
Quantitative evaluation of the usefulness and effectiveness 
of fleet shipboard guided-missile def ense systems is essential 
for assessment of present and f uture fleet def ense capability . 
The measure discussed, called equipment availability, is the 
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average probability that an equipment will perform in a 

specified manner at some random point in time. Such variable 
parameters as equipment failure, repair time, practical 

operating conditions, and logistics are taken into account. 

AVAILABILITY 
MODEL 
for 
Shipboard 
EquipIllent 

Guided-missile weapon systems constitute a 

significant fighting force for defense of the 
fleet. Quantitative evaluation of the usefulness and 
effectiveness of these systems is important in long­
range planning of future systems, in assessment of 
the status of current systems, and in assessment of 
improvements. In particular, a project engineer 
has a need to quantify his area of concern in 
terms of the ultimate intended use of a system so 
that various engineering changes and improvements 
can be compared in terms of cost/effectiveness. In 
this article, we develop a mathematical model that 
gives an effectiveness measure of shipboard equip­
ments, taking into account practical operating 
conditions, equipment failure, and repair phenom­
ena. During the development of the model, we 
show the effect of changes in parameters that 
determine effectiveness. 

The measure developed in this article is called 
equipment availability. Availability is defined here as 
the average probability that an equipment will 
perform in a specified manner at some random 
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point in time. The major interest is in what we shall 
term tactical availability; that is, the chance that 
an equipment will perform satisfactorily when in­
volved in a tactical environment. Many authors 
have discussed at some time the term availability 
under the guise of reliability, readiness, dependa­
bility, or some other name. Many of the models 
developed under these names are useful for par­
ticular equipments that characteristically operate 
in peculiar ways. The availability model developed 
here is oriented toward tactical shipboard equip­
ment operation. As we define availability, it does 
not take into account what is often referred to as 
"mission reliability" or the probability that an equip­
ment or system will perform throughout an engage­
ment period. Results of other availability models 
are liberally drawn upon insofar as they pertain to 
our model. l • 2 

1 R. E. Berlow and L. C. Hunter, "Mathematical Models for System 
Reliability, "Sylvania T echnologist , J a n . 1960. 

2 P . M. Morse, Queues,Invento1'ies and Jlaintenance, John Wiley and 
Sons, Inc., New York, 1958. 
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Measures of Availability 
Our discussion begins by considering some prac­

tically desirable and simple measures of availability, 
pointing out the shortcomings in these measures. 
Ideally, if a particular tactical use of a weapon 
system were defined in terms of pal ticular threat 
characteristics, one of the best measures of the 
success of the system against this particular threat 
could then be obtained by conducting repeated 
tests incorporating this threat against the weapon 
system. If we then ran the test n times, and the 
weapon system successfully achieved its goal s times, 
we could say that si n, the fraction of times that the 
system was successful, is a measure of the usefulness 
of the system. 

There are, of course, many possible types of 
threat that a surface-to-air guided missile weapon 
system may encounter; therefore, to measure 
adequately the usefulness of the system, many tests 
must be conducted. Unfortunately, organizing 
tests on this scale is difficult. In particular, the cost 
of such tests can often become as high as that of 
the system itself. Tests of this nature are really 
concerned with exercising the entire weapon 
system. Experience with complex systems has 
shown that it is in fact necessary to test the system 
as a whole rather than to try to combine the results 
of tests of its components. 

On many occasions, equipments have been 
reported as capable of a satisfactory level of per­
formance, but, when actually put to a system test, 
have been found to he unavailable. This difficulty 
is usually referred to as an interface problem. 
In this context, the interface problem means that 
even though an equipment is apparently opera­
tional by itself, its functions are impaired when 
used with the other required equipments in the 
system. 

We are then faced with the following dichot­
omy. First, the cost of testing the complete sys­
tem is prohibitive, and second, the lack of a 
complete system test fails to check equipment 
interfaces. Compromises can be made, however. 
The system can be broken down into subsystems, 
each consisting of perhaps several equipments 
that can be tested together, thus taking into ac­
count the interfaces between them. The subsystem 
test can often be done at reasonable cost. Our 
compromise consists, then, of a test that is within 
reasonable cost constraints and that gives a high 
confidence in the operability of the system at the 
end of the test, but which at the same time is not 
completely definitive. The model developed here 
takes this compromise into account, which leads 
to an incomplete test . Inputs to the model depend 
on a systematized failure and repair reporting sys-

10 

tem, as well as engineering analysis of the way in 
which equipments are monitored during normal 
operation. 

