
Normal , healthy cornea is a specialized kind of 
tissue that performs several functions . For 

example , (see Fig. 1) it is a part of the wall of the 
eye, and must therefore possess the mechanica l 
strength necessa ry to resist the intraocular pressure. 
It is the window of the eye, so that it must be 
transparent. Its outer surface is curved to provide 
most of the eye's optical focusing power, (2 ~ times 
that of the lens of the eye ). Further, the cornea 
sustains its properties throughout life , being 
permeable to fluids in such a way that the waste 
products of metabolism continually pass outward 
from it while new metabolic fuel continually passes 
into it. In this connection, it exhibits a pronounced 
tendency to swell by taking in fluid and, as it swells, 
it becomes less transparent. 

The behavior of the cornea is necessaril y deter­
mined by its molecular structure. Thus , the organ­
ization of the macromolecules within the cornea, 
and the dependence of its phys iological properties 
on that structure pose problems of considerable 
interest and importance to a basic understanding of 
the behavior of healthy cornea and the causes and 
possible cure or control of diseased cornea. The 
problems are sufficiently complex, however, that 
experimental studies have not satisfactorily solved 
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these problems, and no phys iomathemat ical theory 
that might elucidate them has heretofore been 
forthcoming. 

The prese nt study deal s with the formulation of a 
structural model of the major portion of cornea. 
namely the stroma, which comprises about 90 % o/" 
the thickness and to a large extent determines many 
corneal properties . The model is necessarily some­
what speculative because of the incompleteness of 
our knowledge, and no doubt will be improved upon 

Fig. I-Schematic diagram of the eye. 
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The physical basis of corneal microstructure is investigated 
theoretically in an attempt to understand important 
physiological properties of the cornea. First, the basis for 
the optical transparency of the cornea is studied in terms 
of the molecular structure revealed by electron microscopy, 
which shows a quasi-ordered arrangement of collagen fibrils, 
with correlation extending over separation distances of the 
order of a few thousand angstroms. It is shown that the 
quasi-ordered structure is consistent with transparency, whereas 
a totally disordered structure is not. Second, the nature of 
the intermolecular forces that can be responsible for such 
spatially extensive order is discussed, and a theoretical 
molecular model is formulated. Analysis of the model leads to 
a theoretically derived structure approximating that shown by 
electron microscopy. Finally, the swelling behavior of the 
cornea is considered briefly in terms of the model. 

a s more information becomes a va il a ble. Eve n in it s 
present form , however, it is suffi cientl y represe n­
tative of the stroma to permit ca lcul a tion a nd 
eluc ida tion of the structura l bas is of se\·e ra l 
properties. Thus, it co nstitutes a n im po rta nt fi rst 
step toward the develop ment of a m ore fundame nta l 
understa nding of the p hys iolog ica l beha \·ior of the 
cornea. 

Structure of the StroDla a s 
Revealed B y Electron Microscopy 

Com parison of electron mic rogra phs of the tra ns­
pa rent cornea a nd the surroundi ng opaque sclera 
reveals a m a rked difference in the s ize a nd uniform ­
ity of the collage n fibril s ( Fi ~. 2 ). The cornea l 
strom a is m ade up of a la rge number of stac ked 

Fig. 2(a)-The collagen fibrils of the cornea of an adult rabbit. Scatte r ed throughout the s troma and lying 
b e twee.i the lame llae a re the s tromal ce lls, of which a portion is seen. 

(b)-The collagen fibril s of the scle ra take n from the same eye. The axial p e riodicity of ,......, 700 A in the 
collage n fibril is seen clearly in the scle ra but not in the stroma. The section was s tained with uranyl 
a cetate and lead cit r a t e . The mag nifications of the t wo sect ions a re the same ; the inte rfibrillar center-to­
cente r s pac ing in the s troma is ,......, 600 A. 

J an uary - February 1969 3 



sheets (i.e. , lamellae ) of more or less uniform 
thickness ("'- 1 OJ-L ). Lying within each of the lamellae 
are long cylindrical fibrils whose axes are very 
nearly parallel to each other and to the anterior 
and posterior surfaces of the stroma . Between the 
lamellae lie the stromal cells forming a framework 
in which the processes of individual cells inter­
connect by means of special points of contact. The 
collagen fibrils of the sclera are significantly larger 
than those in the cornea and the typical band 
pattern which reflects the uniform sequence of the 
constituent amino acids is clearly seen (Fig. 2 (b) ). 
The fibrils display little uniformity In either 
diameter or distribution and the rare supporting 
cell appears scattered randomly throughout the 
tissue . 

