. 
The corresponding code is: 

1. M2: Load Ml in AR DG2: LDA DGI 

10 

The CONTROL JUNCTION routes several 
different control outputs to a single element input. 
While it does not in general produce code, it does 
change the labels of jump instructions on the con­
nected elements. 

Data PreparatioD-The word length in most 
general-purpose computers varies between 16 and 
36 bits. The accuracy with which a given variable 
is known is seldom greater than one part in 2000, 
which requires 11 bits plus 1 bit to designate sign. 
Often the accuracy of the data requires 8 bits or 
less. Since memory capacity is often a limiting fac­
tor in the performance of a computer as a system 
element, it is frequently necessary to combine or 
"pack" two or more variables into a single data 
word to economize on memory storage and access 
time. When an operation must be performed on a 
given variable, the latter must first be extracted 
from the data word and manipulated to adjust its 
sign bit and location to put it into proper form 
for the ensuing operation. The data preparation 
usually involves several mask, shift, and comple­
ment instructions. 

In the Data Flow Circuit notation, such prep­
aration is specified as a preliminary to the opera­
tion performed by each element. The format of 
each variable is also specified as part of the circuit 
definition. The manipulations involved in data 
preparation, which represent a major portion of 
the "housekeeping" labor in programming, are 
thereafter accomplished automatically along with 
the translation of the functional operations of the 
elements in the Data Circuit. 

Application of Computer Graphics to 
the Design of Data Flow Circuits 

The second key element in the technique of 
Graphical Automatic Programming is the utilization 
of the newly available computer-driven displays 
to help the designer layout a satisfactory Data 
Flow Circuit, and at the same time store in the 
computer a complete description of the circuit as 
drawn. This latter step lays the necessary founda­
tion for automating the transformation of the 
Data Circuit directly into computer code. The net 
result is an enormous saving in time in the overall 
process of Data Flow circuit design, checkout, and 
translation. 

The development of computer graphics termi­
nals enables the engineer to use the computer 
without writing a computer program. An example 

APL Technical Digest 



of a modern graphics terminal is the mM 2250, 
which can be driven by most of the IBM 360 
computers. The display has a 10-in. x 10-in. 
cathode-ray-tube screen, a typewriter keyboard, a 
set of special control keys, and a light pen for 
direct interaction between the display and the op­
erator. The operator uses the light pen to indicate 
the point at which he wishes a line or -other symbol 
to appear, or the symbol which he wishes to select, 
erase, or otherwise operate on as he may direct 
by the keyboard. 

Graphics terminals have greatly broadened the 
utility of computers as direct aids to many human 
tasks. By enabling the operator to "talk" with 
pointers and English words rather than through an 
elaborate code, they are revolutionizing many 
tasks. For example, a computer program called 
"ECAP ," together with a graphics terminal, en­
ables an engineer to "draw" an electronic circuit 
on the face of the display, punch in the component 
values he wishes to try, and in a few moments it 
gives him the salient characteristics of the circuit. 
If these characteristics are outside the desired 
limits, the engineer can adjust component values, 
alter connections, insert or delete components, 
and get essentially instantaneous feedback of the 
effects on performance. This technique promises 
to shorten the time for circuit design drastically. 

In the graphic display program for the design 
of electronic circuits, the available components 
are first displayed at the bottom of the screen. 
They are then located in the circuit by pointing in 
tum to the desired component and then to the 
desired location on the screen with the light pen. 
The scanning beam in the display recognizes the 
location of the light pen, associates it with the 
component, and positions it accordingly. Elements 
are connected by simply pointing the pen at each 
of the terminals to be joined. 

The successful development of such a powerful 
technique for the design of electronic circuits sug­
gested that computer graphics might equally help 
accomplish direct and real-time transformation 
of Data Circuits into computer routines. The 
programming of the computer to accomplish this 
is, of course, quite different from "ECAP ," but 
the property of communication between the engi­
neer and computer by means of symbols and light 
pen is the same. 

The display of a Data Circuit is accomplished 
in the same general manner as that described 

S eptem ber - O ctober 1969 

above for conventional electronic circuits. The 
symbols used are those defined in Fig. 3 for the 
Data Circuit elements, with the appropriate char­
acter code specifying the member of the element 
class. Figure 4 shows the display of the circuit of 
Fig. 2 on the IBM 2250 terminal. 

Fig. 4-Graphic display of circuit of Fig. 2. 

The GAP graphic display program is designed 
to fulfill the following functions: 

1. To display the element symbols located by 
the designer, storing the location of all element 
connections. 

2. To display the data and control connections 
between the elements, and any special notation 
entered by the designer, including data prepara­
tion. 

3. To associate the linked elements into an 
"Interconnection Matrix." 

4. To check for any obvious errors in the dia­
gram and to signal them to the designer. 

5. To interact with the designer in the later 
stages of program generation by displaying anom­
alies or altering the circuit as directed. 

Example of the Graphical Design of a Data 
Flow Circuit-The following elementary process 
illustrates how a simple Data Flow Circuit would 
be designed. 

