
IMPROVED DATA 
for 
the Classical Determination 
of Radar Detection Range 

Echoes from distant targets are ch.aracteristically 
so faint as to require highly sensitive receivers 

in radar systems. It follows naturally that the more 
sensitive the receiver, the greater the range that 
can be claimed for the radar. Unfortunately, how­
ever, echoes are not the only sources of low­
intensity energy. Everyone is familiar with radio 
static and how it interferes with clear reception; 
the same kind of electrical noise interferes with 
the reception of radar echoes. Because of the 
inherent characteristics of noise, we cannot be abso­
lutely sure that a detection made by a radar 
receiver is a target ; it might be only noise. Thus, 
the problem becomes probabilistic, based on the 
nature of noise. Our decision criteria must dis­
tinguish between probable targets and probable 
nOIse. 

Unavoidable noise is not the only thing that 
makes the specification of radar performance prob­
abilistic. Perhaps targets are camouflaged by clutter 
f rom a sea or land background or by decoys; to 
make matters worse, perhaps the fluctuation in 
strength of the target echo resembles the fluctua­
tion of noise or clutter. From an operational point 
of view, perhaps the radar fails during the period 
when targets are present; and perhaps targets are 
not encountered at the time and place predicted. 
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All of these things affect the prediction of target 
detection and are treated under specialized head­
ings such as reliability, maintainability, target fluc­
tuation, clutter, signal processing, and tactical 
analysis. Our discussion , however, will consider 
only the classical problems of radar detection, i.e., 
the probability of detecting non-fluctuating and 
fluctuating targets when the only interference is 
electrical noise. The principal parameters that we 
need to consider are power transmitted, detection 
range, fluctuation characteristics, probability of 
target detection, and probability of false alarms. 
The relationships among these parameters are 
found by combining the mathematical descriptions 
of the physical processes and signal processing 
associated with the radar. 

In 1947 and 1948, before high-speed digita l 
computers were .available, two papers by J. I. 
:rvlarcum were addressed to the problem of the 
detection of echoes of non-fluctuating strength; 1 

the test of time has proved them definitive. His 
treatment of the problem was statistical, and he 
was able to express the probability of detection as 
a function of signal-to-noise ratio under stated con-

I The work published by J. I. Marcum in 1947 and 1948, and ex­
tended in 1954 by P . Sweriing, was published verbatim as " Studies 
of Target Detection by Pulsed Radar," in Tran s. I .R .E ., IT-6, 
April 1960. 
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ditions. The later of the two papers contains the 
basic statistical analysis. A substantial part of 
Marcum's text is devoted to the use of standardized 
functions and the description of mathematical 
approximations that made the calculations pos­
sible. 

In 1954 P. Swerling extended Marcum's analy­
sis to the case of a target with an echo of fluctuat­
ing strength. 1 His numerical results were obtained 
over a limited range of parameters, also through 
approximations. 

The lasting contributions of these papers are the 
basic statistical analyses that resulted in rigorous 
analytic expressions for the probability of target 
detection in a noise background. The numerical 
data suffer on three counts, however: (1) lack of 
high-speed computers made it necessary to use 
approximations to the rigorous solutions; (2) la­
boriousness of hand computations made it neces­
sary to limit the scope of the computed data; and 
(3) the effect of the approximations on the accu­
racy of the computations was not reported. 

In connection with an effort to extend the scope 
of the data, a way was found to express the prob­
ability of detection in series form and without 
loss of any of the rigor of the former analyses. 
The summations required by these series were 
adaptable to high-speed digital calculation. Fur­
thermore, the inaccuracy represented by the resi­
due, caused by stopping the summation at any 
arbitrary term of the series, could be bounded. At 
this point, rather than merely increasing the scope 
of the data, it became feasible to recompute all 
the data presented by Marcum and Swerling. The 
new data were found to be correct, from the com­
putational viewpoint, to six decimal digits. 

