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1. Introduction 

The simultaneous perturbation stochastic 
approximation (SPSA) method [10] is a tool for 
solving continuous optimization problems in which 
the cost function is analytically unavailable or 
difficult to compute.  The method is essentially a 
randomized version of the Kiefer-Wolfowitz method 
in which the gradient is estimated at each iteration 
from only two measurements of the cost function.  
SPSA in the continuous setting is particularly 
efficient in problems of high dimension and where 
the cost function must be estimated through 
expensive simulations.  The convergence properties 
of the algorithm have been established in a series of 
papers ([2], [5], [6], [10]). 

The present paper discusses a modification of 
SPSA for discrete optimization.  The problem is to 
minimize a cost function that is defined on a subset 
of points in  pR   with integer coordinates.  It is 
assumed that only noisy measurements of the cost 
function are available and that the exact form of the 
function is analytically unavailable or difficult to 
obtain.  A method based on ordinal optimization was 

introduced in [1] for finding the cost function 
minimum.  Alternatively, we consider a method 
based on stochastic approximation (SA), which may 
be applicable to a broader class of problems than 
those treated in [1].  In particular, the method 
discussed here is a version of the algorithm 
introduced in [7]. 

Abstract: We consider a stochastic approximation 
method for optimizing a class of discrete 
functions.  The procedure is a version of the 
Simultaneous Perturbation Stochastic 
Approximation (SPSA) method that has been 
modified to obtain an optimization method for 
cost functions defined on a grid of points in 
Euclidean p-space having integer components.  
We consider the convergence properties of 
discrete algorithm and discuss some related 
results on fixed gain SPSA.  The application of the 
method to resource allocation is also briefly 
discussed. 

The main motivation for the algorithm is a class 
of discrete resource allocation problems, which arise 
in a variety of applications that include, for example, 
the problems of distributing search effort to detect a 
target, allocating buffers in a queueing network, and 
scheduling data transmission in a communication 
network. 

2.  Problem Formulation 

Let    denote the set of integers and consider the 
grid  

Z
pZ   of points in  pR

(n θ

  with integer coordinates.  
Consider a real-valued function  .  The 
function is not assumed to be explicitly known, but 
noisy measurements    of it are available: 

: pL →Z R

θ

)y
 

 ,   ( ) ( )( )n ny Lθ θ ε= + pθ ∈ Z , (2.1) 
 

where  ( ){ }nε θ   is a sequence of zero-mean random 

variables.  The sequence    is not necessarily 
independent; however, sufficient conditions are 
imposed to ensure that the  ’s  are integrable.  
Assume that  L  is bounded below.  The problem is to 
minimize  L  using only the measurements  . 

( )nε θ

(ny θ )

ny
Similar to [1], we restrict our attention to cost 

functions that satisfy a certain integer convexity 
condition.  For the case  p = 1, the function  

  satisfies the inequality :L →Z R
 

  (2.2) ( ) ( ) ( ) (1 1L L L Lθ θ θ θ+ − ≥ − − )
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or, equivalently, 
 

   (2.3) ( ) ( ) ( )2 1L L Lθ θ θ≤ + + −1

)θ ∗

1

 

for each  .  The latter inequality is the discrete 
analogue of mid-convexity.  If strict inequality holds, 
then  L  is said to be strictly convex.  Analogous to 
the continuous case, the problem of minimizing  L  
reduces to the problem of finding a stationary value 
of  L,  i.e.,  a point    such that 

θ ∈ Z

θ ∗ ∈ Z
 

  (2.4) ( ) (1L Lθ ∗ ± ≥
 

or, equivalently, 
 

  ( ) ( )1L Lθ θ∗ ∗+ − ≥

  (2.5) ( ) ( )0 L Lθ θ∗ ∗≥ − −
 

If  L  is strictly convex then the stationary point is 
unique.  