Data Inputs: 
1. A number of potential target returns or 

11 



"hits" have been received by a radar during sev­
eral dwells. 

2. The Amplitude, A, and Range, R, of each 
hit have been encoded into a single word A, R. 

3. The hits have been listed sequentially in a 
file. 
Data Processing: 

1. All hits whose amplitude equals or exceeds 
a certain threshold are to be retained and stored 
in another file for further processing. 

2. Other hits are to be rejected. 

The representation (If this process in a con­
vential programffier's Logic Flow Diagram is 
shown in Fig. 5. In the figure, a potential target 
return is called a "HIT," and a return exceeding 
the threshold is called a "TRK·," a mnemonic for 
"track." The diagram shows the steps required in 
indexing and the three decision branch points 
which occur when the amplitude is below the 
threshold or when either file is exhausted. 

Fig. ~Hit Sorting logic flow diagram. 

12 

The representation of this data process in Data 
Flow Circuit language can be accomplished by 
the use of three functional elements. 

1. READ FILE, to extract each hit from the 
hit entry file. 

2. COMP ARE, to select hits whose amplitude 
equals or exceeds the threshold. 

3. WRITE FILE, to enter the selected hits into 
another file for retention. 

The designer selects the READ FILE (RF) 
and WRITE FILE (WF) from the TRANSFER 
elements and positions them on the screen with 
the aid of a ~ -in. grid used during circuit assem­
bly. He positions the COMPARE (CP) element 
to qne side to provide the path for the hit selection 
logic. He then selects and locates the signal 
ROUTING elements and connects the element 
inputs and outputs with data (solid) or control 
( dashed) lines. The ROUTING elements required 
are a DATA SPLIT (DS) to route the extracted 
hit to both the COMP ARE element and the 
WRITE FILE element, and a DATA GATE 
(DG) to pass the hit for entry only if the com­
parison shows that its amplitude passes the thresh­
old. The partially completed circuit diagram is 
shown in Fig. 6a. 

The next step is to enter the arrows marking the 
input end of each connection, as well as other 
auxiliary labels and symbols (Fig. 6b). Where 
data inputs are to be stored in permanent memory 
locations, the input is indicated by a diamond with 
a symbol denoting the variable. Where a data 
input requires preparation, such as extracting the 
amplitude A from the hit word (R, A), the input 
arrow is closed into a triangle. 

In order to help him remember the data and 
control inputs to the different elements, the de­
signer may type in appropriate symbols on the 
keyboard and place them on the diagram by 
means of the light pen. In Fig. 6b the file names 
"HIT" and "TRK" are indicated on the RF and 
WF elements, the number of hits "NHT" and the 
number of empty spaces in the TRK file "JTK" 
are indicated by the abbreviations "N" and "J," 
respectively, and the threshold and amplitude con­
nections 09- the CP element are indicated by the 
symbols "T" and "A." 

Figure 6b includes a CONTROL JUNCTION 
(CJ) element and a connecting link from it to the 
WF element that are not shown in Fig. 6a. Figure 
6b also shows connections marked "EX" (Exit) 

APL Techn ical Digest 



(a) Partially completed circuit. 

(b) Completed circuit. 

Fig. 6-Sample circuit displayed on the IBM 2250 
terminal. 

to the RF and WF elements. The appearance of 
these features illustrates how the GAP graphics 
program would discover formal errors or omis­
sions by the designer in connecting the circuit 
elements. The computer examines each connec­
tion to see whether it has been assigned its proper 
function, i.e., data or control, input or output, 
and indicates omissions or incompatibilities by 
flashing or otherwise marking the connections in­
volved. The designer would correct such errors 
before initiating the transformation of the circuit 
into computer code. 

S eptember - O ctober 1969 

The data tables stored in the computer to gen­
erate the above circuit design on the 2250 could 
be converted by an automatic program into a table 
of logical connections represented by the circuit. 
A simpler approach, however, is to use the graphic 
routine initially for the sole purpose of remember­
ing graphical elements, and not their logical con­
nections. A connection within the circuit can then 
be entered by the designer after he is satisfied 
with the display by simply touching the light pen 
to each end of a link. This avoids the housekeep­
ing overhead associated with remembering 
"bends" in lines representing links, and circum­
vents the necessity of encoding logic to handle 
deletions and additions of line segments. 

Element Interconnection Matrix-The infor­
mation concerning the configuration of the 
Data Flow Circuit entered by the designer is or­
ganized by the graphics display program into a 
table which will be called the Element Intercon­
nection Matrix. The matrix for the circuit de­
scribed in Figs. 6a and 6b is shown in Table 2. 
The first three columns contain the element name, 
reference number in the circuit, and code. The 
next six numbered columns are the labels of the 
terminations of each respective connection. Each 
connection which is linked to another element in 
the circuit is labeled with the code and connection 
number of that element. For example, the entry 
"DS 1" in column 4 of row 1 means that connec­
tion # 4 of RF is linked to connection # 1 of DS. 
Since there may be several elements of a given 
type in a single circuit, in actual practice the labels 
would use the reference numbers instead of the 
element code letters. 

