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Abstract 
 
Stochastic approximation as a method of simulation opti-
mization is well-studied and numerous practical applica-
tions exist. One approach, simultaneous perturbation sto-
chastic approximation (SPSA), has proven to be an effi-
cient algorithm for such purposes. SPSA uses a centered 
difference approximation to the gradient based on two 
function evaluations regardless of the dimension of the 
problem. It accomplishes this task by randomizing the 
directions in which the differences are calculated in each 
dimension. Typically Bernoulli variables mapped to {–1, 
1} are used in the randomization and this distribution is 
known to be asymptotically most efficient, but the ques-
tion of best distribution remains open for small-sample 
approximations. As part of a general theory of small-
sample stochastic approximation, the author has studied 
alternative distributions for the perturbations used to 
compute the SPSA estimate of the gradient. This paper 
presents results from that investigation, as well as some 
insights to parameter selection for the SPSA algorithm. 
 
Key Words: simulation optimization, SPSA, stochastic 
approximation, iterative algorithms, stochastic gradient. 

1. Introduction 

Consider the problem of optimizing some performance 
measure of a stochastic system [1]. If the decision vari-
ables are continuous and the solution space may be as-
sumed closed and convex, the problem lends itself to so-
lution with a gradient-based optimization method, that is, 
to find the zero of the gradient of the performance meas-
ure. Even in cases where these conditions do not hold, 
gradient methods may prove useful. 
 
When the system dynamics are unknown, the usual meth-
ods to compute this gradient, such as perturbation analysis 
or likelihood ratio estimation, are not available [2]. Sto-
chastic approximation techniques overcome these 
difficulties by estimating the gradient of the performance 
measure of interest using (perhaps noisy) measurements 
of the performance measure itself [3]. See Jacobson and 
Schruber [4] for a general overview of techniques for 
simulation optimization. 

2. Problem Formulation 

Let q œ Q Œ Ñp denote a vector of input parameters. Let 
Q(q, w) denote the observed performance as a function of 
q and the stochastic effects w. The function of interest is 
L(q) = E[Q(q, w)], the expected system performance at q. 
The problem is then  

 min ( )L
q Q

q
∈

 (1) 

The stochastic approximation algorithm for solving (1) is 
given by the following iterative scheme: 

 1
ˆ ˆ ˆˆ ( )k k k k ka gq q q+ = −  (2) 

where ˆˆ ( )k kg q  œ Ñp represents an estimate of the gradient 

of L at ˆ
kq . The step-size sequence {ak} is nonnegative, 

decreasing, and converges to zero. If Q ∫ Ñp then the 
problem is constrained and projection or penalty methods 
may be applied. The generic iterative form of (2) is 
analogous to the familiar steepest descent algorithm for 
deterministic problems. 

2.1 Stochastic Approximation 

First introduced by Robbins and Monro [5] (measure-
ments of g(q)) and Kiefer and Wolfowitz [6] (measure-
ments of L(q)), the method has been the subject of consid-
erable research, expanding its applicability and relevance 
(see, e.g., [1], [7], [8]). 
 
It is most efficient to use direct estimates of the gradient, 
but in many cases this may not be feasible. In this case 
gradient estimates based on (noisy) measurements of the 
performance measure itself must be made. In this paper 
we consider the case where the form of L(q) and g(q) are 
unknown, and only measurements of L(q) are available. 
The estimate ˆ

kq  converges to the optimal value q*, under 
suitable conditions on the loss function and gradient (see, 
e.g., [9] and [10]). 
 
A common though computationally inefficient method to 
estimate the gradient from observed measurements is by 
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finite-differences. Symmetric (centered) finite-differences 
require 2p function evaluations, where p is the dimension 
of the solution space. If p is large and the function evalua-
tions difficult or time-consuming, the computational ef-
fort could be substantial since the estimate must be com-
puted at each iteration in (2).  

2.2 Simultaneous Perturbation 

Simultaneous perturbation stochastic approximation 
(SPSA) uses a method of simultaneous perturbation to 
estimate the gradient [11], [12]. The efficiency of this 
method is that it requires only two function evaluations to 
estimate the gradient at each iteration, regardless of the 
dimension of q. Thus the major advantage of SPSA is the 
reduction in computations required to achieve an optimal 
solution by reducing the number of required simulation 
experiments. The theoretical basis for SPSA was devel-
oped by Spall [14] and [11] and expanded in subsequent 
work (see [2], [15], [10], and references therein). 
 
The applicability of SPSA to simulation optimization has 
been shown for nonlinear control problems using neural 
networks [12], single-server queueing discrete-event sys-
tems [2], air traffic control [13], and many other prob-
lems. 
 
