
SCALING the effects of 
AIR BLAST 
on typical TARGETS 

T he general scaling equations presented in this 
article are based on interactions between shock 

waves generated by explosions in air and targets that 
can be fully defined by two parameters in a simple 
mathematical model. Simplicity is achieved by ignor­
ing many factors that complicate rather than illumi­
nate the study of blast phenomena. These scaling 
equations, and the analytic techniques based on their 
use, are not intended to be precision tools for com­
puting specific effects with maximum accuracy, even 
though they are often as accurate as far more com­
plicated computational techniques. Their unique 
value lies in their use of a dimensionless, universal 
scaling parameter whose values span the entire spec­
trum of blast damage phenomena, from the effects of 
a few pounds of conventional high explosives to 
those of megatons of equivalent TNT. The reader is 
cautioned, however, not to expect real targets to 
behave precisely like the simplified models from 
which the scaling equations were derived, but he is 
encouraged to use the equations freely as a means of 
correlating isolated pieces of data with the basic ana­
lytic structure of blast damage relationships. 

This analysis deals with targets and the inter­
actions between them and the shock waves generated 
by the detonation of explosives. It limits its attention 
to that fraction of the total range of scaled distances 
within which a variety of actual targets , varying 
widely in toughness , have been destroyed by air 
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blast. Within this limited range, an abundance of 
excellent experimental data show that shock waves 
behave in an orderly fashion allowing the parametric 
relationships that define their characteristics to be 
expressed mathematically by two simple, tractable 
equations. 

Since the purpose of this article is to derive scal­
ing equations for interactions between shock waves 
and targets that result in target " kills ," these equa­
tions will be used to compute the effects of inter­
actions only within the range of scaled distances at 
which such kills are possible. From the character­
istics of shock waves it is possible to derive scaling 
equations of classic simplicity in which specific target 
characteristic data ensure that the equations will be 
valid for the range in which shock waves can and do 
kill such targets. The universal scaling parameter 
derived in this article allows the equations defining 
the blast-shock wave characteristics to be converted 
successfully into equations that scale the interactions 
between shock waves and targets. 

Nature of Shock Waves 

Detonation of a high explosive in air produces a 
sudden rise in pressure which propagates rapidly as 
a spherically expanding shock wave. When the shock 
wave arrives at some fixed point in its path , there is 
an almost instantaneous rise in pressure to a peak 
value, followed by a gradual decline until it reaches 
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I nteractions between shock waves, produced in air by detonation of 
explosives, and specific targets which they can destroy by air blast 
are described. A mathematical analysis is used to relate weights of 
explosives to the distances at which they can cause lethal damage 
over the entire range of blasts from a few pounds of conventional 
high explosive to kilotons or megatons of nuclear blast. Effects 
at sea level and higher altitudes are examined. In the analysis, 
typical targets are defined by two parameters for which specific 
numerical values can be established. A dimensionless scaling 
parameter relating a shock wave parameter to a target parameter is 
the key to the scaling relationships derived. 

the original ambient pressure level at some later 
time which marks the end of the first positive im­
pulse. The pressure then drops below ambient , 
producing a negative impulse, and then may be fol­
lowed by a much weaker second positive impulse. 

Shock wave data are usually given in terms of 
"free-air" or "side-on" values of overpressure (pres­
sure above ambient) , in which it is assumed that no 
obstacle impedes the free motion of the shock wave. 
When a solid surface presents an area normal or 
nearly normal to the direction of motion of the shock 
wave, the shock wave is reflected, producing a sub­
stantial increase in overpressure. For a very weak 
shock, including the limiting case of an acoustic 
wave, the overpressure for normal incidence is twice 
the "free-air" value. For very strong shocks in air 
(')' = 1.4), the ratio of the overpressure for normal 
incidence to the " free-air " value approaches an 
upper limit of eight. 

Because this article deals with the interaction be­
tween shock waves and targets , we are not concerned 
with "free-air" conditions , but will deal with over­
pressures and impulses that act on typical target sur­
faces. It has been found that the overpressure near 
a surface reflecting a shock wave is substantially con­
stant for angular orientations up to about 35° from 
the normal. Since a typical target , such as an aircraft , 
is irregular in shape and has elements of surface at 
all possible angular orientations, it is safe to assume 
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that the target presents substantial areas with orien­
tations within 35° of the normal for which the pres­
sures acting on the target are essentially normally 
reflected overpressures. For this reason, the pres­
sures, impulses, and other shock parameters dis­
cussed subsequently in this article will refer to face­
on or normally reflected shock waves. 