Some authors use as a measure of equipment 
effectiveness the percentage of time an equipment 
is reported as operational. That is, effectiveness or 
availability is 

Up T ime 
(1) 

Up Time + Down Time· 
For some equipments this is indeed a practical 
measure of effectiveness. For example, some long­
range search radars used in continental air defense 
can be monitored in such a way that they are 
either operating or down for repair; no other con­
ditions are possible. Simply recording these times, 
then, is sufficient to obtain a measure of effective­
ness. Unfortunately, most shipboard equipments 
cannot be considered in this manner. Sometimes 
Eq. ( I) is written as 

MTBF 
(2) 

MTBF + MTTR' 

where MTBF is mean time between equipment failures 
and MTTR is the mean time to repair. It should be 
understood here and in what follows that by 
failures we mean those phenomena that prevent 
the equipment from performing in some specified 
manner. 

Basic MatheIllatical DevelopIllent of 
A vailabili ty 

We will now develop an expression for availa­
bility, which has been used by many authors,!. 2 

and show that the limiting value of this expression 
is simply that contained in Eq. (2). The method of 
derivation is by the use of difference equations. 
We define A as the equipment failure rate (the 
reciprocal of the mean time between failures) and 
J..I. as the repair rate (the reciprocal of mean time to 
repair). Further, p et) is defined as the probability 
that an equipment will perform at time t. If A and 
J..I. are independent of time, then in a small time 
interval At, the probabilities of failure and repair 
are respectively AAt and J..I.At. The expression for 
the probability that an equipment is up at time 
t + At can then be written 

pet + At) = P(t)[ 1 - AAtJ + [1 - P(t)JJ..I.At. 

Rearranging terms and taking the limit as At ~ 0 
gives 

P' Ct) + P(t)(J..I. + A) = J..I., 

where PI(t) is the derivative of p et) with respect 
to time. The solution of this equation is 

pet) = _J..I._ + c exp [ - (J..I. + A)tJ. (3) 
J..I.+A 
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Fig. I-Equipment availability as a function of 
tilne, for selected values of equipment failure rate 
and repair ra teo 

To determine c, the constant of integration, it is 
assumed that the equipment is operating at the 
start of the interval. That is, P(O) = 1. With this 
assumption, 

c 

Thus, 

A 

J.I.+A 

pet) = _1_ {J.I. + A exp [- (J.I. + A)tJ}. (4) 
J.I.+A 

We will define availability as 

A = 1T PCt) dN(t). 

In this expression, T is the length of time under 
consideration and N (t) is the distribution function 
for the time of need of the equipment. We will 
assume that the equipment is equally likely to be 
needed any time in the interval 0 ~ t ~ T; that is, 

This gives A 

Finally, 

(for t ~ 0) 
(for 0 ~ t ~ T) 
(for T ~ t). 

1 iT - P(t)dt. 
T 0 

A = J.I. ~ A + T(J.I. ~ A)2 {1 - exp [- (J.I. + A)rJ}. 
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The curves labelled kl = 1.0 on Fig. I (where kl is 
the fraction of failures detectable during normal 
operation) show Pct) as a function of time for 
indicated values of J.I. and A. Notice that if we 
take the limit of p et) as t ~ 00 , then the availa­
bility becomes simply J.I. / ( J.I. + A), which is equal 
to Eq. (2). Figure 2 shows availability as a func­
tion of MTTR for several values of MTBF for 
the steady-state case. This expression is par­
ticularly useful for equipments which have per­
fect monitoring; that is, equipments in which 
failures are discovered as they occur. The resulting 
expression is simple, and the m athematics used 
in the derivation is quite straightforward. The 
assumptions of time independence for A have been 
proved by experience to be valid. However, ex­
perience indicates that the distributions of repair 
rates are log normal. The effect of this difference 
has not been evaluated. 

A v ail a bili ty ProbleIlls 

The problem that is most obvious to the analyst 
or engineer concerned with shipboard equip­
ments is that such equipments can be in a non­
operating state without the fact being apparent 
to operating personnel. This is, in fact , one of the 
major stumbling blocks in measuring availability. 
We have introduced this phenomenon into the 
availability model in the following way. Since 
some equipment failures may be seen in the normal 
course of operation and others not until periodic 
tests, we will consider the equipment as consisting 
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Fig. 2-Equipment availability a s a function of 
mean time to repair, based on selected values of 
mean time before failure. 
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of two sections. In the first, failure of a part can 
be observed immediately. In the second, a part 
that fails is not observed until a system test is 
conducted. We will define the failure rate for the 
first section as klA and the failure rate for the second 
as (1 - kl ) A. Consider first only observed failures. 
Let poet) be the probability that the first section 
of the equipment is up (in operating condition) 
at time t; then, using the same derivation as above, 
we find that 

fJ. 