Let ˆ ( )kg q denote the simultaneous perturbation estimate 

of g(q) and let ˆ
kq  denote the estimate for q* at iteration k. 

Let ∆k be a vector of p independent random variables at 
iteration k. 

 
1 2

T

pk k k kD D D D =    (3) 

The components of ∆k may be chosen as independent 
Bernoulli variables mapped to {–1, 1}. Let ck be a se-
quence of positive scalars. For each iteration we take 
measurements of L at ˆ

k k kcq D± : 

 
ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

k k k k k k k

k k k k k k k

y c L c

y c L c

q D q D e

q D q D e

+

−

+ = + +

− = + +
 (4) 

where ke
±  are random error terms. 

 
The standard simultaneous perturbation form for the gra-
dient estimator is shown in (5). 
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y c y c
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D

 + − −
 
 
 

=  
 + − − 
 
  

 (5) 

Note that ˆˆ ( )k kg q  requires only two measurements of L(q) 
(those in equation (4)) and is independent of the dimen-
sion of the solution space, p. Under appropriate regularity 
conditions we have estimator ˆˆ ( )k kg q  nearly unbiased 
with 

 2ˆ ˆ ˆˆ ( ) ( ) ( ) a .s.k k k k kE g g O cq q q  = +
 

 (6) 

where ck → 0. The iteration converges ˆ
kq  → q* almost 

surely as k → ∞. See [11] for details. 
 
Common selections for the step size sequences ak and ck 
are shown below. 

 k ka ak c cka g− −= =  (7) 

where a and c are positive constants and the exponents 
satisfy ½ < a § 1 and 1/12 < g § 1/6, with the upper 
bounds theoretically optimal. This leaves the choice of 
suitable constants a and c to regulate algorithm perform-
ance. 

2.3 Perturbation Distribution for SPSA 

As discussed above, the perturbations Dk in the gradient 
estimate (5) are based on Bernoulli random variables on 
{–1, 1}. In fact, the requirements are merely that the Dki 
must be independent and symmetrically distributed about 
zero with finite absolute inverse moments E[|Dki|–1] for all 
k, i. The Bernoulli is just one distribution for Dki that satis-
fies these conditions. 
 
It has been shown that one cannot do better than this dis-
tribution in the asymptotic case [15], but less is known 
about the best distribution for small-sample approxima-
tions. Some numerical results seem to show better per-
formance on some problems with non-Bernoulli distribu-
tions. 
 
The author examined a wide range of candidate non-
Bernoulli distributions and compared algorithm perform-
ance. The performance of three such alternative distribu-
tions is reported here: a split uniform distribution, an in-
verse split uniform distribution, and a symmetric double 
triangular distribution (referred to as candidate distribu-
tions in the following). 
 
The {–1, 1}-Bernoulli distribution has variance and abso-
lute first moment (mean magnitude) both equal to one. It 
is the only qualified distribution with these qualities. We 
conjecture that these characteristics are necessary condi-
tions for optimal performance of the SPSA algorithm, 
given optimal step size parameters. Variations in mean 
magnitude can be addressed by scaling the gradient step 
size (c), so for comparisons, candidate distributions 
should have the same variance as the {–1, 1}-Bernoulli. 
Then differences in performance could be attributed to 
differences in the nature of variability in that distribution. 
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Distribution Mean Mean 
Magnitude Variance 

{-1,1}-Bernoulli 0 1 1 

Split Uniform 0 1
2 ( )a b+  2 21

3 ( )a ab b+ +  

Inverse Split 
Uniform 0 logab b

b a a−
 ab 

Sym. Double 
Triangular 0 1

3 ( )a b c+ +  
2 2 21

6 (
)

a b c
ab ac bc
+ +

+ + +
 

Table 1 – Characteristics 
of the Perturbation Distributions 

 
To ensure consistency in the comparison, we normalized 
the candidate distributions so that their variances were 
one and their mean magnitudes were close to one, but not 
so close that the essential character of the distributions 
were lost. The probability density functions of these dis-
tributions are given at right. The characteristics of each 
distribution are given in Table 1. 

2.4 Testing Procedure 

The SPSA algorithm with each distribution for the pertur-
bations was applied to 34 functions from Moré’s suite of 
optimization problems [17]. The initial points recom-
mended in Moré were used for each function. The func-
tions values were obscured with normally distributed er-
rors with mean zero and a variance of one. We then used 
these noisy function values to calculate a simultaneous 
perturbation gradient approximation. 
 
For nearly all of the functions, errors of this magnitude 
are insignificant away from the minimum. However, most 
functions in the optimization suite have minimums at or 
near zero, where N(0, 1) errors are quite significant. This 
situation is further complicated by the fact that many 
functions are extremely flat near the minimum as well. 
The result was a demanding examination of the SPSA 
algorithm offering ample opportunity to test alternative 
perturbation distributions. 
 