Shock Wave Characteristics 

A shock wave whose pressure-time history is 
shown in Fig. 1 may be defined by the following 
parameters: 

P = peak overpressure (psi); the difference 
between the absolute peak pressure and 
the ambient pressure. 

T 

p 

p 
I 

time (msec) during which the pressure of 
the shock wave is continuously greater 
than the ambient pressure. T is called 
the duration of the positive impulse. 

ambient air pressure (atm), i.e., p = 1 at 
sea level (14.7 psi). 

overpressure of the shock wave at time t. 

total po'sitive impulse, given by I = ;: T pdt. 

This is sometimes termed the first positive impulse, 
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Fig. 1 - Pressure-time curve for a normally reflected 
shock wave. 

since there may be a second, much weaker, positive 
impulse. In practice, the pressure variations beyond 
T are sufficiently small that they can be neglected in 
the analysis of blast damage. 

The shock wave from a high explosive is a func­
tion of the distance from the detonation, the nature 
and size of the charge, and the pressure and temper­
ature of the air through which the wave is propa­
gated. It is possible to correlate the effect of different 
sizes of explosive charges on shock waves by using a 
scaled distance, Z, defined by 

where: 

Z=_R __ 
W I /3 

(1) 

R = distance (feet) from the center of the deto­
nation; and 

W = weight (pounds) of the explosive charge. 

According to this scaling law, for a given value of 
scaled distance Z, the same peak overpressure would 
be obtained by the detonation of two different 
weights of a particular explosive; for example, the 
explosion of 10 pounds of TNT at a distance of 20 
feet will produce the same peak overpressure as 80 
pounds of TNT at a distance of 40 feet. 

The relationships between peak overpressures, 
positive impulses, scaled distances, and atmospheric 
environments differ from one explosive to another. 
Since 50/ 50 Pentolite is a military high explosive 
which gives consistently reproducible results, it is 
often used as a standard explosive for evaluating the 
effects of air blasts. Furthermore, it is an explosive 
for which abundant and accurate data are available. I 

I H . J. Goodman, " Compiled Free-Air Blast Data on Bare Spherical Pentolite," 
Aberdeen Proving Ground, Ballistic Research Laboratory, BRL. Report No. 1092, 
February 1960. 
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For these reasons this analysis has been built around 
the characteristics of 50/ 50 Pentolite. 

The data for normally reflected peak overpres­
sures for 50/ 50 Pentolite are shown as a function of 
the scaled distance in Fig. 2. The straight line fitted 
to these data points is given by 

p 

p 
13,300 
[Zp 1/3] 3 

(2) 

In similar fashion the data for normally reflected 
positive impulses for 50/ 50 Pentolite are shown 
as a function of the scaled distance in Fig. 3. The 
straight line fitted to these data points is given by 

I 220 (3) 
W 1/3 P 2/3 [Zp 113] 1.20 

These two analytically tractable equations, (2) and 
(3), define the characteristics of 50/ 50 Pentolite 
over the range of scaled distances with which this 
analysis is concerned. Anomalies which occur at 
scaled distances less than two or greater than 10 or 
12 have no bearing on the accuracy alld validity of 
these equations since they lie outside the range of 
parameters under consideration. 
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Fig. 2 - Normally reflected peak overpressure for SO/50 
Pentolite spheres. 