The ability of the cornea to support the tension 
caused by the intraocular pressure is generally 
believed to follow from the mechanical strength of 
the collagen fibrils. These fibrils run through the 
stroma much like steel reinforcing rods through 
concrete, and are anchored in the surrounding 
tissue of the eye wall. Their existence poses certain 
problems with respect to transparency, however, 
because their index of refraction differs from that of 
the surrounding medium (the "ground substance" ) , 
so that they must scatter light. We shall examine 
this question in more detail shortly. 

First however, we note that the distribution of 
these fibrils about each other is of special impor­
tance because it reflects the nature of the forces 
exerted between the collagen fibrils. A quantitative 
description of this distribution is provided by the so-
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Fig. 3-Histogram of the radial distribution function 
of a central region of Fig. 2, as obtained by determining 
the ratio of local to bulk number densities of fibrils 
as a function of the radial distance from the middle of 
the reference fibril, (using 700 reference centers). 
(From Ref. 3) 
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called radial distribution function. g(r), defined as 
the average local number density of fibril centers at 
a distance r from an arbitrary center to the average 
(bulk ) number densit y of fibril centers . The radial 
distribution function obtained by analysis of the 
electron micrograph is shown by Fig. 3. If there 
were no forces of interaction bet'v\een the fibrils they 
would be distributed randoml y. a nd g(r) would be 
unity for all values of r (except r = 0); the extent 
to which g( r) diflers from unit y at any distance 
indicates some degree of loca l order persisting to 
that distance. Thus, the radia l distribution function 
reveals information concernin ~ the interfibril forces 
and , to the extent that the electron micrographs are 
valid, provides the basis for one of the first tests 
of any theoretica l model of the microstructure of 
the stroma. 

It is importa nt to re'co~ ni ze, however, that the 
va lidit y of the stru ct ure as revea led by the electron 
microscope is questionable . This follows from the 
fact that , in order to obtain the electron micro­
graphs , the stromal tissue is first infused with an 
electron dense ' substance in order to achieve 
contrast, then pickled , in order to preserve it , and 
finally saturated by a liquid plastic which then 
solidifies and provides dimensional stability for 
slicing into thin sections. Thus , it is difficult to 
determine how accurately the observed spatial 
distribution of fibrils reHects the actual distribution . 

In order to investigate this question, we note that 
the transmission of light through the cornea will 
depend on the spatial distribution of the collagen 
fibrils. Thus , an indication that the radial distribu­
tion function obtained from the electron micrograph 
is at least approximately valid can be obtained if 
the calculated light transmission from that distribu­
tion is in close agreement with the measured 
transmission through freshl y excised cornea. 

Light Scattering in the Stroma 
It is quite evident that an array of cylinders such 

as that shown in Fig. 2 will , in general , scatter light. 
In order that the cornea be essentially transparent , 
it is necessary that relatively little light be scattered 
out of the incident beam. How much light is 
scattered by each cylinder depends on its diameter 
and on how much the index of refraction of the 
cylinder differs from that of the ground substance ; 
the total amount of light scattered in any direction 
depends on the extent to which the scattering from 
the individual cylinders interferes constructively or 
destructively in that direction. This , in turn is 
determined by the optical path lengths , and thus 
by the spatial distribution of fibrils about each 
other. If, for example , the spatial arrangement were 
crystalline, destructive interference would be 
essentially complete for all angles except for that of 
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the incident beam. In this event , the stroma would 
be perfectl y tra nspa rent. If, on the other ha nd , the 
fibrils were distr ibuted purely a t ra ndom , the optical 
path lengths- the dista nce from source to sca tterer 
to detector-would a lso be distributed purely at 
random (e xce pt in the direct ion of the incident 
beam ), so tha t the individua l scattered field s would 
add with ra ndom phase. i.e ., incoherentl y. This 
possibility \A aS in vest iga ted a number of yea rs ago 
by ~ laurice . v\·ho sho\o\'ed tha t more tha n 90 % of 
the incident li ~ht would be scattered in travers ing 
the cornea if the fibrils were distributed purely at 
random. Thus we see th a t the transparency of the 
co rnea must indeed depend in a rather sensitive 
fas hion on the spatial distribution of the collagen 
fibril s. I n fact. one exp lanat ion of transpa rency has 
ass umed that the fibril s a re a rra nged in a cry ta lline 
arra y. a nd this " 'ould imply that the randomness 
shown by the electron micrographs is sp urious, 
bein~ introduced by the fixation process . 

