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FPGA Implementation of a Pulse Density Neural Network With Learning
Ability Using Simultaneous Perturbation

Yutaka Maeda and Toshiki Tada

Abstract—Hardware realization is very important when con-
sidering wider applications of neural networks (NNs). In partic-
ular, hardware NNs with a learning ability are intriguing. In these
networks, the learning scheme is of much interest, with the back-
propagation method being widely used. A gradient type of learning
rule is not easy to realize in an electronic system, since calcula-
tion of the gradients for all weights in the network is very diffi-
cult. More suitable is the simultaneous perturbation method, since
the learning rule requires only forward operations of the network
to modify weights unlike the backpropagation method. In addi-
tion, pulse density NN systems have some promising properties, as
they are robust to noisy situations and can handle analog quanti-
ties based on the digital circuits. In this paper, we describe a field-
programmable gate array realization of a pulse density NN using
the simultaneous perturbation method as the learning scheme. We
confirm the viability of the design and the operation of the actual
NN system through some examples.

Index Terms—Field-programmable gate array (FPGA), learning
ability, neural networks (NNs), pulse density, simultaneous pertur-
bation.

I. INTRODUCTION

NEURAL NETWORKS (NNs) are widely used in a number
of applications in which the NNs are usually implemented

as a software program on an ordinary digital computer. How-
ever, software implementations cannot utilize the essential prop-
erty of parallelism found in biological NNs. In this respect,
implementation of NNs using hardware elements such as very
large-scale integration (VLSI) is beneficial.

When considering the hardware implementation of an NN,
realization of the learning mechanism as a hardware system
is an important and difficult issue [1]. As we well know, the
backpropagation method is commonly used. However, realiza-
tion of the backpropagation method as an electronic system is
very difficult, considering wiring for modifying quantities to all
weights, calculation of the derivative of the sigmoid function,
and so on.

Thus, it is particularly difficult to implement large-scale NNs
with learning ability via the gradient method because of the
complexity of the mechanism that derives the gradient. From
this point of view, we must try to find a learning rule that is easy
to realize.

The simultaneous perturbation method was introduced by
Spall [2], [3], Alespectoret al. [4], and Cauwenberghs [5].
Maeda also independently proposed a learning rule of NNs
using simultaneous perturbation and reported a feasibility of
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the learning rule [6]–[8]. At the same time, the merit of the
learning rule was demonstrated in VLSI implementation of
analog NNs [9], [10].

The advantage of the simultaneous perturbation optimization
method is its simplicity. The method can estimate the gradient
using only values of the error function. Therefore, implementa-
tion of this learning rule is relatively easy compared to that of
other learning rules, because it does not have to take the error
backpropagation circuit into account.

Certain pulse techniques, such as pulse width or pulse stream,
have also been investigated to implement artificial NNs. For ex-
ample, El-Masryet al. reported an efficient implementation of
artificial NNs using a current-mode pulse width modulation ar-
tificial NN [11]. Moreover, Murrayet al.proposed a VLSI NN
using analog and digital techniques [12].

In particular, pulse density NNs have fascinating properties.
For example, pulse systems are invulnerable to noisy conditions.
Moreover, pulse density systems can handle quantized analog
values based on the digital circuit [13]. Based on these features,
Hikawa reported a frequency-based NN using the backpropaga-
tion [14]. In [14], the ordinary backpropagation method is ap-
plied to a pulse density NN.

However, it seems difficult to employ the backpropagation
method for a pulse density system. Actually, NN system de-
scribed in [14] has to complete the error propagation mechanism
based on the pulse density, in which case the circuit design be-
comes complex compared with the simultaneous perturbation
method.

Recently, field programmable gate arrays (FPGAs) have been
used in many commercial fields because of their reconfiguration
properties and flexibility [15]. FPGAs also seem to be promising
devices for implementing NNs, in comparison with ordinary
software implementations.

VHDL is a very popular hardware description language
(HDL) for describing or designing digital circuits. In the
fundamental design of this research, HDL is used.