(5) 
ki A [( + k exp - fJ. + ki A)t]. 

fJ. + lA 

Further, let PIL(t) be the probability that the second 
section of the equipment is up at time t. Then, 

PIL(t) = exp [ - (1 - kl)At]. 

Finally, the probability that the equipment is up 
at time t is 

This gives 

pet) = fJ. k exp [ - (1 - kl)At] 
fJ. + lA 

ki A [ + + k exp -(fJ. + A)t]. 
fJ. l A 

(6) 

Figure 1 shows p et) as a function of t for some 
selected values of the parameters kl, A, and fJ. . 
Notice in this figure that the steady-state phenom­
enon that occurs as a result of taking the limit of 
Eq. (4) does not exist. This is because of the 
parameter ki . Obviously, if there are undetected 
failures in the system, availability will approach 
zero. However, if a definitive test of the equipment 
is performed, or a trial of the real use of the equip­
ment is performed, then the accrued failures during 
normal operation will be discovered and the 
equipment can be restored to a perfect condition. 
This indicates the necessity of introducing sched­
uled test procedures. 

We will introduce test procedures by means of 
the parameter T. That is, if we schedule a defini­
tive test every day, for example, then the equipment 
is restored on a daily basis to an availability of one. 
This satisfies the initial conditions assumed in the 
original derivation of p et) . In order to simplify 
the mathematics, we will assume the duration of 
the test to be of zero length. During some of the 
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test periods there will be no failures in the equip­
ment, and during others there will, of course, be 
failures that require repair. In order to take ac­
count of down time for repairs during tests, we 
will compute an expected down time Ts during 
each test, and define availability as 

1 iT
-

T8 

A = T 0 pet) dt, (7) 

where 

(1 - kl)XT 
fJ. + (1 - k1)X' 

The result of the integration in Eq. (7) gives 

A = fJ. 
(fJ. + kl A) (1 - k1)AT 

. {1 - exp [- (1 - kl)A(T - Ts)]} 

+ ki A 
T(fJ. + kl X)(fJ. + X) 

(8) 

. {1 - exp [-(fJ. + A)(T - Ts)]}. 

Figures 3 and 4 show availability computed 
from Eq. (8) as a function of MTTR. Figure 3 
shows the effect of the time between system main­
tenance tests, as well as the effect of changing the 
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mean time to repair, showing the effect of variation 
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fraction of detectable failures. Figure 4 shows the 
effect of a variation in the mean time between 
breakdowns. 

With the parameter values chosen, notice from 
Fig. 3 that with weekly or biweekly tests the equip­
ment can be available less than 25 % of the time, 
and that availability is insensitive to MTTR. 
This is because during such a time period the 
expected number of unobserved failures is high 
and there is a good chance that the equipment 
will be down and unperceived by the operating 
personnel. As T decreases, the availability is more 
sensitive to MTTR. 

The value of kl will vary considerably from one 
equipment to another and will depend particularly 
on the customary or normal operating mode. 
Figure 3 shows the effect of this parameter. If the 
equipment MTTR is 8 hr, then increasing kl 
from 0.4 to 1.0 is equivalent to increasing simul­
taneously the mean time to failure from 25 to 45 
hr and decreasing the repair time to 2 hr. 

Figure 4 shows the effect of failure rate. A signifi­
cant thing to notice here is that availability is more 
sensitive to a decrease in MTBF than it is to the 
same percentage of increase in MTBF. 