 The notion of integer convexity can be 
extended to  pZ   as follows (see, e.g., [9], [12]).  For  

, px x′ ′′ ∈ R ,  x x′ ≤ ′′ i  if and only if  ix x′ ≤ ′′   for i = 1, 
…, p,  where  ix′   and  ix′′   denote the coordinates of  
x′   and  x′′ .  For  px ∈ R ,  let  x     and  x     
denote the vectors obtained by rounding down and 
rounding up, respectively, the components of  x  to 
the nearest integers.  The discrete neighborhood  

( ) pN x ⊆ Z   about  px ∈ R ,  is the set of points 
 

( ) { }:pN x xθ θ= ∈ ≤ ≤ θ     Z  , 
 

 which is simply the smallest hypercube in  pZ   
about  x.  A real-valued function  L  on  pZ   is 
discretely convex  if  for any  , pθ θ′ ′′ ∈ Z  and scalar  

  in the interval  λ [ ]0,1  
 

 . (2.6) ( )
( )( )

( ) ( ) ( )
1

min 1
N

L L L
θ λθ λ θ

θ λ θ λ θ
′ ′′∈ + −

′ ′≤ + − ′

 

Observe that this condition implies (2.3) since for any 
 θ ∈ Z

 

( ) ( )( ) { }1 1
2 21 1N θ θ+ + − = θ . 

 
A discretely convex function    defined on   L

pZ   can be extended to a convex function    
defined on all of  

*L
pR .  The extension is continuous 

and piecewise linear ([12]). 
For the case  p = 1, the extension    is obtained 

by linearly interpolating  L  between points in  .  If  
L  is strictly convex, then so is the continuous 
function  .  Also, the function 

*L
Z

*L
 
  ( ) ( ) ( )* * 1g L Lθ θ θ= − −
 
is continuous and strictly monotonic.  If    is a zero 
of  g,  then  

θ′
θ ′  

ˆ

  or    minimizes  L.  Since  g  
is not directly available, we must rely on noisy 
estimates  

θ′  

g   to obtain  .  We can then find the 
minimum of the discrete function  L  by means of an 
SA procedure based on the estimates  

θ′

ĝ   of  g.  The 
approximation  ĝ   is obtained by linearly 
interpolating the difference estimates  

  of  .  The 
convergence of this procedure is readily established 
using results in [13], if we impose the additional 
condition on the cost function and noise: 

( )y yθ − ( )1θ − ( )L Lθ − ( )1θ −

 
 . ( )( ) (2 2( ) 1nL Eθ ε θ θ+ = Ο )2+

R

θ

)θ

 
In [1], the cost function    is assumed 

to be discretely convex and separable, i.e., 
: pL →Z

 
  (2.7) ( ) ( )1

p
i ii

L Lθ
=

=∑
 
where each    is a discretely convex function on  

.  If  L  is separable, then a necessary and 
sufficient condition for    to be a minimum is that  

  for i = 1, …, p  (see [9]).  In 
other words, a separable convex function achieves its 
minimum at its stationary points.  If each    is 
strictly convex then the global minimum is unique 
and any local minimum is also a global minimum. 

iL

i

Z
θ

( ) (1i i iL Lθ ± ≥

iL

Using results in [13], the minimization of 
separable convex functions on  pZ   can be handled 
in a manner similar to that for the case  p = 1.  For 
this, consider the vector-valued function  

: p ph →Z R   with  i-th component    given by ih
 

 . ( ) ( ) ( )1, , 1, ,i ih y yθ θ θ θ θ= − −… … p
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Thus,  h   is an estimate of the i-th difference  

  in  (2.7), which is strictly 
monotonic on  . 

( )i θ

(i iL Lθ −( ) )1i i θ −
Z

We seek to relax the separability assumption on 
the cost function, which is one motivation for 
considering the SPSA approach. 

3. The SPSA Method 

The SPSA method is based on simultaneous 
perturbation estimates of the gradient.  In the discrete 
case, differences replace the gradient.  To estimate 
the differences of   we use simultaneous 
random perturbations.  At each iteration k of the 
algorithm, we take a random perturbation vector 

, where the ’s form an i.i.d. 
sequence of Bernoulli random variables taking the 
values .  The perturbations are assumed to be 
independent of the measurement noise process.  In 
fixed gain SPSA, the step size of the perturbation is 
fixed at, say, some c . To compute the difference 
estimate at iteration k, we evaluate    at two 
values of : 

( )L θ

)

0>

( 1, ,
T

k k kp∆ = ∆ ∆…

1±

θ

ki∆

( )ky ⋅

 

( ) ( ) ( )2 1k k ky L c cθ θ ε θ+
−= + ∆ + + ∆k

k

, 
 

( ) ( ) ( )2k k ky L c cθ θ ε θ− = − ∆ + − ∆ . 
 