Combining a pulse density system with the simultaneous per-
turbation method, we can easily design analog hardware NN
systems with learning capability. Some of the features of a pulse
density NN system using FPGA can be summarized as follows:
1) Hardware can take advantage of parallelism; 2) simultaneous
perturbation learning rule is very simple; 3) analog NN system
is realized based on digital circuits; 4) digital design technology
used is supported by electronic design automation; and 5) pulse
density NNs are not affected by noisy situations.

II. SIMULTANEOUS PERTURBATION LEARNING RULE

Details of the simultaneous perturbation method as a learning
rule of NNs have been described previously [6]–[9], [13] and are
reiterated in this section.
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The simultaneous perturbation learning rule with a sign
vector is described as follows:

(1)

(2)

where is the weight vector including the threshold of all neu-
rons in a network at theth iteration. is the magnitude of the
perturbation. is a positive constant to scale a modifying quan-
tity, called the learning coefficient. is a modifying vector
and represents theth element of the vector . and
denote a sign vector and itsth element that is 1 or 1, respec-
tively. Therefore, if the sign is 1, a positive perturbation
is added to theth weight, if it is 1, a negative perturbation

is used. The coefficientcontrols the magnitude of the per-
turbations. The sign of is randomly determined with a zero
mean for every iteration. Moreover, the sign ofis independent
of the sign of the th element of the sign vector. This means
that a different sign is used for a different weight. That is

(3)

where denotes the expectation.
The error function is defined by an output of the NN

and a corresponding teaching signalas follows:

(4)

Ordinarily, the error function is defined by a squared error. How-
ever, we use the absolute error for circuit simplification.

In this learning rule, the modifying quantities for all weights
in the network are calculated using two values of the error func-
tion and . Two forward operations of the net-
work give . Multiplying this by yields
(2). This quantity is an estimated gradient of the error function
with respect to . Repeating this for , we update
all the weights.

When we expand the error at the point , there
exist such that

(5)

Therefore, (2) becomes

(6)

We take an expectation of the above quantity. From the condi-
tions of the sign vector in (3), we have

(7)

That is, approximates . Since the right-hand
side of (2) is an estimated value of the first-differential coeffi-
cient, the learning rule is a type of a stochastic gradient method
[8], [9].

An important point is that this learning rule requires only two
values of the error function. That is, it requires only two forward

Fig. 1. Pulse density NN via simultaneous perturbation.

operations of the NN in order to obtain estimators of the first
differential coefficients of the error function with respect to all
weights in the network.

From the point of view of realizing the learning ability of
NNs, the simplicity and ease of the simultaneous perturbation
method is highly beneficial. If we use the ordinary backpropaga-
tion method, we have to include the so-called error-propagation
circuits for all weights in the network. The error-propagation
through the weights, the wiring for all weights in the network,
and the overall circuit design becomes difficult. The simulta-
neous perturbation learning rule does not involve the error-prop-
agation, and only values of the error function are required to
update all the weights. Therefore, only one circuit realizing the
learning mechanism is used to update all the weights, even if the
number of weights is large.

Moreover, a pulse density system assists in simplifying the
design. In pulse density NNs, the number of pulses denote out-
puts of the neurons and, hence, output of the network. Therefore,
ordinary up–down counters can implement addition or subtrac-
tion. For example, counting up for the output of the network and
counting down for a teaching signal yields the error of (4). Simi-
larly, the denominator of the right-hand side of (2) can be easily
realized with a counter. The main part of the learning mecha-
nism can be implemented with ordinary logical elements used
in common digital circuits.

III. B ASIC ARCHITECTURE ANDIMPLEMENTATION

It is crucial to implement NNs using suitable media in order
to take advantage of some ideas of real biological nerve systems.

The overall configuration of our NN is shown in Fig. 1. In this
figure, and denote a single weight unit and a single neuron
unit, respectively. Basically, the system consists of three kinds
of units: weight units, neuron units, and a single learning unit.
The NN itself is composed of multiple weight units and multiple
neuron units. Only one learning unit generates the basic quantity
of modification for all weights and conveys it to all weight units.

A. Weight Unit

The weight unit is shown in Fig. 2. This unit calculates the
product of the input signals and the weight value. At the same
time, the unit updates the weight value.

