
The characteristic interference phenomena of wave mechanics 
usually can be inferred from experiment only in an indirect manner. 
Molecular and atomic scattering exhibit this effect directly, 
because thf( tribution itself is being measured. In this 

- , 'tative features of the scattering 

During the first quarter of this century it became 
increasingly apparent that classical mechanics 

could not account for many of the experimental 
observations in atomic physics, in particular the 
structure of atoms and molecules and the fact that 
one must average over discrete states in statistical 
thermodynamics. There are also many experi­
ments, not as well known, that involve the dy­
namics of atomic and molecular collisions and 
which deviate markedly from the classically pre­
dicted behavior. This article is a qualitative de­
scription of some of the effects noticed and 
predicted in beam-scattering experiments and in 
transport properties of gases at low temperatures. 

In the classical description of a collision, a given 
set of initial positions and momenta determines a 
unique trajectory. As in planetary theory, the 
description is simplest in a frame of reference, here 
called the rela ti ve frame, cen tered on one of the two 
particles. The motion of the two particles is then 
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, as well as the influence of quantum 
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Fig. I-Typical trajectory in a force field with both 
repulsive and attractive components. 
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F ig. 2-Typical form of a potential energy curve, 
describing the interactions of neutral, spherically 
symmetric molecules. 

equivalent mathematically to a single particle of 
mass J.l = mImd (mI + m2) moving in a field fixed 
at the origin of this reference frame . If in the labo­
ratory system the initial velocities of the particles 
are VI and V2, then in the relative frame the velocity 
of the equivalent particle is V = VI - V2. Figure I 
shows the trajectory of the equivalent particle in 
the relative frame. A particularly simple case 
occurs when V(r), the potential energy of interac-
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F ig . 3-Dependence o f th e d e flectio n angle, x, a s a 
funct io n of impact parameter, b , f o r a typica l valu e 
o f kinetic energy. 
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tion, is a function of r only, the distance between 
the particles. The trajectory now will lie wholly 
within a plane. Although this approximation is 
applicable stric tly only to atoms it turns out to be 
sufficiently accurate for many other cases. The 
term, r c, is defined as the distance of closest 
approach achieved by the trajectory and the impact 
parameter, b, the corresponding distance if the 
interaction had been switched off. In the relative 
system the magnitude of the final velocity is the 
sam e as the initial velocity, but the direction of 
travel is rotated through an angle X illustrated in 
Fig. 1 and given by 

X 7T'-
dr 

(1) 

Since the orbital angular momentum, L, is con­
served by such forces, we may calculate it from 
the fictitious non-interacting trajectory with the 
result 

L = J.l V x b, 

L = J.l v b. 
(2) 

A typical potential curve for two interacting 
particles is represented in Fig. 2. In Fig. 3, a de­
flection curve for one value of v is plotted for b 
lying in one plane and taking all positive values. 
However, in a beam experiment (where a beam of 
particles travelling with uniform velocity v is 
allowed to impinge on another set of particles) b 
may take any direction in a plane perpendicular to 
v. We note that collisions with impact parameters, 
b2 and b3, but with their directions rotated through 
an angle of 1800

, will be deflected through the same 
angle as bl . From X, as a function of b, one may now 
calculate u (v,X) sinX dX dcp, the relative prob­
ability of a molecule being scattered out of the beam 
into a given solid angle sinX dX dcp. The term, 
cp, is the angle between the plane of the trajectory 
and some reference plane. Trajectories with their 
impact parameter lying in the range b, b + db and 
cp, cp + dcp will be scattered into the solid angle 
sinXdXdcp. If we imagine the interaction turned off, 
the probability of a molecule impinging on a small 
element of target area, dS, is just proportional to dS 
for a beam of uniform intensity. Simply by requir­
ing that everything that goes in must come out, 
we find 

u (v,x) 
sinx 

(3) 

APL Technical Digest 



where the sum runs over the several ranges of b 
that give rise to the same deflection angle. That 
the combining rule for forming u from the separate 
u/s is simply summation, is a direct consequence 
of the or-or-or rule in classical probability theory. 