However, since the spatial distribution shown by 
an electron micrograph is obviousl y not purely 
random, it is not legitimate to abandon it merely 
on this basis. Rather, it is necessary to calculate 
the scattering that would result from the observed 
distribution and see whether it is or is not consistent 
with the observed transparency of the cornea. 

We have carried through the necessary theory, as 
described in detail in another publication. I The 
general nature of the theoretical analysis consists 
in first obtaining the solution of Maxwell 's equa­
tions for the electromagnetic field arising from the 
presence of a single cylinder (e.g., fibril) illuminated 
by an incident plane wave, and then summing the 
individual fields arising from the many cylinders 
whose spatial distribution is characterized by g(r). 

Figure 4 is illustrative of the degree of correspon­
dence between experimentally measured and 
theoretically calculated transmission vs. wavelength 
curves for rabbit cornea. (The theoretical results 
are only semiquantitative except at a wavelength of 
5000 A, because the index of refraction of the 
fibrils has been measured only at this wavelength, 
and was held constant at that value for the 
calculations.) Since the behavior of g(r) was found 
to vary somewhat from cornea to cornea and from 
one local region to another within the same cornea, 
some variation also was found in theoretical curves . 
Data analysis indicates that a major source of the 
variability derives from some inhomogeneity in the 
electron micrographs. Part of this inhomogeneity 
may be real and part may be a fixation artifact , 
but in any case its effects on light transmission 
were not large , and in no case yet investigated 

1 R . W . Hart and R . A. Farrell , " Light Scattering in the Cornea," to 
appear in]. Opt. Soc. Am. (in press ). 
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Fig. 4-Theoretically calculated light transmission 
through the stromal region of the cornea (smooth 
curve) compared with experimental data from two 
freshly excised rabbit corneas, (from Ref. 1). 

(3 corneas , 7 regions ) was the calculated trans­
mission at A = 5000 A less than that shown on Fig. 4. 
Thus, we have developed a new theory of light 
scattering in the stroma, and shown that , at least 
with respect to the fibrils , the quasi-ordered-quasi­
random structure revealed by the electron micro­
graphs may indeed be a reasonable approximation 
to the actual structure. 

A Model of Stroma 
Accepting. therefore, the hypot hes is that the 

fibrils of stroma are distributed more or less as 
shown by the radial distribution function obtained 
from electron micrographs , we were led to consider 
the question of how that distribution arises. In 
order to answer this question, we constructed a 
theoretical macromolecular model for which the 
radial distribution can be calculated. 2 , 3 

GENERAL ApPRoAcH- The techniques of statistical 
mechanics provide a mathematical formalism for 
calculating the radial distribution function of a 
system of particles when the force laws character­
izing the inter-particle forces are known. As will 
be discussed , there is a considerable body of more 
or less indirect experimental evidence suggesting 
that the collagen fibrils of stroma are held together 
by mucopolysaccharide polymeric chains extending 
between and fastened to them. The essential 
mechanical properties of such chains are known 
from polymer theory in terms of parameters whose 

2M. E. Langham, R. W. Hart , and J. Cox, " The Interaction of Collagen 
and Mucopolysaccharides," to appear in The Cornea, M . E. Langham, Ed., 
The Johns Hopkins Press, Baltimore, 1969 (in press ). 

3R. A. Farrell and R . W. Hart , " On the Spatial Organization of Macro­
molecules in the Cornea," (to be published) . 
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values can be inferred , at least approximately, 
from related experimental studies. Accordingly, we 
have been led to model the stroma in terms of a 
network of chains , and compare the theoretically 
calculated radial distribution function with that 
obtained experimentally from the electron micro­
graph. 

The mathematical formulation is via the canonical 
ensemble of Gibbs , wherein the likelihood of finding 
a thermodynamic system in any arbitrary configura­
tion is expressed in terms of the number of ways the 
configuration can arise , weighted by the Boltzmann 
factor containing the energy associated with that 
configuration. The theoretical (two-dimensional) 
radial distribution function is found by integrating 
the Gibbs phase function over all possible configura­
tions for which a fibril center lies in the interval dr at 
a distance r with respect to a reference center r=O , 
(and dividing by the average number of fibril 
centers in that interval) , subject to the constraint 
specifying the bulk number density of fibrils . 