In the present paper the applicability of the data 
is clarified, the new mathematical solutions are 
described, and some representative graphs of the 
new data are presented. 

The Noise Problem 
A pulse radar set is an electronic device that can 

alternately radiate and receive electromagnetic 
energy. Limitations are placed on the frequency 
bandpass of the receiver and also on the time of 
reception, with the result that any received energy 
is suspected of being an echo of the radiated 
energy. The receiver is designed to measure the 
smallest energy possible to maximize its perform­
ance since the maximum transmitted energy is 
always limited for a specific radar. As these re­
ceivers become more and more sensitive, their 
measurements become influenced by unwanted 
energy that previously had been unnoticed in the 
background. 
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Until recently background discrimination was 
principally a human task, in which trained ob­
servers watched optical displays that were attrib­
utable to the received energy and thermal noise 
generated internally. Through the use of very 
subtle target detection criteria and integration laws 
(that are not well understood), trained observers 
are very effective in detecting targets in the pres­
ence of background noise. Marcum's results, in 
theory, apply at least partially to target detection 
by people. For numerical results it would be neces­
sary to interpret their detection criteria in terms 
of a signal-to-noise ratio, and also to know the 
observer's integration law. 

Marcum's results apply directly to the perform­
ance of an automatic detection system that is 
based on a single threshold value of signal-to-noise 
ratio. In an automatic system, frequency discrimi­
nation is used to limit the noise energy, but it is 
not profitable to limit frequencies to less than 
those required to admit essentially all of the echo. 
Because noise contains these same frequencies 
superimposed in random phase and amplitude, 
noise over the bandwidth of the echo must be 
allowed to pass. The random superposition ac­
counts for the large random fluctuations in the 
amplitude of noise. 

The ratio of signal energy to noise energy is of 
fundamental concern in attempting to make radar 
detections. When signal energy is measured over 
the same time interval as noise energy, the energy 
ratio is identical to the power ratio. Since the times 
are usually the same, the equations that follow will 
be written in terms of power. It should be remem­
bered, however, that in the general case the time 
interval for measuring signal and noise energy 
might not be the same ; due account of this fact 
must therefore be taken. 

The power of the target echo is 

P, ~ (:;~:)C:R')( G::' )L, (1) 

where Pe is power of the echo at the input to the 
receiver, 

P t is power transmitted, 
Gt is gain of the transmitting antenna, 
(T is the scattering cross section of the tar­

get, 
GR is gain of the receiving antenna, 

A is the carrier wavelength, 
L is a factor to account for two-way losses 

due to such causes as propagation 
through the medium, antenna, beam 
shape, and plumbing, and 

R is range to the target. 
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The first parenthetical term of Eq. (I) describes 
the radial distribution of power density from the 
transmitting (illuminating) antenna; the second 
term accounts for the power reradiated from the 
target; and the third defines the fraction of the 
reradiated power captured by the receiving an­
tenna. The product of these terms defines a mean 
echo power that would be measured were it not 
for the large fluctuations in noise power. We could 
be reasonably confident that reports of targets by 
a properly ad jus ted radar would be real if we 
could establish a criterion for selecting a value of 
signal-to-noise ratio above which it is sufficiently 
improbable that the value is attributable to noise. 
Infrequent false alarms due to noise would have 
to be accepted as reports of real targets. Some 
detections would be missed because noise happens 
to be low during the echo. If false alarms prove 
bothersome, either the threshold value of the 
signal-to-noise ratio must be increased at the ex­
pense of missed detections or more radiated power, 
or more sophisticated sorting criteria must be in­
strumented. The latter alternative is beyond the 
scope of the present paper. 

The problem of target detection by a continuous­
wave (CW) radar can be treated in the same way 
if the observed sample of the continuous return 
from the target is interpreted as a pulse. 