Equation (3) which is fitted to empirical data ob­
tained at sea level (p = 1.00) indicates the qualitative 
effect of p on the impulse. At higher altitudes tem-
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Fig. 3 - Normally reflected positive impulse data for 
SO/SO Pentolite spheres. 

perature changes will affect the speed of sound and 
require a quantitative adjustment. These changes , 
which are independent of p, are accounted for by 
including the parameter, cl co, the ratio of the ve­
locity of sound in air at the altitude to the velocity 
at sea level to obtain the impulse equation , 

220 
W 1/3 P 2/3 [Zp 1/3] 1.20 

(4) 

Using Eq. (1) to eliminate Z from Eqs. (3) and 
(4), the following equations are obtained for the 
" normally reflected" peak overpressure and positive 
impulse: 

(5) 

and 

220 W o.733p 0. 267 I = ___ ---i __ (6) 

Characteristics of a Target 

Aircraft structures , which are typical targets for 
air blast , consist of superficial coverings of compara­
tively thin material supported by rather complex 
assemblies of ribs , stiffening webs , and braces of vari­
ous sorts that are attached to the basic framework. 
Target damage severe enough to constitute a kill 
consists of substantial crumpling and distortion of 
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the surface in the course of which it moves a con­
siderable distance against the resisting forces offered 
by the structural elements which yield without 
breaking. The behavior of a target cannot be fully 
simulated, but a remarkably useful mathematical 
model can be defined in simple terms. Pressures 
below a certain minimum value will have no effect 
whatever on the target regardless of how long they 
are maintained. However, at some critical pressure 
the supporting structure will begin to yield, and if 
this pressure is maintained, the distortion will in­
crease until the target is totally destroyed . 

Therefore, it is possible to define a fundamental 
parameter representing target toughness as: 

Pm = minimum pressure (psi) on the target 
surface which will initiate destructive 
distortion and which, if continued long 
enough, will cause target destruction. 

The mathematical model used in this analysis as­
sumes a constant value of Pm throughout the period 
of distortion up to the point of destruction . Many 
real targets approximate this behavior closely 
enough to consider Pm a statistically significant 
measure of target toughness . 

A second target characteristic parameter which 
is important in the analysis is 1m , which is defined 
as the lower limit for the value of the impulse 
which can deform the target enough to destroy it. 
The parameter 1m is closely related to the total 
work done in deforming the target to the point of 
destruction. 

U n iver sal Scaling Parameter 

This analysis is concerned with scaling the inter­
actions between shock waves and targets. A scaling 
parameter for this purpose should be a dimension­
less ratio between some distinctive characteristic 
parameter of the target and a similar distinctive 
characteristic parameter of the shock wave. The 
only characteristic common to both is pressure. 

The significant pressure for the target is the 
minimum pressure, Pm, i.e., the pressure which 
causes target damage; for the shock wave it is the 
maximum pressure, P, which it can exert on the 
target. Hence, a universal scaling parameter, is de­
fined by the equation, 

(7) 

No target damage can occur if f is greater than 
1.00 and no real target, in which there is any finite 
resistance to deformation , can have an f value of 
zero . The entire gamut of shock wave target combi­
nations, which produce target kills , is covered by the 
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open interval 0 < f < 1. Within these limits, f 

spans the entire spectrum of charge weights (and 
corresponding lethal distances) from a few pounds 
of conventional high explosive to nuclear devices 
whose yield is measured in kilotons or megatons 
of equivalent TNT. 

In the scaling equations derived in this article, the 
characteristics of the explosive, the target, and the 
ambient atmospheric conditions (altitude and ratio 
of sound velocities) are all defined by appropriate 
numerical values of the parameters . Every set of 
conditions represented by these parameters corre­
sponds to a unique weight of explosive, and the 
unique lethal distance associated with it. Therefore, 
f is a universal scaling parameter for the inter­
actions between shock waves and the targets that 
t~ey are capable of killing when the shock waves 
are spherical and the targets are correctly defined 
by the parameters, Pm and 1m. 

Interaction Between a Shock Wave 
and a Target 

The target is defined by two parameters to which 
numerical values can be assigned . The target model 
accurately simulates the behavior of many real tar­
gets whose destruction by blast has been observed 
under test conditions. Associated with a target is a 
minimum pressure exerted on its surface below 
which threshold there will be no damage . It is as­
sumed that when this critical minimum pressure is 
reached, the supporting elements will begin to yield 
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Fig. 4 - Pressure-time curves. 

and permanent deformation will be initiated. It is 
further assumed that as long as deformation (con­
sisting of displacement of the surface relative to the 
more massive elements of the basic structure) con­
tinues, it will be resisted by a constant force per unit 
area of the same magnitude as the pressure which 
initiated destructive deformation . Every target will 
have to be deformed by some definite minimum dis­
placement of the surface relative to the basic struc­
ture before its usefulness is destroyed, i.e. , a certain 
minimum target distortion , or a certain minimum 
work per unit area , must be expended on the tar­
get to destroy it. 