We used the step sequences in (7). The step size parame-
ters of the SPSA algorithm (that is, a and c) were opti-
mized for each distribution and each function by random 
search. The procedure to optimize the step parameters 
used 20,000 iterations of a directed random search algo-
rithm. In the directed random search (sometimes called a 
localized random search, see [10], p. 45), new trial values 
are generated near the location of the current best value. 
The algorithm accepts the input parameters as the current 
optimal values if they produce results that are better than 
the best yet obtained, otherwise they are rejected. 
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2( )( ; , )

0 otherwise
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Figure 1 – The Split Uniform Distribution 
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Figure 2 - The Inverse Split Uniform Distribution 
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This method is somewhat more sophisticated than simple 
random search, and generally more computationally effi-
cient in that it uses information from previous iterations. 
For more information on random search methods, see 
Solis and Wets [18]. 
 
For each iteration of the random search we executed fifty 
Monte Carlo trials of the SPSA algorithm, and then ac-
cepted or rejected the parameter values based on the aver-
age of these fifty trials. The theoretically optimal values 
for a and g were used. 
 
The SPSA algorithm in the procedure outlined above was 
run for stopping times of n = 10, 100, and 1000 iterations 
to determine whether any one distribution outperformed 
the others over small, moderate, and large iteration do-
mains. 
 
Common random numbers (CRN) were used to minimize 
variance. With CRN, the sequences of function values 
generated by the iteration differ only as a result of how 
the SPSA algorithm processes the random numbers in a 
different way. In this evaluation, the sequence of CRN 
were used to generate random perturbations from the ap-
propriate distribution. This method allows the use of 
matched pairs testing to determine the significance of 
differences in the minimum values observed. Matched 
pairs testing generally leads to sharper analysis. 

3. Empirical Results 

This section describes some of the results obtained from a 
systematic application of SPSA to the Moré suite of opti-
mization problems. The base algorithm used Bernoulli 
perturbations. Alternatives included split uniform, inverse 
split uniform, and symmetric double triangular distribu-
tions for the perturbations. 
 
The exact distributions used in this analysis were 

 
( ; 0.4092, 1.4908)
( ; 0.6667, 1.5000)
( ; 0.3333, 1.0781, 1.5000)

SU

ISU

SDT

f x
f x
f x

 

Parameter values for the distributions were chosen to give 
a variance of one and a mean magnitude close to one. The 
mean magnitude for each distribution is shown in Table 2. 
 

Split Uniform 0.95 
Inverse Split Uniform 0.973116 
Symmetric Double Triangular 0.970484. 

Table 2 - Mean Magnitudes 
of the Candidate Distributions 

While many of the functions in the Moré suite do not sat-
isfy the convergence criteria for stochastic approximation, 
in practice well-chosen parameter values for a and c can 
yield good results. However, there were four functions in 

this suite for which we were not able to get SPSA to con-
verge for any distribution.1 These functions are particu-
larly ill-behaved even in the deterministic case, and the 
addition of noise to the function was sufficient to obscure 
any underlying trend information and frustrate the sto-
chastic approximation procedure. The algorithm was very 
sensitive to the selection of the step size parameters a and 
c for these functions, and our assumption is that with 
more effort suitable parameter values could be found. 
 
We highlight only two functions of the Moré optimization 
suite here. Of the remaining functions, none showed re-
sults dramatically different from those presented here. In 
most cases the mean minimum value found at the end of 
the procedure was lowest for Bernoulli perturbations. In 
the cases where it did not return the lowest mean mini-
mum, the difference was not statistically significant. 
 
The results for the two-dimensional Rosenbrock function 
are shown in Table 3. The Rosenbrock function is diffi-
cult for optimization procedures because the surface is flat 
bottomed and curved. As a result, iterative procedures 
progress slowly to the unique minimum of zero at (1, 1). 
 

Bernoulli n = 10 n = 100 n = 1000 
a 3.574×10–3 5.237×10–3 7.891×10–3 
c 2.044×10–1 1.031×10–1 0.845×10–1 

( )nL q  1.829 1.689 1.155 
s2 1.406 1.210 0.932 

 
SU n = 10 n = 100 n = 1000 
a 7.911×10–3 8.134×10–3 9.560×10–3 
c 3.482×10–1 2.997×10–1 1.458×10–1 

