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ABSTRACT

When independent plural signals are mixed and the
mixed plural signals are measured, blind signal separa-
tion technique is very interesting approach to separate
these signals only based on the measured signals. It
is a hot subject in the ¯elds of engineering, for ex-
ample, communication engineering, signal processing,
image processing, analysis of organs inside a body and
so on. In this paper, we propose recursive methods to
obtain a separating matrix based on mutual informa-
tion, via the simultaneous perturbation optimization
method. The simultaneous perturbation method up-
dates the separating matrix by using only two values
of the mutual information. Then, probability densities
of source signals, which are used in ordinary gradient
methods, are not required. A simple example is shown
to con¯rm a feasibility of the proposed methods.

1. INTRODUCTION

Blind Source Separation (BSS) is a technique that can
extract original signals from their mixtures observed
by the same number of sensors. BSS is an approach to
separate these signals without knowing the mixing co-
e±cients and the information of source signals as well.

BSS is realized on condition that the original sig-
nals are independent each other. Therefore, retrieved
signals separated from the measured signals separated
must be independent as well. Using a criterion to
measure independence of the retrieved signals, we can
construct a separating matrix and estimate the source
signals[1, 2, 3].

When a 2 <n is a vector of independent source
signals, and A 2 <n£n is a mixing process matrix, we
have a vector of observation signals x 2 <n which are
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assumed to be a linear transformation of a non-singular
matrix A. Then, we have

x = Aa (1)

On condition that mixing matrix A and source signals
a are unknown, we use a criterion to measure indepen-
dence of the retrieved signals y 2 <n. Then we can
construct a separating matrix W 2 <n£n, and esti-
mate the original source signals a. That is,

y = Wx = WAa (2)

In BSS, we expect W to be an inverse of A. Then,
it is obvious that we can retrieve the original signals.

In other words, BSS is an optimization problem in
which the criterion measuring the independence is an
evaluation function and the separating matrix is a pa-
rameter.

Then, the gradient method is a simple approach.
The method needs a gradient of an evaluation function;
a criterion measuring the independence in this case.

However, the gradient type methods including the
natural gradient method use probability densities of the
original signals.

In this paper, we apply the simultaneous perturba-
tion optimization method to BSS problem. By using
the optimization method, we can update all parame-
ters of the separating matrix based only on two values
of the evaluation function. Then, we do not use the
probability densities of the original signals.

2. EVALUATION FUNCTION

In this paper, the mutual information based on the
information theory is applied to make an evaluation
of independence of each separated signal. Let X and
Y be two random variables, the mutual information
implies a measure of the amount of information about
Y contained in X .

mailto:maedayut@kansai-u.ac.jp


The mutual information I(¢) is de¯ned as follows;

I(X;Y ) = H(X) +H(Y )¡H(X;Y )
=
P
rij log

rij
piqj

(3)

Where, H(¢) is called the entropy of two random vari-
ables X(= x1; x2; ; xn); Y (= y1; y2; ; ym) or of the dis-
tribution pi = P (X = xi); qi = P (Y = yj); rij =
P (X = xi; Y = yj).

H(X) =

nX

i

¡pi log pi (4)

H(Y ) =
mX

j

¡qj log qj (5)

H(X;Y ) =

nX

i

mX

j

¡rij log rij (6)

If the random variablesX;Y are independent each other,
the mutual information I(X;Y ) equals zero.

In this paper, we utilize the mutual information as
an evaluation function.

3. SIMULTANEOUS PERTURBATION

The idea of the simultaneous perturbation was pro-
posed by J.C.Spall as an extension of Kiefer-Wolfowitz
stochastic approximation[4, 5]. J.Alespector et al. and
G.Cauwenberghs also proposed the same idea[6, 7]. In-
dependently, Y.Maeda introduced the same algorithm
as a learning rule of neural networks[8]. Some applica-
tions of the simultaneous perturbation method in con-
trol problems are also reported[9, 10]. Now, we describe
the simultaneous perturbation leaning rule used in this
paper. De¯ne a parameter vector w and a sign vectors
as follows;

w (t) = (w1 (t) ; w2 (t) ; ¢ ¢ ¢ ; wN (t))
T

(7)

s (t) = (s1 (t) ; s2 (t) ; ¢ ¢ ¢ ; sN (t))
T

(8)