As will be described , rather good agreement has 
been obtained for network topologies similar to 
those found in other connective tissues , using 
parameter values that are thought to be representa­
tive of stroma. Thus far , the central result is that 
the observed spatial distribution of collagen fibrils 
can be explained, at least semiquantitatively, in 
terms of a theoretical model in which the fibrils 
are held together by polymeric chains extending 
between them. The detailed topology of the chain­
fibril connections remains partially open, however , 
and probably will be determined ultimately only by 
new and improved techniques . 

THE ORIGIN OF THE FORCES BETWEEN FIBRILS­
In order to carry through this approach, it is 
necessary to define a theoretical model of the stroma 
for which the configurational energy can be formu­
lated. Thus, the initial question concerns the nature 
of the interfibril forces that determine the configura­
tional energy, and that must be responsible for a 
significant degree of order extending over distances 
of more than a thousand angstroms. These forces 
are not likely to be primarily the usual van der 
Waals forces between the fibrils , which have ranges 
of the order of only a few angstroms. Further, the 
forces between the fibrils are not likely to be primarily 
electrostatic forces , which have a range (i.e ., a 
Debye shielding length) of less than about loA in 
an electrolyte of ionic strength '"'-' 0.15 N , such as 
that of normal stroma. As discussed, 2.3 the essential 
clue may be found in the fact that many properties 
of the stroma depend sensitively on the muco­
polysaccharide constituent of the ground substance, 
which may be regarded as the "glue " that holds the 
stroma together. These molecules exist , typically, in 
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the form of linear polymeric chains, and are known 
to bond to collagen, so that the forces associated 
with the stretching of polymeric chains of muco­
polysaccharide or with mucopolysaccharide constit­
uent , would provide long range interfibril forces . 

THE CONFIGURATIONAL ENERGy-Recalling that 
we must formulate the configurational energy of 
the stroma, it is evident that we are faced with two 
main kinds of problem. The first concerns specifica­
tion of the mechanical behavior of an individual 
chain, and the second concerns the geometrical 
layout of the chain-fibril connections. We shall 
discuss these two problems in turn . 

The first problem demands an expression for the 
configurational free energy of a polymer chain in 
terms of the end-to-end length of the chain. In 
polymer theory, this free energy is usually repre­
sented as the sum of two components . The first 
is the free energy in the absence of monomer­
solvent and long-range monomer-monomer inter­
actions. It is the free energy of a " phantom " chain, 
and is easily calculated. The second term, the so­
called free energy of mixing, corrects for the neglect 
of these interactions . Its relative importance depends 
especially on the monomer-solvent interaction, and 
thus on the nature of the solution in which the 
cornea is immersed, and is very difficult to estimate 
on the basis of existing information. If the excised 
cornea is immersed in a " good solvent , " the free 
energy of mixing will be of major importance, 
tending to cause the cornea to swell to a sufficiently 
large volume until tension in the collagen fibrils and 
in the phantom chains results in a net force balance. 
If the cornea is immersed in a rather " poor solvent , " 
the free energy of mixing is relatively small. In the 
present theory, where we are concerned with the 
radial distribution function of the electron micro­
graph, we shall assume that the final fixation bath 
is a sufficiently poor solvent so that free energy of 
mixing is negligible. This assumption is more or less 
arbitrary , although the fact that the baths of the 
fixation process are so chosen that the cornea main­
tains itself at essentially constant volume suggests 
that our neglect of the free energy of mixing may 
not be very serious in the present case . 

The relationship between the stretching force and 
the length of a phantom chain is known from studies 
of other polymers (such as rubber ), where it has 
been shown that in this respect a phantom chain is 
like an ideal spring with the stretching force being 
proportional to the distance from one end of the 
chain to the other, i.e. , F = -Kh) where K is the 
" spring constant " and h is the chain length. 4 Thus , 

4H . Yi . James , " Statistical Properties of Networks of Flexible Chains," 
J. Chern. Phys . 15 , 1947, 651 - 668 . 
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the configurational energy to be associated with the 
j-th chain is 

<Pj = } Ky' hj', (1 ) 

where Ky' is the spring constant and hj is the length of 
the j-th chain. We shall assume for our model that 
all of the chains have identical spring constants , 
recognizing that this assumption no doubt assigns 
to the model somewhat less randomness than is 
actually present in the stroma. As a result of this , 
and other idealizations to be discussed subsequently , 
the theoretical radial distribution function will no 
doubt exhibit somewhat greater order in the fibril 
arrangement than does the experimental one . 

