
THE EFFECT OF NOISE ON ARTIFICIAL
INTELLIGENCE AND METAHEURISTIC TECHNIQUES

ABHIJIT GOSAVI
University of Southern Colorado Pueblo, CO 81001

Email: gosavi@uscolo.edu

Abstract

Artificial intelligence methods and search techniques such as
simulated annealing and simultaneous perturbation can be used
in simulation optimization of complex stochastic systems. Simul-
taneous perturbation has also been applied in the area of neural
networks. Simulation optimization methods are often used when
it is difficult to obtain the closed form of the objective function,
but it is possible to estimate the objective function value at any
point via simulation of the system. However, when the objective
function is estimated via simulation, simulation-induced noise can-
not be avoided. We theoretically analyze the effect of noise on the
performance of simulated annealing. We also theoretically ana-
lyze simultaneous perturbation under some special conditions and
then present some empirical results with this algorithm from a
revenue management problem in the airline industry.

Keyword 1: Optimization
Keyword 2: Algorithm, Artificial Intelligence, Convergence analysis,
combinatorial optimization, gradient descent algorithm, simulated an-
nealing, stochastic control, simulation approximation, steepest descent,
search heuristics, operations research, convergence time, engineering op-
timization, binomial distribution, local minima.

INTRODUCTION
Simulated annealing is a popular meta-heuristic that has been adapted
for use in simulation-based optimization. We analyze what happens
when the function value is contaminated with simulation-induced noise
in Section 2. The method of gradient descent is a popular method in op-
erations research, which has been used extensively in simulation-based
optimization and also in neural network algorithms. We discuss a rela-
tively new approach called simultaneous perturbation, which is due to
Spall (1992), to gradient descent. We analyze the convergence of this
approach under some special conditions in Section 3. Finally, in Sec-
tion 4, we present some numerical results from the use of simultaneous
perturbation in a problem of revenue management in airlines.

1

SIMULATED ANNEALING
The simulated annealing algorithm (Pham and Karaboga, 1998) is de-
scribed below. In this algorithm, one proceeds from one solution to its
“neighbor.” Each solution is a vector. The current solution and the
best solution so far will be denoted by ~xc and ~xb respectively. The al-
gorithm is written to minimize the objective function value f(~x). The
“temperature,” T, is maintained at a fixed value during a “phase.” The
algorithm is performed for pmax number of phases. Initialize T to a large
value.
Step 1. The number of phases, p is set to 0.
Step 2 Select a neighbor (~xn) of the current solution.
Step 3. Define ∆ ≡ f(~xn)− f(~xc). If f(~xn) < f(~xb), set: ~xb ← ~xn.
Case 1: If ∆ ≤ 0, set: ~xc ← ~xn.
Case 2: If ∆ > 0, generate U , a uniformly distributed random number
between 0 and 1. If U ≤ exp(−∆

T), then set: ~xc ← ~xn.
Step 4. Repeat Steps 2 and 3, which together form one interation, for
the number of iterations associated with the current phase.
Step 5. Set p ← p + 1. If p < pmax, then reduce T and return to Step
2 for another phase. Otherwise STOP. The best solution is ~xb.

We next show that “noisy” simulated annealing can converge.
Theorem 1. With probability 1, the version of simulated annealing
algorithm that uses simulation based estimates of the function can be
made to mimic the version that uses exact function values.
Proof: The effect of noise is felt in Step 3. In Step 3, we have two
cases, each of which is analyzed below.
Case 1: Denoting the simulation estimate of the function at ~x by f̃(~x)
and the exact value by f(~x), we can write that: f̃(~x) = f(~x) + η if
η denotes the noise that can be positive or negative. Then: f̃(~xc) =
f(~xc) + ηc and f̃(~xn) = f(~xn) + ηn. In Step 3, for Case 1, the noise-free
and the noisy algorithm will behave in the same way if

f̃(~xn)− f̃(~xc) ≤ 0. (1)

Now, if η1 = |ηn| and η2 = |ηc| then we have four scenarios, which
can be described by: f̃(~xn) = f(~xn) ± η1 and f̃(~xc) = f(~xc) ± η2. For
example Scenario 1 is: f̃(~xn) = f(~xn)+ η1 and f̃(~xc) = f(~xc)+ η2. Now
let us assume that

η1 < −∆
2

and η2 < −∆
2

. (2)

Below, we will identify conditions that will make Inequations (2) true.
To prove that the result is true for Case 1, it is necessary to show that

2

Inequation (1) is satisfied. Let us consider Scenario 1. The following
can be shown for any other scenario.

f̃(~xn)− f̃(~xc) = f(~xn)− f(~xc) + η1 − η2 (from Scenario 1)
= ∆ + η1 − η2

≤ ∆− ∆
2
− η2 (from Inequation (2))

=
∆
2
− η2 ≤ 0 (from Inequation (2))

The above proves that Inequation (1) is true for Scenario 1. What
remains to be shown is how Inequation (2) can be satisfied. From the
strong law of large numbers, η1 and η2 can be made arbitrarily small. In
other words, with probability 1, for a given value of ε > 0, a sufficiently
large number of replications (samples) can be selected such that η1 < ε,
and η2 < ε. By choosing ε = −∆

2 the claim in Inequation (2) is true.
Case 2: In a manner similar to Case 1, it can be shown that by selecting
a suitable number of replications, one can ensure that:

f̃(~xn)− f̃(~xc) > 0 (3)

when ∆ > 0. What remains to be analyzed is how the probability
of selecting a worse neighbor is affected by the noise and what is the
limiting behavior. The probability must converge to 0 as T → 0, like
in the noise-free version. The probability (U), when contaminated by
noise, is exp(f̃(~xn)−f̃(~xc)

T). From Inequation (3), the numerator in the
power of the exponential term will always be strictly positive. Hence,
limT→0 exp(f̃(~xn)−f̃(~xc)

T) = 0. The above shows that the probability U
in the noisy version will also converge to 0. Q.E.D.