Quantum effects can be classified mainly as in­
terference or diffraction effects and effects due to 
indistinguishability. In quantum theory, one may 
not, as in classical theory, specify both velocity and 
position exactly. Instead, the maximum specifica­
tion of a physical system is given by the wave func­
tion 1/;. It is also termed the probability amplitude 
because its square, 11/;1 2

, is the probability distribu­
tion of the positions. The or-or-or rule is now 
amended to read that the probability amplitudes 
are summed rather than the probabilities. This is 
sufficient to explain all the characteristic quantum 
interference effects. In classical theory we analyzed 
the total scattering as the sum of the separate 
scatterings of systems with all values ofb, the impact 
parameter, or conversely, L, the angular momen­
tum. In the quantum case it is still possible to 
specify the magnitude of the relative angular 
momentum of two colliding molecules. It turns out 
that the wave function for this case, now called 
the partial wave, is cylindrically symmetric about 
the initial direction of approach: 

Fk/,(r) 
1/;e = -- Pe (cos X) 

r 

---; Aki sin (kr - Yzt7r + YJi(k» Pi (cos 0) (4) 
r---; 00 r 

L = ~C(C + 1) h ~ (t + Yz) h = }-t v b 

k = }-tv/ h 

where t is a quantum number taking integral 
values 0, I ,2, .. " P t is the !"th order Legendre poly­
nomial, YJi is the phase shift, k is the wave number, 
and h is Planck's constant divided by 27r. The wave 
function will generally oscillate with the frequency 
of oscillation approximately proportional to the 
classical momentum. In a field of force the fre­
quency will vary, being higher in the attractive part 
of the field and lower in the repulsive. (In Fig. 4 
we have plotted schematically the frequency be­
havior in the absence and in the presence of an 
interaction.) The value, YJe, is given as 27r times 
the difference in the total number of oscillations of 
the two curves as r ---; 00. The term, l1/;i /2, will 
in general have only a vague resemblance to the 
corresponding surface generated by the trajectories 
corresponding to some value of b. A given range 
b, b + db for }-tv sufficiently large, will contain 
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Fig. 4--Schematic behavior of frequency in presence 
and in absence of an interaction. 

several integral values of .e. A wave packet may 
now be formed by summing the partial waves for 
these values of .e. The partial waves will interfere 
constructively in some regions, destructively in 
others, with the result that the probability distri­
bution will resemble somewhat more closely the 
bundle of classical trajectories defined by b, b + db. 
As }-tv increases, the number of partial waves in­
creases, and the regions of constructive and destruc­
tive interference become more sharply defined, 
obtaining the classical picture in the limi t }-tv ---; 00 . 

Another correspondence is that as }-tv increases, the 
derivative of YJe with respect to e approaches twice 
the scattering function, X, evaluated at the impact 
parameter b = (e + Yz)h/ }-tv . 

Passing now to the case where all values of b, 
or rather l, are possible we again find that for cer-
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Fig. 5--Reduced differential cross-section for the 
scattering of a thermal molecular beam by molecules, 
showing primary and supernumerary rainbows. 
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Fig. 6-Reduced diffusion coefficients of a He3.He4 

mixture from 2°K to room temperature. See Ref, 2. 
The smooth curves are the theoretical predictions. 

tain values of X ~ /Xr /, three small separated 
ranges of f contribute to the scattering. For fJ.V in 
the range of in terest in molecular scattering, these 
will approximate the classical values of b for the 
same X. Instead of the intensities, as in the classical 
case, we add the amplitudes, with the result that 
interference effects lead to a new formula for 
scattering (for high molecular weights or energies): 

u(X,v) = 1: 1:[Ui (V,X) ui(V,X) ]1 / 2e i ({1 i - (1i) 
i i 

(3 == [2'17l - 2(t + 72) a'l7l 
at 

(2 - a;;: / I a;;: I - aa~ / I aa~ I) ~ ] 
Figure 5 shows a typical plot of U versus X. In an 
experiment with the resolving power commonly 
available, the fine oscillations will be averaged out 
to yield the more slowly oscillating curve. The 
calculations are for a Lennard-] ones (12-6) poten­
tial with parameters corresponding approximately 
to K-HBr, for which experimental points at low 
resolution are shown. The arrows show the semi­
classical prediction of the classical rainbow edge 
(45°), the first maximum (35°), the first minimum 
(22°), and the second maximum (13°). See Ref. 1. 

1 E. A. Mason and L. Monchick, "Supernumerary Rainbows in 
Molecular Scattering," J. Chern. Phys. 41, Oct. 1964, 2221-2222. 