( )nL q  2.090 1.801 1.545 
s2 1.406 1.276 1.049 

 
ISU n = 10 n = 100 n = 1000 

a 6.818×10–3 5.112×10–3 6.621×10–3 
c 3.455×10–1 1.804×10–1 1.002×10–1 

( )nL q  2.296 1.947 1.572 
s2 1.423 1.406 0.899 

 
SDT n = 10 n = 100 n = 1000 

a 3.805×10–3 5.237×10–3 7. 921×10–3 
c 2.100×10–1 1.031×10–1 0.914×10–1 

( )nL q  2.121 1.791 1.758 
s2 1.806 1.741 1.121 

Table 3 - Two-dimensional Rosenbrock Function (#1) 

 
                                                 
1 These four were the Brown badly scaled function (#4), 
Meyer function (#10), Brown and Dennis function (#16), 
and the trigonometric function (#26). 
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Despite these difficulties, the SPSA algorithm performed 
well with each of the perturbation distributions. For this 
function the {–1, 1}-Bernoulli distribution achieved sig-
nificantly better minimums than any of the candidate dis-
tributions for any stopping time. For example, the p-
values for the n = 10 case are 0.176, 0.243, and 0.219 for 
SU, ISU, and SDT, respectively. P-values for the n = 100 
and n = 1000 cases are similar. 
 
Results for the Kowalik and Osborne function (Table 4) 
show a more favorable outcome for SU and SDT for the 
short (n = 10) and moderate (n = 100) stopping times. 
However, these results are not significant (p-values 0.031 
and 0.022, respectively, for n = 10; similar for n = 100). 
Moreover, this apparent advantage disappears in the case 
n = 1000, where the {–1, 1}-Bernoulli is significantly 
better than any of the tested candidate distributions. 
 

Bernoulli n = 10 n = 100 n = 1000 
a 1.326×10–3 2.992×10–3 5.192×10–3 
c 1.252×10–1 3.127×10–1 5.731×10–1 

( )nL q  4.817×10–3 4.464×10–3 3.105×10–3 
s2 0.881×10–4 0.524×10–4 0.223×10–4 

 
SU n = 10 n = 100 n = 1000 
a 1.939×10–3 3.444×10–3 6.023×10–3 
c 2.056×10–1 4.058×10–1 5.998×10–1 

( )nL q  4.762×10–3 4.376×10–3 3.252×10–3 
s2 0.970×10–4 0.881×10–4 0.314×10–4 

 
ISU n = 10 n = 100 n = 1000 

a 1.359×10–3 2.761×10–3 5.832×10–3 
c 1.552×10–1 1.934×10–1 1.819×10–1 

( )nL q  4.837×10–3 4.498×10–3 3.383×10–3 
s2 0.771×10–3 0.703×10–3 0.431×10–3 

 
SDT n = 10 n = 100 n = 1000 

a 1.691×10–3 1.688×10–3 1.742×10–3 
c 1.555×10–1 1.681×10–1 2.142×10–1 

( )nL q  4.777×10–3 4.410×10–3 3.224×10–3 
s2 1.127×10–3 0.955×10–3 0.527×10–3 

Table 4 - Kowalik and Osborne Function (#15) 

 
Altogether, the Bernoulli-perturbed algorithm performed 
significantly better than all three of the candidate distribu-
tions on 12 of 30 function optimizations. In the remaining 
18 cases there was at least one candidate distribution that 
performed at least as well as the {–1, 1}-Bernoulli. In no 
case did any candidate distribution perform significantly 
better than the algorithm with Bernoulli perturbations. 
 
As a general observation, the inverse split uniform distri-
bution gave results closest to those of the {–1, 1}-

Bernoulli distribution, followed closely by the symmetric 
double triangular, and more distantly by the split uniform 
distribution. One possible explanation (that still requires 
investigation) is that this outcome is tied to the mean 
magnitudes of the distributions used. The ISU distribution 
used for this analysis had the largest mean magnitude of 
all the candidate distributions, followed by SDT, and SU. 

4. Conclusions and Further Study 

The decision to optimize the algorithm parameters a and c 
was key to this analysis. The algorithm is sensitive to 
poor choices for these parameters. In every case where a 
candidate distribution appeared to perform better than the 
{–1, 1}-Bernoulli distribution, it turned out that the values 
a and c were not optimally selected and further tuning 
resulted in better algorithm performance and established 
the superiority, or at least equivalence, of the Bernoulli 
distribution. Based on the preceding results, we offer the 
following conjecture: 

Conjecture. Given optimal parameter selection, no 
choice of perturbation distribution provides better per-
formance over the Bernoulli distribution for the simulta-
neous perturbation stochastic approximation algorithm 
for any sample size. 

A case has been made that the Bernoulli distribution, al-
ready proven asymptotically optimal, is also the best dis-
tribution to use in small-sample analysis, given optimal 
parameter selection. However, empirical results are not 
proof, and additional work needs to be done to develop a 
theory of small-sample stochastic approximation that can 
answer these and other questions. 
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