In the above example, the reference number 
"4" of the DS element would be used instead of 
the code letters "DS" in labeling the link. The 
matrix entries also indicate when "Data Prepare" 
operations are to be performed on data inputs or 
outputs, referring to a separate list where each 
operation is specifically defined. Such an entry is 
made in column 2 of row 2, and defined in the 
note below the matrix. 

Each connection in the matrix which is linked 
to an input and output from the circuit is desig­
nated by a label representing the respective file, 
variable, or control instruction. For example, the 
entry "NHT" in column 2 of row 1 stands for 
the data entry for the number of hits to be read 
out of the file named "HIT." These designations 

13 



TABLE 2 
ELEMENT INTERCONNECTION MATRIX 

Elements Linkages Connections 

Ref· 
Name No. Code 1 2 3 

READ 1 RF HIT NHT EXH 
FILE 

COMPARE 2 CP - DS3-P -

WRITE 3 WF DG2 JTK EXT 
FILE 

DATA 4 DS RF4 DGI CP2 
SPLIT 

DATA 5 DG DS2 WFI CP4 
GATE 

CONTROL 6 CJ RF5 CP5 WF6 
JUNCTION 

P PREPARE: MASK A 

are separately identified by the designer and 
recorded in a "Dictionary" accompanying the 
set of Data Circuits which will be combined into 
the total program. 

The last column of the matrix designated "Con­
nections" indicates the type of each connection, 
namely: 

D Data Input 
o Data Output 
C Control Input 
J Control Output 
U Unconnected 

The data in this column enable the program to 
make sure that an output always goes to an input 
and that each element has the appropriate type of 
connections. 

Transformation of Graphical into 
Logical Form 

The third key feature of Graphical Automatic 
Programming is the automatic transformation of 
the Element Interconnection Matrix, generated by 
the graphics terminal from the Data Flow Circuit, 
into the desired computer program. This requires 
the translation of the designated process repre­
sented by a two-dimensional circuit diagram into _ 
a one-dimensional sequence of computer instruc­
tions. The noteworthy facts are that this trans­
formation can be done entirely automatically and 
that the resulting program is highly efficient in 
execution time and Core usage. 

It will be recalled that in a Data Flow Circuit, as 

14 

4 5 6 1 2 3 4 5 6 

DSI CJ1 ENT D D J 0 C C 

DG3 CJ2 THR U D U J J D 

TRK - CJ3 D D J D U J 

- - - D 0 0 U U U 

- - - D 0 C U U U 

- - - J C C U U U 

opposed to an ordinary digital circuit, signals flow 
in a succession of steps, each representing the 
transfer of a signal from an output of one element 
to an input of an adjoining element. The trans­
formation of a Data Flow Circuit into an opera­
tional sequence involves putting these steps into 
an order which can be performed efficiently by 
a general-purpose computer. A remarkably sim­
ple set of rules produces a program that has high 
efficiency and is free from any evident pitfalls. 
These rules are listed in Table 3. They are divided 

TABLE 3 
CIRCUIT TRANSFORMATION RULES 

Output Sequence Priority 
1. Last Data Output 
2. Last Control Output 

Input Handling 

1. 

2. 

3. 

4. 

Element 
Type 

FUNCTIONAL 

DATA 
JUNCTION 
CONTROL 
JUNCTION 

DATA 
LOOP 

Initial Data 
Input 

Put in 
Temporary 

Store 
Jump to 

Termination 

Write 
Function 

Code 

Final Data or 
Control Input 

Write 
Function 

Code 

Change 
Termination 

of Inputs 
to that of 

Output 

APL T echnical D igest 



into "Output Sequence Priority" rules and "Input 
Handling" rules. 

The logic behind the Sequence Priority rules 
is the following: 

1. When an element produces a data output, 
this output is in a general register of the computer. 
It is more efficient to operate on this output while 
it is in a general register than to go to another 
operation, since this saves the steps of temporarily 
storing the output and later reloading it in a 
general register. Therefore, the element to which 
the output is connected is first examined to see if 
it is ready to operate. 

2. When no data outputs remain, selecting the 
latest control output insures that any internal loop 
in the circuit will be closed inside of any larger 
loop. Entry inputs to the circuit are listed at the 
beginning of the program as control outputs of 
external circuit blocks. 

The Input Handling rules are the following: 

1. For the four types of functional element 
the rules for handling inputs were described 
earlier. They state that an element is activated to 
function by the arrival of the last input, whether 
a data or control signal, and that data inputs 
arriving previously are stored until needed. 

2. The DATA JUNCTION element is equiva­
lent to an "or" gate combining several alternative 
data signal inputs into a single output. This is 
effected in computer code by a "Jump" instruc­
tion to the point in the program to which the DJ 
element is connected, thereby joining the input 
paths. 

3. The CONTROL JUNCTION element per­
forms the same function for control signals. Since 
a control output is already a "Jump" instruction, 
this element does not require writing additional 
code, and is translated simply by changing the 
termination of each junction input to the termina­
tion of the junction output. 