It is necessary then to derive functions for the 
total work per unit area any given shock wave can 
impart to the target , and to specify the characteris­
tics of the shock wave which can impart just enough 
work to achieve target destruction. 

It is now necessary to have an equation for the 
pressure-time profile of a shock wave acting against 
a target surface. This equation will give va lues of the 
overpressure as a function of time (t < T) . Two 
mathematical models for the pressure-time curves 
have been used, the linear profile shown in Fig . 4a 
with 

p = P (1 -tl T) , (8) 

where 

t = time from the first rise in pressure 
p = overpressure at time t (0 < t < 7); 

and the exponential profile shown in Fig. 4b with 

E = P ( 1 - ti T) e - tjT (9) 

It can be shown that a completely self-consistent 
set of scaling equations can be derived from either 
of these pressure-time profiles and that the same 
relationships between charge weights and corre­
sponding lethal distances are derivable from either 
equation . The ·linear relationship has been used 
in several investigations with satisfactorily consistent 
results . However , self-consistency within a mathe­
matical model is not sufficient to assure that values 
of f , as well as the values of such target parameters 
as Pm, portray realistic interaction characteristics. 

The pressure-time relationships shown in Fig. 4 
differ from one another in the relationship of I to 
PT. For the linear curve (Fig. 4a), the ratio is 1/ 2. 
For the exponential curve, it is l i e or 0 .368. The 
data for 50/ 50 Pentolite show that the ratio of I to 
PT is not constant but varies at a moderate rate with 
scaled distance. Furthermore, it was found that the 
ratio l i e of the exponential function , Eq . (9), agrees 
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Fig. 6 - Pressure-time relationship forE ~ lie. 

with the 50/ 50 Pentolite data in the midrange of 
scaled distances used in this analysis. Since an accu­
rate mathematical formulation of the actual pres­
sure-time profile of a shock wave produced by 50/ 50 
Pentolite over the full range of scaled distances has 
not yet been found, the exponential function is the 
best representation within the range of scaled dis­
tances covered by this analysis. 

On a pressure-time diagram, impulses are repre­
sented by areas . Figures 5 and 6 will show that areas 
above Pm, (designated by 1) are positive impulses 
which accelerate the mass, m, to a maximum ve­
locity at time, tm, and areas below Pm (designated 
by 2) are negative impulses which bring m to rest 
at some later time, to. Obviously the two impulses 
must be equal. 

In setting up equations for the acceleration of the 
mass , m, (mass per unit area of target material 
which is moved relative 10 the basic target structure 
where destructive deformation takes place) one 
notes that between zero and T there is a constantly 
varying acceleration for which the pressure-time 
equation, Eq. (9) , gives an analytical value, but be­
yond the time, T, the negative acceleration has a 
constant value. 
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Interactions which are completed within the 
period (T) of the positive impulse can be treated 
by a single set of equations and will be designated 
Case I (see Fig. 5). Interactions which continue 
beyond the end of the positive impulse will require 
two sets of equations, one with a constantly varying 
acceleration (up to time, 1), and one with a constant 
acceleration (beyond time, 1). This will be called 
Case II (see Fig. 6). 

The results of some lengthy calculations 2 lead 
to the following equations for the impulse I of the 
shock wave up to time T, in terms of 1m, and the 
universal scaling parameter E: 

For Case I (E ~ ~) 
e 

1m 
1=---------

eE 1/2 [2 - E - E (1 - EnE) 2 ] 1/ 2 

For Case II (E ~ ~) 
e 

1m 
1=-;::::::::=== 

V1-1.5315E . 

(10) 

(11 ) 

Figure 7 relates the shock wave pressures and 
impulses to the minimum pressures and impulses 
which can damage a given target. This curve is the 
locus of all possible overpressure-impulse combi­
nations which can just destroy (without overkilling) 
any given target characterized by Pm and 1m. 
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Fig. 7 - General pressure-impulse relationship. 