Where t denotes iteration, superscript T is transpose
of a vector. Components si(t)of the sign vector s(t) are
+1 or -1. The i-th component of the modifying vector
for the parameter is de¯ned as follows;

¢wi (t) =
J (w (t) + cs (t))¡ J (w (t))

c
si (t) (9)

Where c is a magnitude of the perturbation. The pa-
rameter is updated as follows;

w (t+ 1) = w (t)¡ ®¢w (t) (10)

Where, ® is a positive gain coe±cient. Note that only
two values of the objective function; J(w(t)) and J(w(t)+
cs(t)) are used to update the parameter. Any other in-
formation about the objective function does not includ
in the algorithm. It is also known that the method is
a stochastic gradient method.

4. SIMULTANEOUS PERTURBATION FOR
BSS

4.1. Gradient type
of simultaneous perturbation[11]

In this paper, we propose a recursive method to obtain
the separating matrix based on the mutual informa-
tion using the simultaneous perturbation optimization
method. We apply the method to a recursive learning
of the blind signal separation directly. The algorithm
corresponding to an ordinary gradient method is as fol-
lows;

W(t+ 1) = W(t)¡ ®¢W(t) (11)

where, ® is a positive gain coe±cient to adjust a mag-
nitude of a modifying quantity. The i ¡ j component
of the matrix ¢W is de¯ned as follows;

¢Wij(t) =
J(W(t) + cs(t))¡ J(W(t))

csij(t)
(12)

Then, unlike the sign vector described before, s is
a sign matrix. sij(t), which is an element of the sign
matrix s(t), is +1 or -1, and has the following proper-
ties.

s(t) = (sij(t)) (13)

E (sij(t)) = 0 (14)

E (sij(t1) ¢ skl(t2)) = ±ik±jl±t1t2 (15)

Where, E(¢) denotes exception. ± is the Kronecker's
delta. That is, sij(t) has zero mean and is indepen-
dent with respect to the other sij(t) and time t. c is
a magnitude of the perturbation. J(¢) is an evaluation
function to be minimized. In this, the evaluation is the
mutual information of Eq.(3). That is,

J (W(t)) = I (X;Y jW(t)) (16)

An important point is that this optimization method
requires only two values of the mutual information J(¢),
even if number of the parameters; elements of the sep-
arating matrix, is large. Thus, in this method, we need
only twice calculations of the evaluation function (the
mutual information) to update for all parameters of
W (t).



4.2. Natural Gradient type of simultaneous per-
turbation

It is known that the natural gradient method is more
e±cient than the ordinary gradient method. From the
same point of view, we can propose the natural gradient
method using the simultaneous perturbation optimiza-
tion method.

The form of the natural gradient is shown as follows;

¢W (t) =
@J(W(t))

@W
W (t)TW (t) (17)

Now, we propose the following algorithm using the
simultaneous perturbation method, paying attention to
the perturbation added to the separation matrix.

¢Wij(t) =
J(W(t) + cs(t)W T (t)W (t))¡ J(W(t))

csij(t)
(18)

We investigate a quantity of the right hand side
of the above equation. For convenience, we consider
the following 2 £ 2 matrix of a mixing matrix and a
separating matrix and if not necessary, we omit the
time index t.

W =

µ
W11 W12

W21 W22

¶
(19)

We expand J(W+csW TW ) atW . Then, there exists
W s such that

J
³
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´
= J (W)+c (D1s11 +D2s12)
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Where,

D1 = W 2
11 +W 2

21 (20)

D2 = W11W12 +W21W22 (21)

D3 = W 2
12 +W 2

22 (22)

Therefore, we have

¢W ij
t = sij (D1s11 +D2s12)
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@J

@W12

+ sij (D1s21 +D2s22)
@J

@W21

+ sij (D2s21 +D3s22)
@J

@W22

+
1

2
csij

½
(D1s11 +D2s12)

2 @
2J (WS)

@W 2
11

+ (D1s11 +D2s12) (D2s11 +D3s12)
@2J (WS)