4. The DATA LOOP element has two data 
inputs-one direct and the other a feedback from 
the processed direct signal. Its function is to out­
put the direct signal upon its arrival, and to hold 
the feedback signal until the arrival of a control 
feedback gating signal for processing the feedback 
signal through another cycle of the loop. It is 
translated into code in a similar manner as the 
READ FILE element, which also has a direct and 
feedback mode. This is done by placing the execu-

September - O ctober 1969 

tion of the DL element in the Operational Se­
quence at the point where the direct input arrives. 
The function code is written to include both the 
direct and feedback mode with a label to identify 
the address of the "Jump" instruction from the 
feedback path. 

Transformation of a Data Flow Circuit­
The application of most of the above rules to the 
translation of a Data Circuit into computer in­
structions can be illustrated by going step by step 
through the process on the very simple circuit de­
scribed in the previous section. This is shown in 
Figs. 7 a, b, and c. 

Figure 7 a shows the first step in the transforma­
tion process. The process begins by tabulating 
and labeling the inputs and outputs connecting 
the circuit block to other blocks in the overall 
program. The external data inputs are: two con­
nections to files-HIT and TRK, and three data 
word inputs-the file indices NHT and JTK, and 
the threshold THR. There are three external con­
trol inputs and outputs: one enter, ENT, and 
two exits, EXH and EXT. 

It is helpful to assign a section of the computer 
program to the definition of the labels used in the 
instruction code. This section, usually called the 
"Linkage" or "Assembly" area, defines the labels 
used in referring to each external connection. The 
resulting assembly code, in DDP-516 language, 
is given in the top block at the right side of Fig. 
7a. The instruction "DAC" stands for "Declare 
Address Constant" and serves to define the labels 
used in the assembly code for the circuit in terms 
of labels for variables and files defined for the 
overall program. The labels used for all memory 
locations are defined in terms of the element con­
nections, as used in the Element Interconnection 
Matrix. 

The Linkage section will later be used to con­
nect the circuit block to others in the program. 
Other circuit blocks may be in a different section 
of the computer memory, and in the DDP-516 
have to be addressed by the "indirect" memory 
address mode. An asterisk is used to indicate in­
direct addressing. 

The listing of the external connections in the 
Linkage section produces one control output, 
namely from the Enter symbol to RF6. This and 
other outputs are listed in Fig. 7a at the right of 
the instruction block. 

The first link to be made in the circuit is the 

15 



16 

ENT~~Hl 
:-------~$~ EXH 

: THR A 
1 
1 

A 
CJ :---

1 
I 
1 
1 
I 
1 L ________ _ 

WF 
-~EXT 

a LINK 1 
TRK 

b 

C 

,..---------- 5 
I 
I 

: THR 
I 
I 

~ 
CJ ~-- 5 3 

12 CD 4 

I 
I 
I 
I 
I 
I L _________ _ 

HIT 

3 -{> EXH 

JTK 

WF 
tEXT 3 

LINKS 2 to 7 
TRK 

HIT 

ENT ~-

,..--------- 5 

1 
1 
I THR @: 
~ CJ 1---
31 

I 
1 
I 
I 
I JTK L _________ 6 

CD WF 
3 -~ EXT 

LINKS 8 to 11 TRK CD 

LABEL 
RFl 
WF4 
RF2 
WF2 
CP6 
RF3 
WF3 
RF6 

RF5 

RF6 

LABEL 
RF5 

RF6 

INSTRUCTION 
DAC HIT 
DAC TRK 
DAC NHT 
DAC JTK 
DAC THR 
DAC EXH 
DAC EXT 
DAC ENT 

IRS * RF2 
SKP 
JMP * RF3 
LDX *RF2 
LDA *RFl 

INSTRUCTION 
IRS * RF2 
SKP 
JMP * RF3 
LDX *RF2 
LDA *RFl 

OUTPUTS 

OUTPUTS 

~ :. EI} 

~ CD 
CD I I STA DSl I ~CD 

D - DS3 CD 
CD ANA CP2 

CAS *CP6 
JMP DG3 
JMP DG3 
JMP CJ2 

CD I DG3 I LDA 

CD 

® 

® 

LABEL 
RF5 

RF6 

DG3 

LDX *WF2 
STA *WF4 
IRS *WF2 
JMP * CJ2 
JMP WF3 

I NSTRUCTI ON 
IRS *RF2 
SKP 
JMP * RF3 
LDX * RF2 
LDA * RFl 
STA DSl 
ANA CP2 
CAS CP6 
JMP DG3 
JMP DG3 
JMP RF5 
LDA DSl 
LDX *WF2 
STA *WF4 
IRS *WF2 
JMP RF5 
JMP *WF3 

OUTPUTS 

£. :.~i CD 
~ :.'{!F.HD 

CP2 DEC MKA I ~ :. Bf2. ® 

APL Technical Digest 



connection of the above output to the READ 
FILE element. Since the index data input is al­
ready available in the Linkage, the RF element 
functions when the control input RF6 arrives. 
This step results in the following set of operations 
which transforms the circuit into computer code: 

1. Write code for RF element in its gated form. 
List data output RF4. 
List control output RF3. 

In accordance with the priority rules, the last 
data output, RF4, is chosen as link 2, the next 
step in the transformation. This and the subse­
quent five steps in the transformation of the circuit 
are illustrated in Fig. 7b. The number of each 
output selected, the corresponding link formed 
in the circuit, and the resulting block of code are 
shown by a circled number. The Linkage section 
of code is not repeated, for the sake of brevity. 

