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Abstract: In the optimization problem which only 
measurements of the objective function are available, it 
is difficult or impossible to directly obtain the gradient 
of the objective function. Although the second order 
simultaneous perturbation stochastic approximation 
(2SPSA) algorithm solves this problem successfully by 
efficient gradient approximation that relies on 
measurements of the objective function, the accuracy of 
the algorithm depends on the matrix conditioning of the 
objective function Hessian. In order to eliminate the 
influence caused by the objective function Hessian, this 
paper uses nonlinear conjugate gradient method to 
decide the search direction of the objective function. By 
synthesizing different nonlinear conjugate gradient 
methods, it ensures each search direction to be 
descensive. Besides the search direction improvement, 
this paper also uses inexact line searches to decide the 
stepsize of movement. With the descensive search 
direction and appropriate stepsize, the improved SPSA 
converges faster than the 2SPSA. Through applying to 
reinforcement learning, the virtues of the improved 
SPSA are validated.  
 

ⅠINTRODUCTION 
n engineering, physical and social science field, there are 
many optimization problems which only the 

measurements of the objective function are available. 
Because it is difficult or impossible to directly obtain the 
gradient of the objective function, stochastic approximation 
algorithms such as Kiefer-Wolfowitz finite difference 
gradient approximation [1] and simultaneous perturbation 
stochastic approximation [2-3] were proposed to solve 
these problems. Contrasted with the finite difference 
approaches which require a number of function 
measurements proportional to the dimension of the gradient 
vector, the SPSA algorithm significantly reduces the 
number of measurements required in many multivariate 
problems of practical interest. The latest improved SPSA 
estimates gradient relying on only one measurement of the 
objective function [4]. Based on the simultaneous 
perturbation theory, the SPSA algorithm estimates the 
gradient of objective function ( )f θ as 
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Where p is dimension number, kΔ is a p-dimensional 

perturbation vector, kc is a gain sequence. Although the 

measurements are few, the estimation of gradient is 
efficient. With the step vector kα , the first order SPSA 

estimates k̂θ of a solution θ ∗ according to (2) as 

1
ˆ ˆ ˆˆ ( )k k k k kgθ θ α θ+ = −             (2) 

In order to accelerate the convergence speed, the 2SPSA 
algorithm estimates the acceleration properties associated 
with deterministic algorithms of Newton–Raphson form as  
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However, at finite iterations, the accuracy of the algorithm 
depends on the matrix conditioning of the loss function 
Hessian. The error of 2SPSA algorithm for a loss function 
with an ill-conditioned Hessian is greater than the one with 
a well-conditioned Hessian. Besides the accuracy problem, 
the Newton–Raphson algorithm itself can not ensure each 
search direction always to be a descensive direction [5]. 
Then the objective value will not minish even if the 
approximation of Hessian matrix is accurate. In addition, 
the step size of movement is also important for the 2SPSA 
which simulates the Newton–Raphson algorithm. Large or 
short step size can not ensure fast down in convergence. 
Regard to the diminishing stepsize of SPSA, it is not 
generated according to the Wolfe condition of linear search 
[6]. Then the association which consists of accurate 
Hessian matrix, descensive search direction and bad 
stepsize will also cause worse objective value. In order to 
accelerate convergence property, it is necessary to improve 
the gradient and step strategy of SPSA. 

The remainder of this paper is structured as follows: 
section �introduces the nonlinear conjugate gradient 
method in the SPSA. In section �, we analyze the 
reinforcement learning model of AC drive system. In 
section �, a simulation is used to validate the feasibility of 
the proposed improvement in SPSA. At last, through 
analyzing of experiment results, the conclusion is presented 
in section �. 
 

�.NONLINEAR CONJUGATE GRADIENT METHOD 
IN THE SPSA 

In numerical analysis field, the conjugate gradient 
method is the best way to approximate the solution of a 
problem. The conjugate gradient method satisfies the 
recurrence 

1k k k kx x dα+ = +                (4) 

Where the stepsize kα is positive and the directions kd
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are generated by the rule: 
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          (5) 

Here ( )k kg f x= ∇ is gradient vector of objective function. 
There are many different versions of the conjugate gradient 
method corresponding to different choices of kβ . 
Well-known conjugate gradient methods include the 
Fletcher-Reeves method [7], Polak-Ribiere-Polyak method 
[8-9], Dai-Yuan method [10] and Hestenes-Stiefel method 
[11]. They are specified by formula (6) respectively. 
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Where 1 1k k ky g g− −= − and • stands for the Euclidean 

norm of vectors. When f is quadratic and kα  is chosen to 

minimize f in the search direction kd , these choices are 
all equivalent, but for a general nonlinear function, 
different choices have quite different convergence 
properties. It is proved that the global convergence of the 
FR method for nonconvex functions with the strong Wolfe 
line search if the parameter 0.5σ < [12]. The PRP method 
with exact line search may cycle without approaching any 
stationary point, see Powell’s counter-example [13]. 
Although one would be satisfied with its global 
convergence properties, the FR method sometimes 
performs much worse than the PRP method in real 
computations. A similar case happens to the DY method 
and the HS method. To combine the good numerical 
performance of the PRP and HS methods and the nice 
global convergence properties of the FR and DY methods, 
Dai and Yuan proposed a hybrid conjugate gradient method 
as [14] 

max{0, min{ , }}DY HS
k k kβ β β=         (7) 