@W11@W12

+ (D1s11 +D2s12) (D1s21 +D2s22)
@2J (WS)

@W11@W21

+ (D1s11 +D2s12) (D2s21 +D3s22)
@2J (WS)

@W11@W22

+ ¢ ¢ ¢g
(23)

Using the conditions (13), (14) and (15) on the sign
matrix,

E(¢W 11) = D1
@J

@W11
+D2

@J

@W12
(24)

The right hand side of the above equation is equal to
the 1-1 element of Eq.(17) for the 2£ 2 separation ma-
trix. We can obtain the same relation for the other
elements.

This means that the algorithm described here is a
natural gradient method in the sense of expectation. In
other words, this method is a kind of stochastic natural
gradient method.

Note that the method uses only two values of the
evaluation function, that is, the mutual information.
This method does not require probability densities of
the original signal as well.

4.3. Hybrid type of simultaneous perturbation

As we mentioned in the subsection of Gradient type
of simultaneous perturbation, we can estimate the fol-
lowing quantity using the simultaneous perturbation
method.

@J (W(t))

@W
(25)

Then, using W T (t)W (t), we can estimate the nat-
ural gradient, similar to the natural gradient method.
Therefore, we can propose the following algorithm;

W(t+ 1) = W(t)¡ ®¢W (t)W T (t)W (t) (26)



Fig. 1. Flow of signal

where, ® is a positive gain coe±cient to adjust a mag-
nitude of a modifying quantity. The i ¡ j component
of the matrix ¢W is de¯ned in (12).

Only the gradient of Eq.(25) is estimated by the
simultaneous perturbation method in the algorithm.

Total °owchart of the algorithm is shown in Fig.1.
First, we set up a mixing matrix A and source signals
a. These are blind data. From these two data, observed
signals x is calculated.

Next, without perturbation cs, we input x into the
separating matrix W , and obtain the separated signals
y. Then, we calculate the mutual information J(W )
by Eq.(3). On the other hand, simultaneously, we add
perturbation cs to all parameters ofW . Then, we have
a value of the mutual information J(W + cs).

Using two values of the mutual information, we can
obtain modifying quantities for all elements of the sep-
arating matrix. We update all parameters of the sepa-
rating matrix and repeat this procedure.

Note that this method can calculate modifying qual-
ities, by using only two values of the mutual informa-
tion without perturbation J(W ) and with perturbation
J(W + cs). This procedure does not include any in-
formation of the original signals as mentioned before.
Moreover, the procedure itself is very simple and easy.
This is suitable for a hardware implementation of the
algorithm.

5. EXPERIMENT

In order to con¯rm a feasibility and usefulness, we han-
dle a basic experiment for speech signals. The experi-

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gradient method
 using simultaneous perturbation

Iteration

Hybrid method
Natural gradient method
 using simultaneous perturbation

Natural gradient method

Mutual information

Fig. 2. Change of the mutual information.

ment is for a simple instantaneous mixture of two sig-
nals.

Now, two speech signals are mixed using the follow-
ing mixing matrix. Then, only instantaneous mixture
is carried out on computer.

A =

µ
1 0:7

0:8 1

¶
(27)

Initial separating matrix is an identity matrix. The
perturbation c and the gain coe±cient ® are 5 £ 10¡2
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Fig. 3. Actual Data.

and 5£10¡2, respectively. These values are determined
empirically.

Fig.2 shows a change of the mutual information for
three proposed methods. Then, values of the mutual
information for three algorithms decrease very quickly.
We can con¯rm a feasibility of these methods.

Fig.3 shows real data; original signals, measured
signals and separated signals after 500 iterations. The
separated signals are very close to the original ones.

It seems that these methods of simultaneous per-
turbation have equal capability to the ordinary natural
gradient method.

6. CONCLUSION

We propose the natural gradient methods using the
simultaneous perturbation. Details of these methods
for the blind source separation were described. The
probability densities of source signals are not required
in the algorithm.

This method is also useful for blind signal deconvo-
lution and learning of neural networks. We are investi-
gating detailed performance of these types of methods
for some applications.
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