The arrival of the data input to the DATA 
SPLIT element in this step is sufficient to cause it 
to function. This stores the input temporarily 
and produces two data outputs. The transforma­
tion results in the following operations: 

2. Write code for DS element. 
List data output DS2. 
List data output DS3. 

The last data output from Step 2 is DS3, and it 
is chosen as Step 3 in the transformation. This 
completes the inputs required for the COMPARE 
element to function, and results in the operations: 

3. Prepare input CP2. 
Write code for CP element. 
List control output CP4. 
List control output CP5. 

The data input to CP has to be prepared by ex­
tracting the amplitude, A. This is accomplished 
by a logical "and" (ANA) masking operation, 
which is included in the first instruction of the 
block of code written for the CP element. 

According to the priority rules, the remaining 
data output, DS2, is operated on before the con­
trol outputs are. This becomes Step 4 in the trans­
formation sequence. In order to function, the 
DATA GATE element requires the presence of 
the control input as well as the data input. Since 
the former has not yet arrived and the latter is 
already stored in a temporary location, DS 1, the 
completion of link 4 does not result in any code 
but merely the entry of the temporary store label 

September - October 1969 

DS 1 into the input of the DG element, and hence 
the operation: 

4. Change label on DGI to DSI. 

At this point we note the distinction between a 
true electronic circuit and a GAP circuit. In an 
electronic circuit, signals in lines emanating from 
a branch are processed in parallel, whereas in 
most computers only one branch can be executed 
at a time. In GAP, a DATA SPLIT automatically 
stores the input as it arrives, then processes one 
branch, and later processes the other branches. 
The order of execution of elements connected to 
the branches of a DATA SPLIT is controlled by 
use of gates either on the elements themselves or, 
as in the sample circuit, by the use of the DATA 
GATE routing element. This element is used here 
so that the code for the COMPARE function will 
be written before the code for the WRITE FILE 
element. 

The next output in priority is the last control 
output, CP5, and hence initiates Step 5. This out­
put provides one of the two necessary inputs to 
the CONTROL JUNCTION element and results 
in no code. 

Output CP4, Step 6, completes the required 
inputs to the DATA GATE. This step results in 
the operations: 

6. Write code for DG element. 
List data output DG2. 

Step 7 is to link data output DG2 to WFl, 
which causes the WF element to function. This 
results in the operations shown in the last block 
in Fig. 7b: 

7. Write code for WF element. 
List control output WF3. 
List control output WF6. 

The final figure of the series, 7 c, shows the 
completion of the last four links in the circuit. 
Output WF6 causes the CJ element to function. 
The functioning of the CJ element completes the 
link to RF and simply changes the labels on the 
control outputs CP5 and WF6 from CJ2 and 
CJ3 to RF5. The remaining links do not write 
additional code since the exit connections were 
already included in the linkage section. 

The last step is to define the label CP2 in the 
code for the CP element as the mask for extracting 
the amplitude A. This is done in the final assembly 
instruction in Fig. 7c. The notation DEC stands 

17 



for a decimal number. MKA stands for a number 
which, when translated into binary code, forms 
the mask for extracting A. 

Element Operational Sequence-In Fig. 7 
the Data Circuit was transformed directly into 
computer assembly code. In actual practice it is 
useful to divide this process into two steps. 

1. Transformation of the Element Interconnec­
tion Matrix into an Operational Sequence. 

2. Compilation of the Operational Sequence 
into Computer Code. 

The first step is the really fundamental one, 
since it converts the two-dimensional matrix into 
a one-dimensional sequence. This is done by 
following the priority order of the circuit trans­
formation rules. During this process some of the 
signal routing elements effectively disappear after 
establishing the sequence of operation of the func­
tional elements and making direct interconnections 
among the functional elements themselves. 

The result of this first step for the example dis­
cussed above is shown in Table 4. Comparing 
this table with Table 2 shows that the control junc­
tion has disappeared, and the connections are 
made directly between the functional elements to 
which it had been connected. The sequence of 
operations is given by the numbers in the third 
column. 

The significance of the entries under each con­
nection in the Operation Sequence is the following. 
The characters at the left designate the label of 

the memory location of a data-input or of the in­
struction for a jump. The status or location of 
each input (in memory or in a register) is desig­
nated by code letters defined below the table. This 
information, together with the basic definitions of 
each element in terms of the code for a particular 
computer, is sufficient to translate the Operational 
Sequence into computer assembly code. 