Statistical Solution 

FALSE ALARM NUMBER-Marcum defined the 
complex relationship between a threshold value of 
signal-to-noise ratio and the probability that values 
in excess of the threshold will exist in the presence 
of both noise and echoes. These excesses are re­
ported as target detections and, as mentioned 
above, include both false and real reports of tar­
gets. Also, unavoidably, targets sometimes will not 
be reported because the signal plus noise does not 
exceed the threshold. In statistics this decision cri­
terion is called a Neyman-Pearson Observer. 

The problem starts with noise. Assume that the 
voltage resulting from noise alone varies with time 
in the following way. 

T~~~~~~~D ~ __ -I-I-';~~~"'~ __ "''''~_-IlAk---41L_\,,"_ 
{ 

A A 

LEVELS A _7-1-1-l~f.-I.-"'¥I-\\-vy""'---I-I-+\v-+A~I'--\......3j.,"-I--,"\-

TIME ---

During the period shown in this illustration 
the noise would have exceeded threshold voltage 
level A seven times, level B five times, and level 
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C only twice. Obviously, the higher the threshold 
the longer will be the average time between occa­
sions when noise alone exceeds the threshold. This 
time is of considerable concern. If it is too short, 
we will be faced with too-frequent false alarms; 
if too long, excessive radiated energy will be re­
quired to achieve reasonable probabilities of target 
detection. Mathematically this time is defined as 
follows: false-alarm time is that during which the 
probability is Po that, in the absence of target 
echoes, there will not be a false alarm. For pur­
poses of standardization Po is taken to be 0.5. 

The probability that a detection is obtained each 
time there is an opportunity is given as PN • False 
alarms are detections due to noise. The false-alarm 
number n' is the number of independent oppor­
tunities for a false alarm in the false-alarm time. 
Then, as standardized, the probability of not ob­
taining a false alarm in the absence of echoes is 

(2) 

This equation expresses concisely the fact that the 
probability of an event not occurring in a number 
of independent trials is the product of the prob­
abilities that it will not occur at each trial. When 
the number of opportunities for a false alarm, i.e. 
the false-alarm number, is very large, an approxi­
mation to Eq. (2) gives accurate values of the 
probability of a false alarm, namely, 

1 1 
PN ~ ---, Inn· 

n T O 
(3) 

The values of false-alarm probability III Table I 
apply when Po = 0.5. 

TABLE I 

PROBABILITY OF A FALSE ALARM IN THE 
ABSENCE OF TARGET ECHOES 

False-Alarm Number False-Alarm Probability 

10 2 6.93 X 10-3 

103 6.93 X 10-4 

IOn 6.93 X 10-7 

lOR 6.93 X 10- !I 

1010 6.93 X 10-11 

The choice of false-alarm number associated 
with a particular radar depends on the function it 
performs. Search radars usually are designed to 
have very large false-alarm numbers, e.g. lOll, to 
minimize the time wasted in reacting to false de­
tections. On the other hand, track radars can use 
small false-alarm numbers because the tracking 
antenna is not unduly distracted by an occasional 
false detection during acq uisi tion of the target; 
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and, during tracking, the distraction is completely 
negligible. 

The number of opportunities for a false alarm 
may be calculated in terms of the pulse repetition 
frequency (PRF), the number of range gates per 
range sweep, and the method of signal processing. 
Common processing techniques are the coherent 
and incoherent integrations of pulses ; coherency 
refers to the preservation of phase in the pulse­
summing process. Range gates are switches that 
open and close at specified times so that a target 
echo, if any, can be admitted from a predeter­
mined element of space referred to as a cell in 
Fig. 1. 

Since a decision as to whether a target is present 
or not must be made each time a gate is open, 
noise pulses that enter can be interpreted as a 
target if their sum is strong enough. The number 
of pulses actually processed per unit time is the 
number of range gates per sweep multiplied by 
the PRF . If, prior to the decision, m pulses are 
integrated coherently, and the N of the resulting 
signals are integrated incoherently, the opportuni­
ties for a false alarm are reduced proportionally 
at the expense of reducing the number of cells that 
may be searched per unit time. 