2 L. Monchick, E. A. Mason, R. J. Munn, and F. J. Smith, 
"Transport Properties of Gaseous He3 and He4," Physical Review, 
139, Aug. 16 - Sept. 27 , 1965, AI076-AI082. 
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The smooth curve bisecting the rapidly oscillating 
curve is presumably what would be observed in an 
apparatus of low resolution. The rainbow angle, 
so called because the mathematical theory re­
sembles very closely the theory of light scattering 
by raindrops, is identified as Xr. The hump cen­
tered just to the left of Xr has been seen many 
times and is even approximately predicted by 
classical theory. The secondary peaks to the left are 
predicted only by the quantum theory and also 
have an analog in light scattering theory where 
they are called supernumerary rainbows. Experi­
mental data plotted in Fig. 5 seem to give a slight 
indication of one such peak. Since this experiment, 
others have been performed exhibiting three or 
four supernumerary rainbows and even some of the 
fine structure. 

Quantum effects appearing in the transport 
properties of gases are not as spectacular as those 
exhibited by molecular scattering because the 
t.ransport coefficients themselves turn out to be 
averages of certain functions of the molecular 
velocities, v, and the scattering angle, X, over all 
possible collisions. Most of the oscillatory nature of 
U will be averaged out. It may be shown that at 
ordinary temperatures, fJ.V, which is proportional 
to Tl /2fJ.l / 2 on the average, is sufficiently large that 
quantum effects are small. (T is the temperature.) 
But this is not the case for He3 and He4 below room 
temperature. From measurements of the non­
ideality of He4 at high temperatures the potential 

D = DIFFUSION CO EFFICIENT 
M = MOLECULAR WEIGHT 
T = TEMPERATURE 
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Fig. 7-Reduced self-diffusion coefficients of He3 • 

See Ref. 2. The smooth curves are the theoretical 
predictions. 
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energy is known fairly accurately. We have as­
sumed that this potential is unchanged for He3_He3 

and He3_He4 interactions and have used it to cal­
culate the properties described below. 

In a mixture of two experimentally distinguish­
able atoms the binary diffusion coefficient is almost 
wholly a function of the interaction between the 
unlike atoms. Measurements in He3-He4 mixtures 
and spin diffusion measurements in He3 allow us a 
test for our theory. A comparison of the quantum 
and classical calculations for He3-He4 and the ex­
perimental results is presented in Fig. 6. The He3 

nucleus has a spin of Y2, which in a suitable spin 
resonance experiment may be partially oriented. 
If the time to diffuse from one region to the other is 
short compared with the natural flip-over time of 
the spins, atoms with different spins may be re­
garded as distinguishable and the interdiffusion 
measured. Calculations for this system are pre­
sented in Fig. 7 and contrasted with experiment. 

In a gas consisting of either pure He3 or pure He4 

the fact that we have to deal with collisions be­
tween indistinguishable particles introduces a new 
complication. The Pauli exclusion principle states 
that the wave function of a system changes sign 
whenever two like fundamental particles are inter­
changed. Since He4 has even numbers of electrons, 
protons, and neutrons, the interchange of He4 atoms 
leaves the wave function unchanged. The partial 
wave changes sign (or is antisymmetric) when t 
is odd; it is unchanged (or symmetric) when t is 
even. This means that in describing the collision 
of two He4 atoms odd values of t are excluded. 
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Fig. 8-Reduced viscosity of helium isotopes. See 
Ref. 2. The smooth curves are the theoretical pre­
dictions. 
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Fig. 9-Reduced thermal conductivity of helium 
isotopes. See Ref. 2. The smooth curves are the 
theoretical predictions. 

Since He3 has an odd number of neutrons the 
total wave function must be antisymmetric with 
respect to exchange of He3 atoms. From the sep­
arate spin functions of the nuclei, it is possible to 
construct one symmetric and three antisymmetric 
spin angular momentum eigenfunctions. This is 
quite similar to the way in which one constructs 
the l~g+ and 3~u + states of H 2. Now, the even 
values of t combine with antisymmetric spin func­
tion, the odd values with the three symmetric spin 
functions. Thus, although the potential energy of 
He3 atoms may be the same as that of He\ over 
and above the differences due to the difference in 
atomic weight, we may still expect the scattering 
patterns in the two gases to be qualitatively dif­
ferent. This is particularly evident at low tempera­
tures, where only small values of t are important, 
as can be seen from the comparison of theory and 
experiment for viscosity and thermal conductivity 
in Figs. 8 and 9. 

It should be evident from the preceding that the 
transport properties of He3 and He 4 can be cal­
culated with the same potential function as was 
found experimentally at high temperatures if suit­
able account is taken of quantum effects. Classical 
theory, as was expected, failed miserably. One 
effect not discussed in this article is quantum 
mechanical tunnelling. This was taken into account 
in the calculations but did not produce more than 
a small correction in the final results. 
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