The Element Operational Sequence has a form 
entirely independent of the computer for which 
the program is to be written. Thus it represents 
a set of high level or "macro" instructions, which 
can now be translated into the assembly code of 
any desired computer by a "compiler." This 
process involves a mechanical substitution of the 
code for each element in the operational sequence, 
with due regard for the mechanics of storing and 
retrieving data from temporary stores as indicated 
by the notation in the connection field, and the 
conversion of label notation to suit the format of 
the specific computer code being written. 

The compact and universal form of the Element 
Operational Sequence means that this intermediate 
step in program design can be used to check the 
program logic using any computer code, including 
the one which drives the graphics terminal, such 
as the IBM 360. Thus, compilation of the IBM 
360 version of the code enables the immediate 
on-line test of the entire logical design of the 
circuit and of its transformation into the sequence 
of operations. If this is successful, the program 
logic can be considered "debugged" for all practi-

TABLE 4 
ELEMENT OPERATIONAL SEQUENCE 

Ref 
No. Code Seq. 1 

1 RF 1 RFI/* 

2 CP 3 /U 

3 WF 5 DG2/ AM 

4 DS 2 RF4/A 

5 DG 4 RF4/ M 

Status: 

18 

* 
A 
M 

Stored in Linkage Location 
Data in general register 
Stored in Memory 

2 

RF2/* 

RF4/AMP 

WF2/* 

DGI/O 

WFI/O 

P 
L 
C 

Linkage/ Status 

3 

RF3/* 

/ U 

WF3/* 

CP2/0 

DG3/L 

Data to be prepared 
Labelled Instruction 
Control Input 

4 

DSI/O 

DG3/J 

WF4/* 

/ U 

/U 

o 
J 
U 

5 6 

RF5/L RF6/*L 

RF5/ J CP6/* 

/ U RF5/ J 

/U /U 

/U /U 

Data Output 
Control Output 
Unconnected 

APL T echnical D igest 



cal purposes, inasmuch as the conversion to the 
code for another computer involves no change in 
operational logic. This on-line debugging capa­
bility is an enormous advantage inherent in the 
use of the graphics terminal to effect direct inter­
action with the computer. 

Integration and Testing of Complex 
Programs 

A large data-processing program for a large­
scale system can be represented as a Data Flow 
Block Diagram, in which each block is an indi­
vidual Data Flow Circuit. Each Circuit Block can 
be regarded as a special "Macro" Circuit element, 
with data and control signal inputs and outputs 
connecting it to other blocks which comprise the 
total program. The integration of Data Flow 
Circuits is readily accomplished by the use of the 
graphics terminal and a special Integration Pro­
gram in a manner similar to that used in con­
structing the Data Flow Circuits. This program 
serves the purpose of a "Linkage Editor" in com­
puter terminology. 

The representation of a Data Flow Circuit as a 
Program Block is shown in Fig. 8, using the Hit 
Sorting Program as a simple example. It is seen 
that the block has 8 connections, namely 4 
data inputs, 1 data output, 1 control input, and 

RADAR TRIGGERS .--___ __ 
1 
1 DWELl 

EXEC. 

EL SCAN 
EXEC. 

- --I 
--- 1 

'--_~ I I 

HIT HIT 
FILE NUMBER 

lHIT lNHT 

ENTER ~~~8 1 

HIT EXH 
FILE EMPTY ~ --6 HSP 5~THRESHOLD 

TRACK EXT 
FILE FULLf"--7 2 

lTRK 

TRACK 
FILE 

4 

jJTK 
FILE 

INDEX 

Fig. 8-Hit Sorting Program block. 

2 control outputs. By reference to Fig. 7 a it can 
also be seen that all of these connections are em­
bodied in the Linkage Section of the code for the 
block. This section is equivalent to a terminal 
strip in a piece of electronic equipment. 

The integration of program blocks into the total 
program is simply done by drawing the program 
Block Diagram on the graphics display and mak­
ing proper connections between the individual 
blocks. In such a diagram, it is important to keep 
all files external to the processing circuits. 

An example of such a diagram is shown in Fig. 
9, which represents the Track Prediction module 
of the 3D Radar Automatic Tracking Program. 
The program blocks are represented by rectangles 

TARGET COORDINATE 
COMPUTATION 

TARGET TRACK 
PREDICTION 

Fig. 9-Track Prediction module. 

S eptem ber - O ctober 1969 19 



and the data files by squares. The block illustrated 
in Fig. 2 is near the center of the diagram. 

The very important function of synchronizing 
the operations of the program with the real-time 
schedule of radar transmission, elevation scanning, 
and rotation is accomplished by three "Executive" 
blocks supervised by a master Executive block. 
The Data Flow representation is ideally suited to 
visualize the detailed interactions between the 
high-priority, real-time functions and the support­
ing functions which may be accomplished with 
loose scheduling. 

The transformation of the Block Diagram into 
computer assembly code involves only the proper 
correlation of the block linkage labels, where all 
inputs and outputs are listed. Since the module 
is itself a "block," as seen in Fig. 10, the next 
higher level of program integration is done in 
terms of entire modules rather than blocks. In 
this wayan orderly and flexible format for the 
total program can be achieved. 