The weight unit consists of a weight modification part and a
random-number generation part. The weight modification part
updates the weight value based on the quantity from the learning
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Fig. 2. Weight unit.

Fig. 3. Weight modification part.

unit and carries out addition or subtraction of the perturbation.
At the same time, it stores the weight value. The random-number
generation part generates a random number using a linear feed-
back shift register.

If the sign of the result of the unit is positive, the output is sent
to the positive side of the neuron unit. If the sign is negative, the
output is sent to the negative side.

1) Weight Modification: Fig. 3 depicts the weight modifica-
tion part. The first counter (eight bits) and the first Flip Flop (FF)
in this part (left counter and FF in Fig. 3) store an initial value
of a weight and its corresponding sign, respectively. The basic
modifying quantity in (2) is common to
all weights. This quantity is sent from the learning unit, and con-
nected to the first counter. The sign of the quantity is connected
to the first FF. The sign in (2), which is generated by the linear
feedback shift register, is also connected to the FF which decides
whether counting up or down should be performed. These op-
erations modify the weights as represented in (2).

Another role of the weight modification part is to add a pertur-
bation to the weight. This is simultaneously done for all weights
in each weight modification part. The second counter and the
second FF (right counter and FF in Fig. 3) are used for this
purpose. That is, the perturbation, which is constant, is added
by the counter, and the sign of the perturbation is stored in the
second FF.

2) Pulse Generation:The weight values calculated in the
weight modification part must be converted into a pulse series.
We use a random-number generator and a comparator for this.
The linear feedback shift register is used to produce random
numbers. We compare a weight value with a random value gen-
erated by the linear feedback shift register. If the weight is larger
than the random number, this circuit generates a single pulse and
if not, no pulse is generated. We repeat this procedure, and new
random numbers are generated at each time step. Therefore, a
large weight results in many pulses and a small weight results in
very few pulses. In other words, the weights in our system are
represented by pulse density.

Fig. 4. Neuron unit.

Fig. 5. Learning unit.

B. Neuron Unit

Fig. 4 shows the neuron unit which consists of counters and
a comparator and calculates the weighted sum of inputs. The
counters sum the number of pulses given by the weight units
as shown in Fig. 4. The first counter (upper counter in Fig. 4)
counts the number of positive inputs, and the second counter
(lower counter in Fig. 4) counts the number of negative inputs.
If the number of positive pulses is larger than the number of
negative pulses, the neuron unit generates a single pulse. The
input–output behavior of our neuron units is characterized by a
piecewise-linear function determined by the saturation of pulse
density. That is, even if a weighted sum for a neuron is extremely
large, the maximum number of pulses per unit time is limited.
No pulse indicates the weighted sum of a neuron is less than the
lowest limit of the output. Otherwise, the number of the output
pulses is equal to the weighted sum of inputs. That is, the am-
plification factor of the linear function is assumed to be unity.
Thus, instead of the sigmoid function, the system uses a linear
function with a restriction applied. A similar idea for pulse den-
sity neurons is discussed in [14].

C. Learning Unit

The learning unit achieves the so-called learning process
using simultaneous perturbation and sends the basic modifying
quantity to the weight units, which is
common to all weights. The block diagram is shown in Fig. 5.
One of the features of this learning rule is that it requires only
forward operations of the NN.

There is a counter in each error calculation part. Since the
error function used here is defined by the absolute difference
as in (4), using the counter, this part gives the difference in the
number of pulses between the output of the NN and the corre-
sponding teaching signal; counting up for the output pulses and
counting down for the teaching pulses provide the error. The
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Fig. 6. Result before learning.

Fig. 7. Result after learning for the exclusiveOR problem.

Fig. 8. Error rate for the exclusiveOR problem.

two error calculation parts yield two values of the error func-
tion; and . The next counter in Fig. 5 gives the
difference between these two values: . The
learning coefficient and the perturbationare constant. Mul-
tiplying by , the unit computes the basic modifying quantity,
which is sent to all weight units.

IV. EXAMPLES

In this chapter, we describe some concrete examples of ex-
clusiveOR learning, function learning and the TCLX problem.
The networks are designed to solve these three problems.