It will be recalled that the spring constant of a 
phantom chain 4 is given by 

3kT K= --- , 
(h0

2 ) 

where k is Boltzmann 's constant , T is temperature, 
and (h0

2 ) is the root mean square (end-to-end) 
length that the chain would have if its ends were 
free . Its order of magnitude may be estimated from 
the results of viscos it y measurements of free chains 
of free mucopol ysaccharides in bovine cartilage. 
When the stroma is dena tured by extraction of its 
major mucopol ysaccharide constituents , two major 
components are found . One of these (chondroitin 
sulfate ) is found to have a molecular weight of 

4 X 104 and the other (keratan sulfate ) is 
found to have a molecular weight of '"'--' 2 X 104 . 

Measurements of the viscosity of free chondroitin 
sulfate chains of molecular weight of '"'--' 5 X 104 

(obtained from bovine ca rtilage ) correspond to a 
root-mean-square end-to-end distance of '""-- 250 A, 
so that the value of Vfh;!) characterizing the 
stromal chains is presumed to be comparable to 
250 A. There is , of course, considerable uncertainty 
in this estimate, especially because the chains in 
natural stroma may well have a protein as well as 
a mucopolysaccharide constituent. 

To complete the formulation of the configurational 
energy of the network , it is necessary to consider the 
configurational energy associated with stretching 
the fibrils . For this purpose , each fibril is thought 
of as being divided into a large number of segments 
whose lengths equal the axial distance between chain 
connection points . Each connection point may, if we 
like, be thought of as a " molecule ," each interacting 
with other " molecules " to which it is paired by 
virtue of be~ng connected by chains or segments. 
The segments are assumed to be identical. (This 
assumption, like the assumption of identical chains, 
no doubt introduces somewhat less randomness into 
the model than act uall y exists in stroma.) Since a 
collagen fibril is made up of a complex of polymeric 
chains , the pair-potential associated with the 
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stretching of a segment is assumed to depend on the 
distance between its ends . It is not necessary, 
however, to specify the precise functional form of 
this dependence . Rather, the pair-potential associ­
ated with the stretching of segments is as£umed to 
be a general function of the distance between the 
endpoints. This function is expanded in a Taylor 's 
series about the most probable free length, and the 
relevant coefficients are evaluated in terms of K on 
the assumption that the tissue is in stress-strain 
equilibrium at constant volume under the influence 
of no external forces . 

TOPOLOGY OF CHAIN-FIBRIL CONNECTIONs-In 

order to evaluate the radial distribution function 
characterizing the distribution of the fibrils , it is 
necessary to relate the chain lengths (i.e., the hj's) 
to the separation distances between fibrils . For this 
purpose, we must specify the topology of the chain­
fibril connections. 

Perhaps the first question that arises concerns 
how many chains should be assumed to connect 
to the end of each fibril segment. Although we have 
investigated other possibilities , the assumption that 
six chains terminate on each fibril segment leads to 
the best agreement between the theoretical and the 
experimental radial distribution functions , as will be 
discussed later. It will be noted that the symmetry 
of this topology implies that the minimum energy 
configuration will be that of a centered-hexagonal 
lattice, such as is found in other connective tissue, 

Fig. 5-The lattice-like disposition of fibrils in frog 
muscle, (from Ref. 5), showing the thick fibrils to be 
arranged in a somewhat disordered centered-hexagonal 
array. (Published by pe rmiss ion of Prof. H. E. Huxlt,y.) 

; H . E. Huxley, " The Mechanism of Muscle Contraction," Scientific Amer­
ican 213, December 1965, 18-27 . 
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Fig. 6-The lattice-like disposition of collagen fibrils in 
Descemet's membrane of bovine cornea, (from Ref. 6), 
showing the collagen fibrils to be arranged in a some­
what disordered centered-hexagonal array. Here, 
macromolecular bridges between most fibrils are clearly 
visible, six bridges extending from each fibril to 
neighboring fibrils. (Published by permission of Dr. 
Marie A. Jakus.) 

e.g., in muscle (Fig. 5) and in Descemet's membrane 
of the cornea (Fig. 6) . 

We must now consider whether the chains extend 
directly from one collagen fibril to another, or 
whether the connection is acc.omplished through the 
intermediary of a noncollagenous protein core, as 
has been observed in certain other connective tissue. 
In particular, in bovine cartilage (~nd ~lso. in 
muscle ) there are believed to be long thm cylmdncal 
protein molecules between the thick (e .,g., collagen) 
fibril s with their axes aligned substantially parallel 
to eac'h other. One end of a bridging molecule is 
attached to a collagen fibril and the other end to the 
intermedia ry " protein core. " In the absence of a 
definitive answer to this question for stroma, we 
consider in the theory four possibilities , shown 
schematically in Fig. 7. 