The i-th component of the difference estimate is 
 

 ( ) ( ) ( )( )
,

2
k k

i
k ki

y y
H k

c
θ θ

θ
+ −−

=
∆

. 

 

Let    be a sequence such that  a   and  
.  Also, take  .  Starting with an 

initial estimate 

0ka >

k = ∞
0k →

a∑ 1kc ≡

1̂
pθ ∈ Z , we recursively compute a 

sequence of estimates 
 

 (1
ˆ ˆ ˆ1,k k k ka H kθ θ θ+ ) = − +    (3.1) 

 

where the i-th component of  H  is  iH .  Note that the 

iterates    are not constrained to lie in  k̂θ pZ .  

However, we are interested in the asymptotic 
behavior of the truncations  ˆ p

kθ  ∈  Z

(* 1,k +

*

. 

H

( ˆ1, kθ +  

L
θ

}ka

}k̂θ

}k̂θ

We also consider a version of (3.1) 

  
  (3.2) )1

ˆ ˆ ˆ
k k k ka Hθ θ θ+ = −

 
where the components of    are obtained from an 
approximation to    based on noise-corrupted 
measurements    of  L.  In this version, the 

sequence  

*L
)(y θ

{ }kc

L

  satisfies the standard conditions for 
a Kiefer-Wolfowitz type algorithm.  The sequence  

  in (3.2) provides an estimate of the minimum of  
the extension  . 

k̂θ
*

Another version of (3.1), which was introduced in 
[7], is a fixed gain algorithm.  For this, let    
and consider the following form of the algorithm 

0a >

 

 . (3.3) 1
ˆ ˆ
k k a H kθ θ+ = − )

 
The assumed boundedness of the noise and 

assuming the stability of an associated ODE ensures 
that the sequence of estimates in (3.3) is bounded.  
The pathwise behavior of estimator process generated 
by fixed gain SPSA can be analyzed using the result 
of [4]. 

The analysis of (3.2) requires a different 
approach.  The convergence can be studied using 
results in [14], which give conditions for the 
convergence of a Kiefer-Wolfowitz type SA 
algorithm when the cost function is continuous and 
convex.  For example (see Corollary 3 of Theorem 
2.3.5 in [14]): 
 
Proposition:  Let    be a continuous convex 
function on  

L
pR .  Suppose that    is bounded 

below and that  ( )L θ → ∞   as  → ∞ .  Assume 

the standard SA conditions on  { ,  { }kc ,  and 

the measurement noise process.  Let  { }k̂θ   be a 

sequence of estimates from a Kiefer-Wolfowitz SA 
algorithm and assume that  {   is bounded with 

probability 1.  Then  {   converges with 

probability to the set of stationary points of  L. 

4. Resource Allocation 
We consider the application of SPSA on grids to a 
class of multiple discrete resource allocation 
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problems ([1], [8], [11]).  The goal is to distribute a 
finite amount of resources of different types to 
finitely many classes of users, where the amount of 
resources that can be allocated to any user class is 
discrete. 

There are n types of resources, where Nj denotes 
the number of resources of type j, j = 1, …, n.  These 
resources are to be allocated over M user classes.  Let 
θjk denote the number of resources of type j that are 
allocated to user class k, and θ be the vector 
consisting of all the θjk’s.  The allocation of resources 
to users in class k is denoted θk, thus θk = (θ1k, …, 
θnk).  For each allocation vector θ there is an 
associated cost function or performance index L(θ), 
which is the expected cost.  The goal is to distribute 
the resources in such a way that cost is minimized: 

 
( )

1

minimize ,

subject to , 0, 1
M

jk j jk
k

L

N j

θ

θ θ
=

= ≥ ≤∑ n≤
 (4.1) 

 
where the  jkθ ’s  are nonnegative integers.  The case 
of most interest, of course, is when the cost is 
observed with noise and the expected cost  is 
analytically unavailable.  This problem includes 
many problems of practical interest including the 
problem of optimally distributing a search effort to 
locate a moving target whose position is unknown 
and time varying (cf. [3]) and the problem of 
scheduling time slots for the transmission of 
messages over nodes in a radio network (cf. [1]).    
The formulation in (4.1) is a generalization of the 
single resource allocation problem considered in [1] 
with separable cost.  

( )L θ
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