The design results were checked and configured using the
logical synthesis software MAX PLUS. ALTERA, FLEX
EPF10K250AGC599-3 with a 20–MHz clock speed is used for
these examples.

Fig. 9. Weights of the network for the exclusiveOR problem.

A. ExclusiveOR

First, a three-layered NN is configured to learn exclusiveOR.
The numbers of neurons in each layer are two, two, and one.
About 60 000 gates out of 250 000 gates in this FPGA are used.

The inputs, teaching signals, and the output of the NN are
shown in Figs. 6 and 7. Logical representations of zero and one
are shown in pulse density form. pulses per unit
time denotes one, and no pulse in a unit time means zero. Initial
weights of the network are determined randomly in the interval
[ 255 255]. The magnitude of the perturbationis 5, and the
learning coefficient is 1.25 in (1) and (2).

A black region in the figures represents an area with many
pulses. Fig. 6 shows the output of the NN before learning. The
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Fig. 10. Result before learning for the function learning.

Fig. 11. Result after learning for the function learning.

Fig. 12. Error rate for the function learning.

Fig. 13. Weights of the network for the function learning.

four rows show the first input, the second input, the teaching
signal, and the output of the network, respectively. The behavior
of the output pulses is quite different from that of the teaching

Fig. 14. Characters T, C, L, and X.

signal. After sufficient learning, we notice close agreement be-
tween the output and the teaching signals in Fig. 7. The NN
learns the logical relation of exclusiveOR in the form of pulse
density.

The change of error rate is shown in Fig. 8. The error rate
is defined by the difference between the actual number and the
desired number of pulses. The perturbationand the learning
coefficient are 5 and 2.5, respectively. We can see that the error
decreases as learning proceeds. It took 55.05s for one epoch,
which represents the learning of four patterns of the exclusive
OR relation. The learning speed was about 172.9 kCUPS.

The change of weight values in the network is shown in Fig. 9.
As the learning proceeds, all weights converge to corresponding
constant values.

In our algorithm, we have to determine the learning coeffi-
cient and the perturbation properly. It is impossible or ex-
tremely difficult to find optimal values for and as these
values vary widely for different problems.
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Fig. 15. Result before learning for the TCLX problem.

In our experiments, these values are determined empirically.
For example, different values for Figs. 7 and 8 were used to ob-
tain typical results, and from preliminary experiments, we could
relatively easily find rough values of the learning coefficient and
the perturbation.

Generally, a small perturbation gives a good approximation
of the derivative of the error function. However, the hardware
system has a lower limit for the perturbation, and too small a
perturbation makes the system unstable. That is, the modifica-
tion quantity becomes too large because
of the small perturbation.

The larger the learning coefficientis, the faster the conver-
gence speed. However, too large a learning coefficient leads to a
poor modification quantity because of an estimation error of the
derivative. From this point of view, a small coefficient is more
reliable, at the expense of a slower convergence to an optimal
state.

There is a tradeoff in finding suitable values for the learning
coefficient and the perturbation. In these experiments, we use
heuristics to determine suitable values empirically.

B. Function Learning

Next, we consider the problem of learning the function
. The size of the network is 1-4-1, using about 75 000 gates

in the FPGA.
For this problem we have to handle an analog quantity, which

is represented by the pulse density. pulses per
unit time denotes one, and no pulse per unit time denotes zero.
For example, 26 pulses in a unit time represents 26/255, that is,
about 0.1. The position of the pulses is not important; only the
number of pulses in a unit time interval represents the analog
quantity.

Initial weights of the network are determined randomly in the
interval [ 255 255], and output pulses are randomly gener-
ated. Therefore, the pulse density of the output will be quite dif-
ferent from the corresponding teaching signals.