Availability-Test Problellls 

The next difficulty encountered in operating the 
system we have described is that the test procedures 
may not be complete. That is to say, because of 
either high cost or physical space limitations or a 
combination of these two factors, definitive ship-
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board equipment tests can be difficult to achieve. 
To account for this fact in our model, we have in­
troduced the parameter k2-the percentage of 
failures detectable during a test. This means that 
when a test is conducted, instead of restoring the 
equipment to an availability of I, the availability 
after tests cannot exceed exp[ - (1 - k2);\t]. Lack­
ing a definitive test, we still have the problem that 
equipment availability can approach zero­
although at a much slower average rate than 
without any test. There is, therefore, a need to 
perform somehow a definitive test that will in fact 
restore the equipment to an operating condition. 
Thus, we introduce the parameter n, the number 
of normal test cycles before a definitive test is 
conducted. A definitive test, as used here, is one 
that checks those parts of the equipment not tested 
in the normal test procedure. In the case of a 
missile system, a definitive test may be a missile 
firing. Figure 5A indicates the phenomenon just 
described. Here we see availability as a function 
of time. At time zero, availability is 1 and decays 
according to Eq. (6) until time T - T s. At this 
time the normal test is performed. After an ex­
pected down time T s , the equipment is restored 
to an operating condition with the probability 
exp[ - ( 1 - k2);\ (T - T s) ] . In this figure, we 
have assumed that three test cycles precede a 
definitive test, that is n = 3. Thus, at time 3 T 
the equipment is restored to full operating con­
dition. Availability is defined as before in Eq. (7). 

Thus, 

lInT 
A = nT 0 p(t) dt, 

where 

p(t) = P(t) for 0 ::s; (T - Ts) 

p(t) = 0 for (T - T s) < t < T 

p(t) = exp[ - (1 - k2);\( T - T s)JP(t) 
for T ::s; t ::s; (2 T - T s) 

p(t) = 0 for2T- Ts < t < 2T 

p(t) = exp[ - 2(1 - k2);\( T - T s)JP(t) 

for 2 T ::s; t ::s; (3 T - T s) 

and 

p(t) = exp[ - (n - 1) (1 - k2);\( T - T s)JP(t) 

for (n - 1) T ::s; t ::s; (n T - Tl$) 

p(t) = 0 for n T - T il < t < n T. 
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Integration of Eq. (9) gives 

A = (_1 ) 1 - exp [-(I - k2)Xn(T - Ts)] 
nT 1 - exp [-(1 - k2)'A(T - Ts)] 

(
JL{1 - exp [- (I - k1)X(T - Ts)]} (10) 

(1 - k1)'A(p, + kl 'A) 

+ kIf 1 - exp [-(JL + X)(T - Ts)]}). 
(p, + kl 'A) (JL + 'A) 

Figure 6 shows the effect of k2 • Notice that it 
must be greater than k1 ; that is, our test procedure 
must be at least as good as monitoring during 
normal operation. 

Shipboard Operational ProbleIlls 
The next phenomenon to be introduced occurs 

because many equipments in the fleet do not oper­
ate continuously; that is, the stress on the electronic 
components occurs only at certain times during the 
day. For example, the diagram following indi­
cates a typical equipment's operation for one day. 
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SYSTEM TEST DOWN DOWN 
AND REPAIR OFF ON FOR REPA IR ON FOR REPA IR OFF ON OFF ---- - -

(TIME) -2 4 hr 

If we assume that stress on the equipment occurs 
only during the indicated ON periods, and that 
during all other periods the equipment will not 
fail, it is convenient for analysis to regroup the 
periods above as shown below. 

SYSTEM TEST DOWN DOWN 
AND REPAIR ON FOR REPAIR ON FOR REPAIR ON OFF 

(TIM E) 24 hr 

Of course, the pattern and cycle for each day 
will be different. That is, the number of ON and 
OFF cycles, as well as repair periods, during both 
test and normal operation, will vary each day. 
These cycles, averaged over many days of opera­
tion, are represented in terms of probability by 
Eq. (6). However, in this equation we have not 
taken OFF periods into account. An OFF period 
means that the equipment does not fail. The reason 
for regrouping the periods, with the OFF periods 
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together at the end of the day, is to simplify the 
mathematical treatment of nonstress periods. 

In order to deal with OFF periods, we introduce 
the parameter j, the duty cycle of the equipment 
or the fraction of the time between test periods 
during which the equipment is subject to failures. 
Thus, assuming the equipment does not fail during 
nonoperative periods, we can reconstruct Fig. 5A 
in the form of Fig. 5B, in which we have again 
assumed that tests occur T cycles apart. The time 
from zero to jT represents the stressed period of 
the equipment. At time jT we will assume that 
the equipment is OFF. However, we will further 
assume that observed failures (which occur at the 
rate of k1A) will be fixed before turn-off. This 
accounts for the discontinuity and increase in 
availability at time jT. At time T, the same phe­
nomenon as in Fig. 5A repeats again and continues 
through n cycles of tests. Using the definition of 
availability given in Eq. (9), and taking account 
of OFF periods, we find 

A = (_1 ) 1 - exp [-(1 - k2)AnjT] 
nT 1 - exp [ - (1 - k2)XjT] 

. (JL{1 - exp r - (1 - k1)AjT]} 
(1 - k1)X(JL + kl X) 

+ kl A{ 1 - exp [-(JL + A)jT]} 
(JL + kl X) (JL + X) 

(11) 

+ [T(i - j) - T,] exp [- (i - k1)XjT]) , 

w here, in this case, 

Figure 7 shows the effect of the two parameters 
j and n. It is particularly relevant to notice that 
the duty cycle, the normal test cycle, and the 
definitive test cycle are three items that can be 
controlled by ship's operating doctrine; that is, 
j, k, and T are independent of failure rates, repair 
rates, and the monitoring procedures of equip­
ments. 