1. Direct connections, fibril-chain-fibril , (i.e. , no 
protein core ), as suggested by the electron micro-
graph of Descemet 's membrane, Fig . 6 ). . 

2 (a ). Indirect connections with two chams ter-
minating on each core . . 

2 (b ) . Indirect connections with three chams 
terminating on each core, (which leads to the well­
known " double lattice " of muscle ). 

2(c). Indirect connections with six chains termi-
nating on each core. 

6:v1 . Jakus, Ocular Fine Structure, plate 25, Little, Brown & Co., Boston, 
1964 . 
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MODEL MODEL 2(a) 

MODEL 2(b) MODEL 2(c) 

Fig. 7-Schematic representation of the four topologies 
of fibril-bridge connections considered in the theory. 
The large dots depict collagen fibrils and the small 
dots depict the protein cores. 

Because of the mathematical difficulties associated 
with a general treatment of Models 2(a) to 2(c), we 
have so far considered only Models 2(a ) and 2(b) 
in the limit of an axially weak protein core, and 
Model 2 (c) in the limit that the force law of the 
protein core is identical to that of the collagen fibril. 

THE " REFERENCE " LATTICE-One further feature 
of the model is now to be introduced in order to 
make it possible to carry through integrations of the 
Gibbs phase function over the configurations of the 
network. Since the configuration energy is quadratic 
in the position coordinates, the integrals can be 
carried out by standard techniques (used in the 
statistical mechanics of ferromagnetism) , if we can 
assign definite numerical labels to the various sites 
that are interconnected by the chains and segments . 
For this purpose , we assume that any possible 
configuration is achievable by deformation of an 
array in which the chains connect only nearest 
neighbors . Thus, for numbering purposes only, we 
may order the connection sites according to a 
perfect " reference lattice." The stroma may ",:ell not 
be assembled in quite such an ideal fashIOn, of 
course, and we expect that this assumption, like 
the others preceding it , will introduce somewhat 
more order into the arrangement of fibrils in the 
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model than will actually be found to occur in the 
stroma. Nevertheless , an assumption of this kind 
appears to be necessary for purposes of mathematical 
tractability, and it leads to the simple numbering 
system shown in Fig. 8, which illustrates a plane 
of the reference lattice , cut transverse to the fibril 
axis direction and passing through segment ends to 
display connection sites . 

RECAPITULATION-We have now completed the 
specification of a model of the stroma. From the 
purely physical standpoint , it may be visualized 
as a network of more or less elastic fibrils held 
together by a matrix of polymeric chains (with or 
without a protein core ), interconnected according to 
one of four topological schemes. From the stand­
point of mathematical analysis , the network can be 
represented in terms of a regular lattice with 
quadratic form interactions between nearest 
neighbor sites . 

THE THEORETICAL EXPRESSION FOR THE RADIAL 
DISTRIBUTION FUNCTION-We shall pass over, here, 
the tedious but straightforward mathematical 
manipulations that stand between the formulation 
of the configurational energy and the final expres­
sion for the radial distribution function , g(r) .3 The 
form of the final result is , in general , rather com­
plicated and therefore tends to be unilluminating. 
For this reason, we shall limit our discussion to an 
approximation to g(r ) that is accurate for r ~ 150 A. 
We find 

m= -1 

[ ~ - ~2] r-r- -
exp - t:._f'~ , 

I,m 

1 ~ 1 g(r) = --27ro:r~ yi1rt:.--
C i m f, rn 

excll!ding 

m = f = ° 
/,m=O, ±1 , ±2, . . . (2) 

where (Je = number of collagen 
fibrils per unit area ( ::::: 3.51 X 10-6 (A)- 2 for Fig. 2); 
r I .~ = the radial distance from the reference lattice 
site of a reference fibril , say the (I' ,m')-th, t5> the 
reference lattice site of the (t,m)-th fibril , with 1=1-1', 
in =m-m' (see the numbering scheme of Fig. 8). For 
the centered hexagonal case, ri ,~ = be V j2+m2+1m ' 

( 
2 ) ~ where be = (J e V3 = mean distance between 

centers::::: 574 A for Fig. 2. t:./, ~ is a rather compli­

cated function of the spring constant K, the fibril 
and chain number densities , their manner of inter­
connection, and i and m. It is a measure of the me­
chanicallooseness of the network, as will be discussed. 