The false-alarm number is related to the false­
alarm time as follows : 

mNn' 
IF = (PRF)C' (4) 

where tF is the false-alarm time, m is the number 
of pulses integrated coherently, N is the number of 
pulses integrated incoherently, and G is the num­
ber of range gates per range sweep. 

Assume that a radar is designed for a false­
alarm number of lO R; lO pulses are integrated 
coherently, then 100 incoherently; the pulse repe­
tition frequency is l04 / sec, and the number of 
gates per sweep is lO!!. The false-alarm time is 
2.78 hr ; that is, in an average 2.78 hr of operation 

Fig. I -Schematic representation of the division of 
space into range cells. 

20 

in the absence of targets, the probability is 50% 
that a false alarm will not occur. The correspond­
ing probability of a false alarm occurring at each 
of the lO R opportunities is 6.93 X lO-fl . 
BIAS LEvEL- The probability that noise alone will 
exceed a given bias level is obviously a function 
of the bias level. The nature of the function de­
pends on the combined law of the detector and 
integrator and on the characteristics of the noise. 
The detector referred to here is the envelope 
detector, the output of which is a given function 
of the envelope of the carrier wave; this function 
is called the law of the detector. The incoherent 
integrator affects the statistical problem in the 
same way as the detector. The function of the 
signal voltage, which is integrated, is called the 
law of the integrator, e.g. the square of the pulse 
voltage might be integrated over N pulses. As long 
as the same weight is applied to each of the N 
pulses, the integrator is called linear, e.g. we could 
have a linear square-law integrator. 

The solutions for the bias level obtained by 
Marcum are for the combined law of the detector 
and integrator. The solution obtainable rigorously 
is for a combined square law. This combination is 
usually thought of as a square-law detector cou­
pled with a linear linear-law integrator. 

The bias level for the combined square-law case, 
and for the assumed normal distribution of noise 
voltage, is given by 

1 lYb y N -le-Y 

Po-;;; = 0 (N _ 1) ! dY, (5) 
and 

(6) 

where Y b is the bias level normalized to root-mean­
square noise, and y is the output of the detector 
normalized to root-mean-square noise. 

The noise upon which Eq. (5) is based is repre­
sentative of the actual noise that usually interferes 
with radar reception. Its mathematical representa­
tion states that the probability that a given voltage 
due to noise will occur is normally distributed; this 
is called Gaussian noise. It is also assumed that 
the power spectral density of the noise is constant; 
this is referred to as "white" noise. M ean-square 
noise is defined as 

"'0 ~ 100 w(J) df, (7) 

where 1jJo is mean-square noise (or average noise 
power), w (I) is the power spectral density of the 
noise output of the receiver (assumed to be a 
linear filter), and f is the frequency. When white 
noise is passed through a linear filter, the power 
spectral density of the output is proportional to 
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Fig. 2 - The bias required on root-mean-square noise 
to establish a threshold. 

the square of the filter' s transfer function. Thus 
w (f) is the square of the transfer function of the 
receiver multiplied by a constant to account for the 
noise power level. The relationships among YIi , N, 
and n' are shown in Fig. 2 for Po = 0.5. 
TARGET DETECTION- A functional block diagram 
of an automatic pulse radar may be drawn as in 
Fig. 3. The coherent integrator adds pulses in 
phase either at carrier frequency or at some inter­
mediate frequency. The output is fed to the 
envelope detector and also to a device to obtain t/lo 
and take the square root; the value obtained for 
t/lo must not be unduly influenced by echoes. This 
value is multiplied by the factor Y b to obtain the 
bias level. The integrated output of the detector 
is then compared with the bias level in the thresh­
old device. If the integrated detector output is 
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larger, the alarm indicating the probable presence 
of a target is sounded. Marcum's analysis applies 
only to that part of the functional block diagram 
downstream of the coherent integrator. If m pulses 
are integr.ated coherently, the analysis applies to 
1/ m of the transmitted pulses, each of which has 
m times the energy of a single transmitted pulse. 