This hybrid conjugate gradient method shows better 
convergence property than others since of it ensures each 

kd to be a descensive search direction. Then the recurrence 

of estimating k̂θ  based on the nonlinear conjugate 
gradient method is  
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Through analyzing the above formula (8), we find that the 
convergence speed of SPSA is not relative to matrix 
conditioning of the objective function Hessian which exists in 
2SPSA. So the convergence speed is decided by ˆkg and 

kα . Because Spall has proved the efficiency of 
simultaneous perturbation in gradient approximation [2], 
then it necessary to find a effective stepsize strategy which 
can minish the objective value based on the exact ˆkg and 

kβ . As standard conjugate gradient method required, kα
should satisfy Wolfe conditions as follow 
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Where 0 1δ< < , 1 ( ,1)σ δ∈ and 2 0σ ≥ . Because 
only measurements of the objective function are available, it is 
impossible to execute line search according to Wolfe conditions. 
In standard SPSA, kα is calculated as  

/ ( 1)k a A k σα = + +            (10) 
Spall [2] chooses 0.602σ = , A  as 10 %( or less) of 
the maximum number of expected/allowed iterations and 
a  as / ( 1)a A σ+ times the magnitude of elements in

0 0̂ˆ ( )g θ . With the increase of k , kα is decreasing. If 

kα causes a worse objective value, the optimal solution 

must stay at k̂θ  and look for a new kα according to 
(10) at the next iteration. Without an appropriate stepsize, 
the optimal solution will stay at k̂θ forever and slower 
the convergence speed greatly. For instance, as Fig. 1 
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Fig. 1 The search process of SPSA 

shows, ˆ ˆ( ) ( )k k k kf d fθ α θ+ > , then it is necessary to 

look for another kα to minish objective function value as 
standard SPSA required. But we ignore the perturbations 
which minish the objective function value. In Fig.1, the 
objective values of four points are that 

ˆ( )k k k k kf d cθ α+ + Δ < ˆ( )kf θ < ˆ( )k k k k kf d cθ α+ − Δ
< ˆ( )k k kf dθ α+ . Obviously, the optimal solution is

k̂ k k k kd cθ α+ + Δ . At this time, we can take 

1
ˆ ˆ
k k k k k kd cθ θ α+ = + + Δ as the result generated 

according to formula (8) with the appropriate stepsize
ˆ /k k k k kc dα α= + Δ . Then the k̂ k kdθ α+  and 

k̂ k k k kd cθ α+ − Δ  can be looked as perturbations. The 
new expressions of perturbations are  
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With the perturbations, we can estimate the gradient at 

1k̂θ +  as 
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  Based on the above analysis, if ˆ( )k k k k kf d cθ α+ − Δ  

= ˆ ˆ ˆmin{ ( ), ( ), ( ),k k k k k k k k kf d f f d cθ α θ θ α+ + − Δ  
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and appropriate stepsize ˆ /k k k k kc dα α= − Δ ,the 

estimation of gradient at 1k̂θ + is 
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If ˆ ˆ ˆ( ) min{ ( ), ( ),k k k k k k k k kf f d f d cθ θ α θ α< + + − Δ  
ˆ( )}k k k k kf d cθ α+ + Δ , the only way is to keep optimal 

solution at k̂θ and look for a new kα at next iteration. In 
fact, the above process of looking for the minimal objective 
value among ˆ( )k k kf dθ α+ , ˆ( )k k k k kf d cθ α+ + Δ ,  

ˆ( )kf θ and ˆ( )k k k k kf d cθ α+ − Δ is a line search process 
in essential. Based on the exact estimation of gradient, it 
will accelerate the convergence speed of SPSA. 
 