THEORY vs. EXPERIMENT-RADIAL DISTRIBUTION 
FUNCTION- For the purposes of making a com­
parison between theory and experiment , it is 

'-------------------------I-X-AXIS 
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Fig. 8-Schematic representation of the labeling system for a centered-hexagonal 
reference lattice. The figure displays one of the transverse planes. The index I 
labels the position in the row and the index m labels the row. A third index, 
N, labels the transverse plane, (from Ref. 2). 
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necessary to assign value to v/(h0
2), and to the 

number densities of chains and fibrils. Only the 
number density of fibrils is accurately known. From 
various experiments , the number density of the 
chains (which follows from the mass fraction of 
mucopolysaccharide in the stroma, the fraction of it 
that is used up in the form of chains and the molec­
ular weight of the chains) is estimated as ......., 10-7 / 

(A)3. Figure 9 illustrates the comparison between 
theory ar;d experiment for Model 2(a) , with V(h

0
2 ) 

= 370 A, and shows modest general agreement. 
As the nature of several of our approximations have 
led us to expect, the peaks of the theoretically 
derived radial distribution function of the model 
decrease less rapidly with distance than do those 
of the experimentally derived radial · distribution 
function . Of course, some disordering is no doubt 
introduced by the electron micrograph fixation 
technique, so that it is conceivable that the theoret­
ical model is less at fault than the experiment. 

The theoretical results depend especially on the 
value assigned to v<h;!), as will be discussed 
shortly. We note in passing, however, that curves 
very similar to tha! of Fig. 9 are obt~ined if we 
use V<h;!) = 710 A, 430 A, and 360 A in Models 
1, 2(b), and 2(c), respectively. Thus the models 
appear to be in rough accord with currently avail­
able data, considering the uncertainty in the values 
of the quantities that determine the parameters of 
the model , and the likelihood that the stromal 
structure is somewhat disordered during the fixation 
process. 

QUALITATIVE NATURE OF THE RADIAL DISTRI­
BUTION OF THE MODEL-The essential nature of the 
theoretical result is that , with respect to the 

2 .5r----.----,,----r---~----,,--~ 

~ 2.0t----t----:- '-+-----+-----+----+-----1 
Z 
o 
5 1.5~--__+--~~~~----r_---4----~--~ 
CD 
a: .... 
en Ci 1.0 t-----+---i,:---+-..---:""---~, 
...J 
~ 

~ 0.5 t-----+-+.---+---=--+-----+-----+---~ 
a:: 

O~ __ ~~~~~~~--~~~~~~ o 600 900 1200 1500 1800 
RADIAL DISTANCE A 

Fig. 9-Comparison of the theoretically calculated 
radial distribution function with that obtained by 
analysis of the electron micrograph of Fig. 2. 
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reference center as origin, other fibril centers tend 
to be Gaussianly dispersed about certain most 
probable positions that define a lattice. The lattice 
of most probable relative positions depends on the 
number of chains connecting each fibril segment with 
nearby segments. For example, for three, four, and 
six chains connecting each fibril segment with near­
by segments , the lattices are simple hexagonal , sim­
ple cubic and centered-hexagonal , respectively. Since 
the axes of the fibrils are most likely to be found 
rather near the lattice sites , the type of lattice 
determines to a large extent where the peaks and 
valleys of g(r) occur. Comparison of the theoretically 
calculated g(r) with the experimentally derived g(r) 
has shown that the centered-hexagonal structure 
leads to rather good accord, whereas the simple 
hexagonal and the simple cubic do not. Accordingly, 
we were led to model the stroma by assigning six 
chain terminations at each end of a fibril segment. 

As Eq. (2) shows, the dispersion of the most 
probable relative positions and the height of the first 
maximum of g(r) depend primarily on the looseness 
of the network (through the parameter ~;,;,). For 
the present semiquantitative _ <!iscussion, ~i,m is 
approximated (to......., 10% for I, m not much greater 
than unity)by 

~i,m = ~O, l = vfh:}){ 1 t ~ (3) 

o 3
3

/
2 

'Y 0 + 0.22 (7 Y 11) 

The parameters 'Y and 11 depend only on the 
assumed topology; l, the most probable axial 
distance between chains, depends on both the topol­
ogy and on the assumed number densities of 
chains ['"'-' 10-7 / (A)3] and collagen fibrils ['"'-' 3.51 X 

10-6 / (A)2]. Estimates for these three quantities, 
and for ~O, l as approximated by Eq. (3), are given 
in the table. 