The probability of detecting a non-fluctuating 
target, i.e. the probability of sounding the alarm 
in the presence of signal and noise, is given by!! 

OJ (N)k N-l+k -Yb y j 
PN(x, Y b) = e-Nx L -~- L _e -.,~, (8) 

k=O k. j =O J. 

where x is the signal-to-noise power ratio, and 
k and j are summation indices. Statisticians will 
immediately recognize the second summation of 
Eq. (8) as the Incomplete Gamma Function re­
stricted to integers. Thus Eq. (8) is the sum of an 
infinite number of terms, each one of which is an 
Incomplete Gamma Function multiplied by a 
coefficient. Under some circumstances the conju­
gate form of Eq. (8) is also useful. 

Since the relationships have been established 
among the bias level, the false-alarm number, and 
the number of pulses integrated by Eq. (5), the 
probability of detecting echoes in the presence of 
noise can now be related to the false-alarm number 
through Eq. (8). Representative samples of these 
relationships are shown in Fig. 4. 

Swerling extended Marcum's square-law results 
to four different cases in which targets return 
echoes of fluctuating strength. Cases 1 and 2 apply 
to targets that can be represented as a number of 
independently fluctuating reflectors of about equal 
echoing area. Such is said to be the case for objects 
that are large compared to a wavelength and 
shaped not too much like a sphere. It is claimed 
that observed data on aircraft targets agree with 
the density distribution a assumed for Cases 1 and 

Fig. 3-Block diagram of an automatic pulse radar. 

2 The series representation was derived by R. G. Roll , APL, from 
the original characteristic functions by means of contour integra­
tion. 

~ This distribution is w(x, x) = (l/i7)exp( - x/.\:); x ~ 0, where x 
is the average signal-to-noise ratio over all target fluctuations. 
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Fig. 4 - Probability of detecting a non-fluctuating 
target with pulses integrated equal to 1 or 100. 

2. Cases 3 and 4 apply to targets that can be 
represented as one large reflector, together with a 
number of small reflectors, or as one large reflector 
subject to small changes in orientation. 4 

Cases 1 and 3 apply when echo fluctuations 
occur from scan to scan. During a scan the pulse­
to-pulse echo strength is assumed constant, i.e. 
fully correlated. Cases 2 and 4 apply when fluc­
tuations occur from pulse to pulse, i.e. fully uncor­
related. The probability of detection for all four 
cases is expressed in terms of the Incomplete 
Gamma Function in a manner similar to Eq. (8). 
This greatly facilitates the computation of new 
data. Representative data computed for Swerling's 
four cases are shown in Figs. 5 and 6. 
RANGE EQUATION- As mentioned above in connec­
tion with Eg. ( 1), the signal-to-noise power ratio 
is available by measuring signals and noise over 
the same period of time. Since the probability of 
detection is also a function of the signal-to-noisc 
power ratio, all the parameters required for form­
ing the range equation are available in consistent 

4 The assumed density distribution is w (x , x) = 4(x/x2 )exp (-2x/.v); 
x~O. 
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units. Noise power from such an unavoidable 
source as the receiver is usually normalized to a 
standard thermal noise power. 

The range equation can now be written. It 
expresses, among other things, the relationship be­
tween the range and the probability that a detec­
tion will be made each time the range is sampled. 
These detections will include false alarms. 