� THE IMPROVED SPSA IN RL 
In order to validate the feasibility of the proposed 

algorithm, this paper applies it to the reinforcement 
learning which designs a controller for asynchronous (AC) 
motor drive system. Fig. 2 illustrates the theory of 
reinforcement learning in AC motor drive system. 
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.dsi const∗ =

∗
rω

rω

e

  Fig. 2 Theory of neurocontroller designing in AC motor drive system 
The dashed square is the reinforcement learning subsystem 
which consists of genetic algorithm (GA) and SPSA 
algorithm. Both GA and SPSA are stochastic approximation 
algorithms. Although GA has good global search ability 
than SPSA algorithm, it descends slowly at local area. So 
this paper applies SPSA algorithm to search optimal 
solution when GA is vibrating at local area. This hybrid 
algorithm can accelerate the learning speed of 
reinforcement learning. Obviously, the reinforcement 
learning is a good test which will validate the fast 
convergence speed of the improvement SPSA algorithm. 
For the drive system, the electromagnetic torque Te and 
load state equation in the rotor flux oriented scheme at 
steady state are  
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Where p is the number of magnetic pole, Lm is magnetizing 
inductance, Lr is rotor inductance, ˆ rψ is the rotor flux, TL 
is the load torque, J is the inertia, wr is the speed of rotor. 
The aim of reinforcement learning is to design a speed 
controller which supplies the reference torque current qsi∗ . 
In this AC drive system, the steady state error is the 
learning goal. It means that the controller should own the 
optimal mapping function of wr and qsi which ensure drive 
system have the minimal steady state error. Generally 
speaking, this reinforcement learning is a minimization 
problem which the objective function is  

2

1
| ( ) |t

t
f e t=∑             (15) 

Where )(te is the steady state error, t1, t2 is is the starting 
and ending time of evaluation.  
 

�. SIMULATION RESULTS AND ANALYSIS 

The simulation is established by simulink kit of 
MATLAB as Fig. 2. The model parameters are set 
according to the factual AC motor in the laboratory: 
Lm=0.1024H, Lr=0.1088H, Ls=0.1063H, Rr=0.531Ω, 
Rs=0.813Ω, p=2, J=0.02kgm2, rated power Pn=5.5kw, rated 
voltage Un=380V. Although the parameters are exact in 
simulation, the drive system is unknown to the controller 
designer. Because most control system is a dynamic system 
in real world, we choose a recurrent neural network as the 
neurocontroller. The topology of the initial network shows 
as Fig. 3.  
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         Fig. 3 The initial topology of neurocontroller 
In Fig. 3, ijw is the weight matrix which connects up 

layer i and layer j. feed_wi is the weight matrix of the ith 
layer which feeds back neuron output to other neurons of 
the same layer. ibias is bias matrix of the ith layer. In order 
to take advantage of different activation function of neural 
network, we also use a new activation function as 

tan ( )
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Where iwtrans _  is weight matrix of activation function， 
tansig(x), hardlims(x), purelin(x), and radbas(x) are four 
ordinary activation functions.  

The initial settings of GA like these: the population size 
is 40, Crossover probability Pc=0.8, mutation probability 
Pm=0.01, selection method is roulette wheel selection, max 
generation N=200. When GA vibrates at local area, the 
SPSA algorithm begins to search the optimal solution 
instead of it. The parameters like a , c , A and σ are 
initialized according to standard SPSA in [2]. The hybrid 
algorithm of GA and SPSA operates as fig.4.  

 
Fig. 4 the operation flow of the hybrid algorithm 

In order to validate the improvement of the convergence 
speed, Fig.5 shows the minimal objective value during the 
reinforcement learning when learned based on 2SPSA 
algorithm and the improved SPSA algorithm respectively. 
As the Fig.5 shows, the improved SPSA algorithm 
accelerates convergence speed obviously. In Fig. 5, there 
are some horizontal lines which imply the search stay at the 
same point during the 2SPSA search process. The two 
reasons bringing on the above phenomenon are that the 
search direction is not descensive and the stepsize does not 
fit in with the search direction. These shortcomings slower 
the convergence speed of 2SPSA greatly. Compared with 
the 2SPSA algorithm, the improved SPSA algorithm 
eliminates the shortcomings and accelerates convergence 
speed. In Fig. 4, the minimal objective values keep 
descending during the improved SPSA algorithm search 
process. Although 2SPSA algorithm begins to search at the 
45th generation and the improved SPSA algorithm begins to 
search at the 55th generation, the convergence speed of the 
latter is much faster.  
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Fig. 5 the minimal objective value during the reinforcement learning 

 
 
 

Ⅴ. CONCLUSION 

This paper improves two facets of the SPSA algorithm. 
The first improvement which applies nonlinear conjugate 
gradient method to SPSA algorithm ensures the search 
direction to be descensive. The second improvement which 
executes inexact line search can find an appropriate 
stepsize corresponding to descensive search direction. 
Based on the exact gradient approximation, these 
improvements can accelerate the convergence speed of 
SPSA. Through applying the improved SPSA algorithm to 
reinforcement learning of AC drive system, its virtues are 
validated completely. On the other hand, the simulation 
results also show that the SPSA is a good method to solve 
reinforcement learning problem. 
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