The inputs, teaching signals, and the output of the NN are
shown before learning in Fig. 10 and after learning in Fig. 11.
For the input in Fig. 10, there is no pulse in the first interval,
corresponding to analog zero. In the second time interval, the
number of pulses increases, and by the final interval, the input in
the figure is painted over. This means the analog value increases
as the time interval moves to the right. Actually, six unit time
intervals, 0, 0.2, 0.4, 0.6, 0.8, and 1 are used. That is, we select
six learning points, where the corresponding ideal number of
pulses are , , ,

, and .
Since the function is , corresponding teaching sig-

nals are 1, 0.8, 0.6, 0.4, 0.2, and 0, respectively. We can see full
pulses in the leftmost interval of the teaching signals (the second
row) in both Figs. 10 and 11. The number of pulses decreases
as the corresponding teaching signal decreases. After sufficient
learning (Fig. 11), the number of pulses in the output for each
unit interval are close to that of the corresponding teaching sig-
nals. For this result, the magnitude of the perturbation and the
learning coefficient are five and 1.25, respectively.

Next, we evaluate the results. As described above, since the
position of the pulses is not important, the error rate is the
difference between the number of pulses in the actual output
and the corresponding desired output. We measured the average
number of pulses for six learning values over 15 trials. The
results were zero, 51.47, 102.47, 153.00, 203.93, and 254.67
pulses on average, which compare very closely to the ideal
numbers of pulses written above. The errors are all within one
pulse on average.

We measured the error from an initial state. The change of
error rate is shown in Fig. 12, which indicates the error decreases
as the learning proceeds. The perturbation and the learning co-
efficient are five and 2.5, respectively. It took 77.75s for one
epoch, which includes calculations of modification quantities
for six patterns. The learning speed was about 167.2 kCUPS.

The change of weight values in the network are shown in
Fig. 13. As the learning proceeds, all weights converge to cor-
responding constant values.
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Fig. 16. Result after learning for the TCLX problem.

Fig. 17. Local minimum for the TCLX problem.

C. TCLX

The third example is a simple character recognition problem
known as the TCLX problem. A 3 3 array of pixels is used
to represent the characters T, C, L, and X (see Fig. 14). The
number of neurons in each layer is 9-4-2, and the total number
of weights including thresholds in the network is 50. Approxi-
mately 230 000 gates are used for the network.

The inputs, teaching signals and the output of the NN are
shown in Figs. 15 and 16 with a perturbationof 3 and a learning
coefficient of 0.375. The initial weights in the network are all
zero.

A black pixel and a white pixel in Fig. 14 denote one and
zero, respectively. Nine inputs correspond to the nine pixels of
the pattern. For example, if the pattern is T, then 1, 1, 1, 0, 1, 0,
0, 1, and 0 are applied to the network in pulse density form (see
Fig. 14). The leftmost time interval in Fig. 15 shows the inputs
1, 1, 1, 1, 0, 0, 1, 1, and 1, therefore the presented pattern is C.

A combination of two outputs represents the characters. For
example, an output of zero and zero means T, of zero and one
means C, and so on.

Fig. 15 shows the output of the NN before learning. Notice
that the output pulses are quite different from the teaching sig-
nals. After sufficient learning, these agree closely, as shown in
Fig. 16. It took 52.5 s for one epoch, making the learning speed
approximately 952.4 kCUPS.

In some cases, learning is suspended in so-called local
minima, in which the NN cannot produce the desired outputs
despite continued learning. Such a situation is shown in Fig. 17.
For the first three patterns, both teaching signals are the same
as the outputs of the NN. However, for the fourth pattern, one
output is nearly zero, and the other output is one, despite the
fact that the two corresponding teaching signals are one and
one.
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Economizing the number of required gates or the size of the
circuit is possible, however we have not paid attention to this.
This is a very technical aspect of digital circuit design, which
is not the main theme of this paper. Compared with the or-
dinary backpropagation learning rule, the number of required
gates in our method is small, because only a single learning cir-
cuit is commonly used to generate the modifying quantity for
all weights.

V. CONCLUSION

In this paper, we designed a pulse density NN system on
FPGA using the simultaneous perturbation learning rule. VHDL
was used for the design of the networks, and we confirmed the
system worked well for the exclusive OR, function learning, and
TCLX problems.

There is another class of pulsed NNs in which the positions of
the pulses have certain meaning [16]. In addition, another type
of simultaneous perturbation method called time difference si-
multaneous perturbation [17] has been proposed. Using a sim-
ilar approach to that described in this paper, we could easily
implement these types of networks as well.
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