A 

4 _ m P t Gt GR "A2 a L 
R - (47r) 3(KT{3F) SeN, n', PN )' (9) 

A 

where P t is peak power in relation to the average 

10 ~ 

V)' 

Q 
f-« 
<Y: 

w 
Vl 

0 1.0 
Z 

a 
I--;-

< z 
S2 

0.1 

transmitted power of the radar (ac­
tually the average power of each 
transmitted pulse ), 

(J is scattering (fOSS section of the target, 
K is Boltzmann's constant for thermal noise 

energy- 1.38 X lO-2:l joules/ oK, 
T is absolute temperature (I.R.E. standard 

is 290 0 K ), 
f3 is the receiver bandpass, 

SCAN -TO-SCAN 
FLUCTUA TION (CASE 

0.0 I '--~-'--""""""--------'----~-
.01 .05 .2 .5 I 2 5 10 20 40 60 80 90 95 9899 99.8 99.99 

PROBABILITY OF DETECTION (percent) 

Fig. 5- Probability of detecting a fluctuating target, 
with pulses integrated equal to 100 and fluctuating 
reflectors of equal size. 
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F is the noise figure of the receiver, and 100 r--r-..,....-r-r--r---r--r---,----,,---.-----.----,---.---,---,--r-----,-, 

S is the signal-to-noise power ratio (given 
as x in Eq. (8) as a function of N, n', 
and p~. ). 

The numerator of Eq. (9), divided by [( 47T) :I R 4], 
expresses the summed power of m reflected pulses 
measured at the input to the receiver. The term 
in brackets in the denominator expresses the noise 
power due to the usual source, i.e. the noise of the 
receiver referred to thermal noise. If there are 
present such other sources of noise as noise jam­
mers, their power as measured at the input to the 
receiver must be added to the term in brackets. 
Equation (9) is written for a pulse radar. How­
ever, it can be made to apply to a CW radar by 
interpreting the samples of the continuous return 
as pulses and substituting average power for peak 
power. 
COLLAPSING Loss-The function S(N, n', PN ), 

which is shown in Figs. 4, 5, and 6, has been com­
puted for conditions under which the radar set 
integrates the same number of noise pulses as 
signal pulses. If more noise than signal pulses are 
integrated, a greater signal-to-noise ratio is asso­
ciated with any given probability of detection than 
is given by S (N, n', Ps) . A collapsing ratio is 
defined as 

(10) 

where p is the collapsing ratio and M is the addi­
tional number of noise pulses integrated. 

The term "collapsing" stems from an associa­
tion of this ratio with the superposition, or "col­
lapsing," of data on a radar scope. A collapsing 
loss is also defined as 

(11 ) 

where L c is the collapsing loss f.actor, S is the 
signal-to-noise ratio for M = 0, and Sl is the 
signal-to-noise ratio for M > O. In cases where 
collapsing loss applies, the denominator of Eq. (9) 
is multiplied by L (" Note that in so doing 
S(N, n', Pv ) is merely changed to SI (M , N , n', 
PX +M ) • 

Values of Sj (M, N, n', PX +M ) can be found from 
S(N, n', Ps) through the use of p. First find the 
bias level from Fig. 2, using pN for the parameter 
N noted on it. Then find a value for S for the de­
sired probability of detection, using pN for N in 
Figs. 4, 5, or 6. Multiply this value of S by P to 
obtain Sj. This value of Sj can then be used di­
rectly in Eq. (9) or indirectly in Eq. (11). Sym­
bolically when PY +M = P y , 

(12) 
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Fig. 6-Probability of detecting a fluctuating target, 
with pulses integrated equal to 100, large reflector 
plus several small reflectors, or large reflectors subject 
to small changes in orientation. 

Conclusion 

The detection probability is related to the bias 
through integrals whose values are very sensitive to 
small changes in the limits of integration, espe­
cially for a large number of pulses integrated 
incoherently. To obtain numerical values of detec­
tion probability as a function of false-alarm num­
ber, the number of significant figures required for 
the bias must be compatible with the sensitivity of 
the functions to be integrated. Accordingly, the 
bias Y/J was found from Eq. (5) using double 
precision arithmetic on the high-speed digital com­
puter. " Various values of the false-alarm number, 
from 10 to 1010, were used, and the standard value 
0.5 was taken for the probability of not getting a 
false alarm in the false-alarm time. 