DWELL I ~-":-_-7, 
B~~~~ +-( --of 

EL SCAN I (:.-:.":_~ 
SECTOR I;:'-:"~ 

RADAR 

COORD. GATED HITS 

l _ l 

TRACK 
PREDICTION 

MODULE 

r IT 
BEARING 

ELEVATION 
RANGE 

Fig. lo--Program module. 

GATE 
NO. 

Program Dictionary-The efficient manage­
ment of the process of program design requires 
careful definition , organization, and maintenance 
of all terms used in the program. The list of these 
properties has to be assembled during the design 
process and, when complete, constitutes a basis 
for fully documenting the program and facilitating 
future changes. 

The data required for this list include the code 
names, definitions, format, constituent parts, and 
cross-references of all of the following in a Pro­
gram Dictionary: 

1. Variables and constants 
2. Data Files 

20 

3. Circuit Blocks 
4. Modules 

In addition, areas of memory must be allotted 
to store each of the above. 

Once the above terms have been defined, their 
subsequent use requires only reference by code 
name. The computer automatically looks up the 
necessary characteristics in the Program Diction­
ary. This saves a great deal of housekeeping by the 
system designer, and should eliminate a major 
source of error. 

Program Checkout-The most laborious and 
time-consuming part of programming is the elimi­
nation of errors, or "debugging." It is in this area 
that Graphical Automatic Programming is likely 
to produce the greatest benefit in program design. 
The power of this technique to facilitate the pro­
duction of a correct program stems from the fol­
lowing sources: 

1. The Data Flow Circuit representation ren­
ders the pattern of data and logic flow highly 
visible and hence eliminates many errors at the 
source. 

2. The entry of the Data Flow Circuit into the 
computer enables a virtually instantaneous check 
of any inconsistencies in the design by checking 
the Element Interconnection Matrix and monitor­
ing its transformation into computer code. 

3. The display of the circuit by the graphics 
terminal enables the designer to correct errors 
immediately by altering the circuit and verifying 
that the errors have been eliminated. 

4. The GAP technique is ideally suited to rapid 
and thorough testing of the program at any desired 
level of realism. Thus, upon completion of a con­
stituent circuit, the designer can test it by entering 
sample inputs and reading out the resulting out­
puts. He can also quickly design a test program 
in the form of another Data Circuit which would 
perform a realistic simulation of the program in­
put and automatically compare the results with 
requirements. 

A particularly important type of test that may 
be performed automatically is that of compatibility 
with real-time operation. Since the functioning of 
each element corresponds to a definite execution 
time in the computer to be employed, it is readily 
possible to have the test program simulate the 
execution time and monitor it against specified 
events. 

APL Tech nical Digest 



Design of Data Flow Circuits 
The representation of data-processing opera­

tions in the Data Flow Circuit form has turned out 
to have all of the characteristics which were 
sought for in a basic language for the program­
ming of real-time systems. For those interested 
in how a given problem is translated by the de­
signer into a Data Flow Circuit, the paragraphs be­
low illustrate how one might design the circuit 
illustrated in Fig. 2. 

The design of a particular Data Flow Circuit is 
best approached by constructing a "cause-effect 
table"-similar to a "truth table" or "decision 
matrix" in mathematical logic. This lists the possi­
ble combinations of input conditions and the cor­
responding outputs. For its application to the 
Target Coordinate Computation Circuit illustrated 
in the figure, the logic is as follows: 

1. If no prior hit exists in the target data file 
(TD4), set number of hits = 1 and store coor­
dinates of new hit in target data files (TD4, TD5). 

2. If previous hit exists, but does not coincide 
in range with new hit, exit to multiple target 
routine. 

3. If previous hit correlates in range, increment 
number of hits, store target coordinates of strong­
est hit. 

This leads to the following cause-effect table 
in which A is amplitude, 6R is range increment 
within the gate, B is bearing, E is elevation. 

From the cause-effect table it is evident that 
the following functional elements will be required. 

1. READ FILE (RF) and WRITE FILE 

September - October 1969 

Conditions (Cause) 

Previous entry in TD4, 
(A, ~R) 

~R of hit correlates with 
previous entry 

Amplitude of hit compared 
to previous entry 

Actions (Effect) 

Number of hits 

Store in file TD4, 
(N, A, ~R) 

Store in file TD5, 
(B, E) 

Other 

None 

Set = 1 

New hit 

New hit 

(WF) elements to read out data on new hits, 
previous entry, and to store updated coordinates. 

2. CORRELATE (CR) element to check 
range correlation. 

3. COMPARE (CP) element to compare 
amplitude of new and previous hit. 

4. ADD (+) elements to increment the num­
ber of hits. 

5. AVERAGE (AV) elements to combine 
bearing and elevation for hits of equal amplitude. 

The table also helps to arrange these operations 
in an efficient order in the circuit. It is evident, 
for example, that the range correlation check 
should be made before amplitude comparison. 