' H . S. Morton, "Scalin~ the Effects of Air Blast on T ypical Targets ," APL/JH U 
Report TG-733, January 1966. 
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General Parametric Scaling 
Equations for Weight and Distance 

Equations (5) and (6) can be solved simultane­
ously for weight , W, and distance, R, to obtain 

w ~ 0.0083 (~)' j' 
(12) 

P 1.20 P 0.8 0 

and 

(13) 
P 0 .733 P 0.267 

When these are combined with Eqs . (7) , (10) , and 
(11) one obtains 

W = 0.0083 [_lm_ 3
_ (:0)3J FW(E) 

Pm 1. 20 P 0.80 ' (14) 

and 

R = 4 .8 [~ (:0) J FR(E) 
Pm 0.733 p O.26 7 (15) 

In this pair of equations , the final terms , F W (E) and 
F R (E) are restricted to E values above or below 
1 Ie. 

For E:::; ~ 
e 

and 

For E ~ L 
e 

EI. 20 
Fw (E) = , 

(l-1.5315E) 3/2 

E 0 .733 
FR (E) = . 

(1 - 1.5315E) 1/ 2 

FW (E) = _____ 1 ___ _ 
e3Eo.30 [2 -E -E(1 _ enE) 2] 3/2 

and 

E 0.233 
FR (E) = • 

e[2 - E-E(1 - enE) 2] 1/2 

These two pairs of functions of f are related as: 

F R (E) = [F w (EU 1/3 E 1/3 • 
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This equation is valid for all values of E. 

The general parametric equations , (14) and (15) , 
consist of four terms : the first is a numerical coeffi­
cient characteristic of the explosive (50/ 50 Pento­
lite) and would be different for different explosives ; 
the second is a function of the target ; the third is a 
function of the altitude; and the fourth is a function 
of the universal scaling parameter, E. For any par­
ticular explosive, target and altitude, the first three 
terms are constants , i.e. , only the functions of E will 
vary . 

The two general parametric equations , (14) and 
(15) , for weight , W, and lethal distance, R, give all 
the ' necessary information with respect to inter­
actions between spherical shock waves produced by 
explosive detonations and targets whose character­
istics defined by Pm and 1m can be determined by 
experiment. The range of scaled distances must be 
sufficient to encompass the region. in which targets 
of practical concern can be destroyed. These two 
equations epitomize the fundamental analytic struc-

'" 1 ton 
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Fig. 8 - General distance-weight relationship. 

ture of shock wave-target interactions, and are the 
most significant product of this entire article. 

A graph of the FR(f) versus FW(f) values is 
shown in Fig. 8, with corresponding values of f given 
for various points along the curve. A rough indica­
tion of the order of magnitude of the charge weight 
is shown on Fig. 8 from which it may be seen that 
over this range of f the charge weights vary con­
siderably-from 25 pounds to 10 megatons. 

Two other lines are shown on Fig. 8. The first is 
a line of slope 1/ 3 which becomes tangent to the 
general curve as f approaches 1.00 and Fw (f) ap­
proaches infinity. This is consistent with the rela­
tionship Rex:: W 1/3 which has been shown to be true 
for nuclear charges. The second is a line of slope 
1/ 2 which is seen to be parallel to the general curve 
at values of f around 0.20 to 0.25 and is consistent 
with the Rex:: W 1/ 2 relationship known to apply 
to charges of a few hundred pounds. The change 
in the slope of the curve of log F R (f) versus log 
Fw (f) is the most significant scale effect in relation­
ships between charge weights and lethal distances. 
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Comments and Conclusions 

This analysis has avoided the necessity of treating 
the full range of shock wave phenomena, and par­
ticularly the regions in which parametric relation­
ships are far too complicated to fall into any simple 
pattern. By limiting its scope to the region in which 
parameter relationships can be expressed in simple 
analytic terms it fills a long-felt need for a direct and 
easy method of scaling blast effects on specific 
targets. 

Fortunately a majority of targets of interest will 
fall well within the applicable range of the equations 
derived in this report. As soon as the parameters 
which define a target are known, it is a simple 
matter to determine the corresponding scaled dis­
tances and ascertain whether they are within the 
applicable range of the equations. 

As a concluding statement, since the phenomena 
to be scaled are interactions between shock waves 
and targets, the parameter, f, which relates a com­
mon characteristic of the two, is the most useful 
analytic tool for scaling these effects. 
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