The values of Y b thus determined were used in 
Eq. (8) and in the equivalent equations for 
Swerling's cases. The number of pulses integrated, 

' The computing program was written by C. T . Trotter, APL. 

23 



N~ was varied from 1 to 3000. The signal-to-noise 
ratio was varied over a sufficient range to define 
a graph for a range of P ,v between approximately 
0.001 and 0.999. 

The significant figures, which can be read from 
graphs of the data, are sufficient for most pur­
poses. All of the data are graphed in Ref. 6, and 
if greater accuracy is required for any particular 

G L. F . Fehlner, Marcum's and Swerling's Data on Target Detertion 
by a Pulsed Radar, The Johns Hopkins University. Applied Physics 
Laboratory, TG·451 , July 2. 1962. 

problem, the tabulated data are on file. These data 
were computed exactly to six significant decimal 
digits. The new data indicate that the accuracy 
of Marcum's data for non-fluctuating targets is at 
least as good as the accuracy of reading his graphs, 
which is poor for some ranges of the arguments. 
Swerling's data for all four cases, however, are 
quite approximate, especially when the number 
of pulses integrated is large. The exact data indi­
cate lower probabilities of detection for the same 
signal-to-noise ratio. 

An Electromechanical Time-Code Generator 

A persistent problem in data recording, re­
duction, and analysis is that of linking sig­

nificant events to their precise time of occurrence. 
To meet the problem, some data-handling spe­
cialists at APL time-code their records by means of 
commercial, electronic time-code generators- ex­
pensive devices well suited as fixed-installation 
equipment for use by highly skilled technicians. In 
actual use, a time-code generator records an analog 
reference time on tape simultaneously with a taped 
record of a particular sequence of events. The two 
taken as a unit constitute an accurate, time-refer­
enced record, as, for example, of a missile firing . 

For mobile installations requiring simplicity of 
operation and minimum maintenance, however, 
the available commercial equipment is often too 
complex. To meet the demand for mobile equip­
ment, W . E. Hanson * proposed that a photoelec­
tric sensor could be used in an electromechanical 
device to provide a simple, inexpensive, chrono­
metric generation of a code-pulse train. He then 
constructed a model that used a series of disks to 
interrupt light beams at regular intervals . By 
means of this well-known technique, timing pulse 
signals were produced by photodiodes that de­
tected the interruptions of the light beam. A re­
finement of the model, suggested by E. H . Fischer, * 
was to use additional disks and to place them in 
pairs to strobe through a pattern of holes drilled in 
the disks. Stationary light beams would thereby be 
interrupted in a predetermined sequence to pro­
duce a timing code. 

Just such a simple, rugged, and inexpensive de­
vice to provide a timing code for shipboard records 

*W. E. Hanson is a member of the Analog Playback Section , and E. H . 
Fischer is a member of the Electronic Development Project, Bumblebee 
Instrumentation Group . 
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of missile firings was needed at APL. Therefore, the 
time-code generator developed at APL was adapted 
to generate the Atlantic Missile Range (AMR), 
13-bit, I-pulse/ sec code (it is equally adaptable to 
many other codes, including 100-pulse/ sec codes). 

The accuracy of the generator depends on a syn­
chronous motor, which may be driven by 60-cycle 
AC power as in the AMR design. Increased ac­
curacy may be obtained by using a tuning fork and 
power amplifier, or a piezoelectric crystal and 
power amplifier. 

The coded photo readout is accomplished by 
using three disks, seconds, minutes, and hours re­
spectively, in which holes are drilled at appropriate 
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The face of a representative disk, showing the pat­
tern of holes drilled for minutes. 
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