With the aid of this type of logical organization, 
the layout of a Data Circuit such as the one shown 
in Fig. 2 follows quite readily. The representation 
is intuitively easy to use by engineers, and makes 
it relatively simple to configure the routing ele­
ments to minimize the total number of instruc­
tions. For example, convergence of the data paths 
before storage of the updated coordinates is an 
obvious saving in code. This type of optimization 
is made much more visible by the Data Circuit 
representation than by the conventional sequential 
logic approach. 

The Data Circuit language thus makes it possi­
ble for an engineer to design the data flow process, 
in a form with which he is intuitively familiar, to 
achieve the best balance between operational re­
quirements on accuracy, capacity, and timing 
within the limitations of available computer speed 
and size. The language is also directly interpretable 
by a programmer, so that even without the auto­
matic features it bridges the communication gap 

Yes Yes Yes Yes 

No Yes Yes Yes 

Greater Equal Less 

Add 1 Add 1 Add 1 

New hit Previous Previous 
hit hit 

New hit Average 

Exit 

21 



which currently represents one of the greatest 
impediments to the economical design of system 
"software. " 

Acknowledgment 
In seeking to make the subject of this paper 

clear to all readers with a possible interest in its 
application, I obtained many valuable suggestions 
from R. P . Rich, W. H. Guier, W. N. Sweet, and 
J. R. Austin, which I gratefully acknowledge. 
R. R. Newton was particularly helpful in this regard. 
I wish also to acknowledge the help of D. M. 
White, who has been the first to actually use Data 
Circuits for designing SIMFAR-a major radar 
simulation program, and therefore has been iri a 
position to demonstrate the utility of this concept. 
W. T. Pullin contributed his expert knowledge of 
computer graphics to the design of GAP symbols, 
with the result that they are both visually clear and 
easy to generate. W. T. Pullin and S. E. Anderson 

WITH 

A. KossiakofJ, author of "Graphi­
cal Automatic Programming," is the 
Director of the Applied Physics 
Laboratory. Dr. Kossiakoff received 
a B.S. degree in chemistry from 
California Institute of Technology 
in 1936, a Ph. D. degree in chemis­
try from The Johns Hopkins Uni­
versity in 1938, and then spent a 
year as a post doctoral fellow at 
California Institute of Technology. 
He taught at The Catholic University 
of America (1939-42) , then served 
with O.S.R.D., and was Deputy Di­
rector of Research at the Allegany 
Ballistics Laboratory, Cumberland, 
Maryland from 1944 to 1946. 

THE 

have developed a program for displaying GAP 
circuits on the IBM 2250 terminal. 

I should like most particularly to acknowledge 
the very significant contribution of Lee Hoevel to 
the development of the Graphical Automatic Pro­
gramming concept. This very appropriate name 
and its acronym, GAP, are his ideas. As an expert 
programmer, he provided the first authoritative 
confirmation that the transformation of a Data 
Circuit to a computer program could in fact . be 
carried out unambiguously and could produce 
efficient code. He has given much time after work­
ing hours to critical discussions of every aspect of 
the design of the language and to its presentation 
in this paper. Working with him has been a most 
enjoyable experience, and I look forward to col­
laborating with him in the further development 
and implementation of the Graphical Automatic 
Programming technique. 

AUTHOR 

siakoff has been awarded the Pres­
idential Certificate of Merit and the 
Navy's Distinguished Public Service 
Award. 

Dr. Kossiakoff joined the Applied 
Physics Laboratory in 1946, and 
served as head of the Launching 
Group until 1948, when he was ap­
pointed Assistant Director. He be­
came Associate Director in 1961 , 
Deputy Director in 1966, and was 
appointed Director on July 1, 1969, 
when Dr. R. E. Gibson retired as 
Director of the Laboratory. 

Dr. Kossiakoff has made impor­
tant contributions to the develop­
ment of advanced weapons systems 

for the U .S. Navy, particularly in 
the design and implementation of 
guided-missile defenses for the fleet. 
From 1948 to 1951 he served as 
Chairman of the Panel on Launch­
ing and Handling of the Department 
of Defense Research and Develop­
ment Board. In recognition of his 
work on national defense, Dr. Kos-

Dr. Kossiakoff has been involved 
in systems engineering for many 
years. About two years ago he de­
cided to learn the details of com­
puter programming in order to get 
a better assessment of the problems 
involved in their rapidly growing 
applications to the automation of 
complex systems. He found this field 
so interesting that he devoted a 
good deal of his spare time to the 
design of a computer program for 
the automatic detection and tracking 
of aircraft by a three-dimensional 
radar. The ideas discussed in this 
paper stemmed from his experience 
with the difficulties of using exist­
ing techniques for the application of 
computers to complex real-time 
systems. 

Dr. Kossiakoff is a member of the 
American Chemical Society, Ameri­
can Association for the Advance­
ment of Science, The Philosophical 
Society of Washington, and the 
Cosmos Club. 

22 .-\PL T echnical Digest 