Model 2(a) 2(b) 2(e) 

'Y 1 ~ YJ 

11 1 1 1 X 
T 105 A 210 A 210 A 315 A 

~ O, I 65 A 119 A 103 A 102 A 

where V(hJ) = 245 A, be = 574 A 

Equation (3) shows that the extent of the dispersion 
of the fibrils about their most probable relative 
positions , as measured by ~o, I' is directly propor­
tional to the root-mean-square length that the 
chains would have if they were unattached, and thus 
is inversely proportional to the square root of the 
spring constant of the individual chains . The table 
shows that it also depends on the scheme of chain-
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fibril connections. Model 1 is the stiffest model 
essentially because its chains must reach all the way 
between fibrils , (see Fig. 7) . 

The first maximum of g(r) is of rather special 
interest because it can be very easily approximated 
using Eqs. (2), (3) , * and because disorder ensuing 
from the fixation process is expected to be least 
noticeable for small r. Equation (2) yields 

g(r) I first maximum ~ 6 
27r3/ 2uC be .1 0 ,1 

(4 ) 

and substituting the values listed in the table yields 

{ 

4.1 Model 1 
2.2 Model 2(a ) 

g(r) I first maximum ~ 2.6 Model 2(b ) 
2.6 Model 2(c) 

Thus, the last three models continue to agree with 
our estimate of VTh;!> rather better than does 
Model 1, again because its chains, being required 
to reach all the way from one fibril to another, are 
stretched relatively tightly so that there is relatively 
little dispersion from the minimum energy con­
figuration. Model 1 could, of course, be in good 
accord if its chains were composed of mucopoly­
saccharide and mucoprotein chains hooked in series. 
We are, therefore, unable with confidence to 
discriminate between the various models on the 
basis of presently available information. 

Structure and Swelling Pressure 
Since the previously described study led to a 

way of connecting the mucopolysaccharides and the 
collagen fibrils in such a way as to yield a reason­
ably satisfactory microstructure, we were led to 
consider the swelling properties of such a network. 

If a piece of cornea is removed from the eye, 
denuded of its limiting layers , and placed in saline, 
it will swell in thickness by taking in saline. The 
extent of the swelling may be controlled by an 
externally applied force , and the pressure that is 
just sufficient to maintain the stroma at some fixed 
thickness is known as the swelling pressure associ­
ated with that thickness. The experimentally deter­
mined relationship between swelling pressure and 
stromal thickness for rabbit cornea in physiological 
saline is shown by the data points of Fig. 10. The 
molecular and structural basis for this behavior has 
remained obscure, however, in the absence of a 
detailed model of the stroma. 

It turns out that an approximate theoretical 
relationship between swelling pressure and the 
thickness of stroma in a salt solution can be derived 
quite readily for our models of chain fibril topology. 
The basis of the swelling theory derives from the fact 
that swelling pressure is related thermodynamically 

·Only the six nearest neighbor sites contribute appreciably to the sum of 
Eg. (2), and the value of Tat which the peak occurs is T ::: 1'0,1 = be· 
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Fig. lO-Comparison of theoretically calculated 
dependence of swelling pressure on thickness vs. 
experimental data, for rabbit stroma. (Data points 
from Ref. 7.) 

to the free energy. The free energy, in turn, can be 
approximated in terms of the properties of the 
molecular chains and the topology of their connec­
tions to the collagen fibrils , by using well-known 
techniques of polymer theory. The result of the 
calculation for Model 2(a) is shown by the smooth 
curve of Fig. 10, where one parameter, whose value 
is as yet unknown , has been arbitrarily assigned a 
plausible value that yields good agreement at one 
point, namely at normal hydration . It seems note­
worthy that the agreement is satisfactory over about 
one and one-half decades of swelling pressure 
variation, so that the theory may indeed be near the 
truth in its essentials. 

Concluding Remarks 
In summary, therefore, the theoretical calculations 

relating to the transparency, fibril distribution, and 
swelling pressure support the basic validity of a 
model of the stroma in which the collagen fibrils 
are held together by polymeric chains. The detailed 
topology of the connections remains open, and 
probably will be settled ultimately only by new and 
improved electron microscope techniques. Neverthe­
less , we believe that the basic model is sufficiently 
representative of the stroma that it will be valuable 
for the illumination of the molecular and structural 
basis of many other physiological properties of 
stroma. 

78. o. Hedbys and C. H . Dohlman, " A New Method for the Determina­
tion of the Swelling Pressure of the Corneal Stroma in vitro," Exp. Eye 
Res. I , 1963, 122-129. 

11 