Equation (11) is a mathematical expression that 
takes into account most of the phenomena that 
occur in shipboard equipments. We have not 
included such important items as turn-on stress 
or test-equipment reliability. The former has 
not been included because of the difficulty in 
obtaining useful data. It is interesting that test­
equipment reliability can be considered as a 
part of k2 • Thus, k2 ' is defined as the percentage 
of failures detectable during a normal test. If 
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reliability of the test gear is r, then we could say 
that k2' = rk2 and simply replace k2 in Eq. (11) 
by k2'. In a similar way, if p is the probability that 
failure will occur at turn-on, then by knowing 
the average number of equipment turn-ons per 
day, m, we could say that A' = (mp/ T) + A, 
and simply replace A by A' in Eq. (11). 

Another usual shipboard occurrence is pre­
ventive maintenance events. Some preventive 
maintenance can occur without dismantling the 
equipment. Those scheduled preventive main­
tenance actions that require doing so can be in­
cluded in the model if the average down time 
between test cycles is known. Let us call this time 
td ; then, 

Ts = td + (1 - k1)AjT. 
JL 

Equation (11) is valid for the following range of 
parameter values: 0 < A; 0 :::; JL; 0 < kl < I; 
k1 :::; k2 < 1; 1:::; n;tT:::; T; and tT/ T :::;j:::; 1, 
where tT is the minimum time required to run 
tests. It is assumed in the model that the equipment 
is stressed during the time tT , and minimum values 
for T and j are determined by the test time . 
Expressions for availability for limiting values of 
the parameters can be obtained easily by considera­
tion of the basic derivation given at the outset. 
If we have a perfect test, that is k2 = 1 and n = 1, 
then Eq. (11) reduces to Eq. (8). If, in addition, 
we have perfect monitoring of failures, that is 
kl = 1, then Eq. (11) reduces to the simple defini-
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mean time to repair, showing the effect of test 
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tion of availability given at the outset in Eq. (2). 
Some care should be exercised in using Eq. (11) 

in optimization of parameters, particularly with 
respect to the duty cycle. It would seem from the 
model that the greatest availability is obtained 
by not operating the equipment at all. This, of 
course, is due to the assumption of no failures 
during OFF periods. In any investigation of optima, 
the duty cycle is best treated as a constant. 

The model as developed so far assumes that there 
are no logistic problems; that is, the availability 
is computed with the assumption that spare parts 
are in ample supply. If a given equipment has a 
logistic policy, the probability that the equipment 
is awaiting spares can be easily computed. Thus, 
from a model for logistics it is possible to compute 
the logistic availability, which we may call AL . 
The overall availability of an equipment is then 
the product of AL times the quantity A as computed 
in Eq. (11). ' 

Engineering estimates of kl and k2 require exten­
sive effort. One method of obtaining input values 
for these parameters is to establish from a report­
ing system a list of failures for an equipment. 
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This failure list is then analyzed by system engi­
neers and operating personnel to determine (1) 
whether the failure would be observed in normal 
operation, and (2) whether it would be observed 
during system tests. When an equipment is in the 
design stage, the monitoring of particular equip­
ment subassemblies should be considered in terms 
of theoretical failure rate and the cost of continuous 
monitoring. 

This model for availability has been used to 
determine quantitatively the current level of 
effectiveness of guided-missile systems in the fleet, 
as well as to predict effectiveness levels on the 
basis of planned or proposed changes. Another 
useful output of the model is its capability for 
determining the direction that affords the best 
payoff in availability. For example, we have 
previously indicated the effect of changing the 
routine monitoring aspects of the equipment as 
compared to changing simultaneously the failure 
rate and the repair rate. Additionally, the model 
has proved useful to manufacturing contractors as 
a guideline toward new equipment design, which 
will give optimum equipment for the lowest cost. 

APL T echnical Digest 