SIMULTANEOUS PERTURBATION
In the steps given below, k will denote the number of decision variables
and ~x m will denote the solution vector in the mth iteration. It is
defined as:~x m = (xm(1), xm(2), . . . , xm(k)). Set m = 0 and start with
an arbitrary value for ~x m. Intialize A to a small value such as 0.1 and
set µ = A.
Step 1. Assume that H(i) is a binomially distributed random variable
whose two permissible, equally likely, values are 1 and −1. Using this
distribution, assign values to H(i), where i = 1, 2, . . . , k.. Then compute
h(i) for all values of i, using the following: h(i) ← H(i)cm.

3

Step 2. Compute: F+ = f(xm(1) + h(1), xm(2) + h(2), . . . , xm(k) +
h(k)) and F− = f(xm(1)− h(1), xm(2)− h(2), . . . , xm(k)− h(k)).

Step 3. Set: xm+1(i) ← xm(i) − µF+−F−
2h(i) ∀i. Increment m by 1 and

set: µ ← A/m. If µ < µmin then STOP; else return to Step 1.

The convergence of this algorithm has been established in Spall (1992).
We present an analysis, under some special conditions, that uses a dif-
ferent result. We first need to define some standard step-size conditions
that will be needed. If µm denotes the step size in the mth iteration of
the algorithm, then the conditions are:

∞∑

m=1

µm = ∞,
∞∑

m=1

[µm]2 < ∞. (4)

For the subsequent analysis, we need a result in non-linear program-
ming, which is stated next. The result, along with its proof, can be
found in Bertsekas and Tsitsiklis (1996) in a more general version as
Proposition 4.1 (page 141) The result is presented next.

Theorem 2. Let us assume that a function f : Rk → R satisfies
the following conditions: f(~x) ≥ 0 everywhere, and f(~x) is Lipschitz
continuous. The core of the gradient descent algorithm can be expressed
as:

xm+1(i) = xm(i)− µm
[
∂f(~x)
∂x(i)

|~x=~x m + wm(i)
]

for i = 1, 2, . . . , k

in which k denotes the number of decision variables, µm represents the
step size in the mth iteration, while wm(i) is a noise term. Let the step
size satisfy the step size conditions defined in (4). The history of the
algorithm up to and including the mth iteration by the set: Fm. Then,
if

E[wm(i)|Fm] = 0 for every i (Condition 1) (5)

and
E[||~w m||2|Fm] = A + B||∇f(~x m)||2 (Condition 2) (6)

for finite A and B, with probability 1, limm→∞∇f(~x m) = 0.

The above result says that a gradient descent algorithm, with imperfect
gradient, can converge, under certain conditions. The next result, which
uses Theorem 2, shows that simultaneous perturbation can converge.

4

Theorem 3. The simultaneous perturbation algorithm described above
converges to a local optimum of the objective function, f(~x), if (i) exact
function values are used in the algorithm, (ii) the objective function
satisfies the Lipschitz condition, (iii) f(~x) ≥ 0 everywhere, and (iv) the
step-size is made to satisfy the standard conditions defined in (4).

Proof: Via the Taylor series, Spall (1992) shows that in his algorithm,

wm(i) =
k∑

j 6=i;j=1

hm(j)
hm(i)

∂f(~x)
∂x(j)

for every i (7)

and that E[wm(i)|Fm] = 0. This is Condition 1 (Theorem 2). We next
test Condition 2. In the algorithm, for any i, j, h(j)

h(i) = ±1. Therefore,
for any j and a given i, [

h(j)
h(i)

]2

= 1. (8)

Then, using the Euclidean norm, we have that:

||~w m||2 = [wm(1)]2 + [wm(2)]2 + · · ·+ [wm(k)]2

≤
k∑

j=1

[
∂f(~x)
∂x(j)

]2

+
k∑

j=1

[
∂f(~x)
∂x(j)

]2

+ · · ·+

· · ·+
k∑

j=1

[
∂f(~x)
∂x(j)

]2

(9)

= k
k∑

j=1

[
∂f(~x)
∂x(j)

]2

= k||∇f(~x m)||2

Line (9) follows from Equations (7) and (8). Condition 2 of Theorem 2
is hereby proved. Then from Theorem 2, the result follows. Q.E.D.

REVENUE MANAGEMENT
Airline companies in order to maximize their revenues divide their cus-
tomer pool into a number of fare “classes.” Customers who demand
special features such as flexible time, customers flying on direct flights,
or customers who arrive late in the booking horizon are made to pay
higher fares. In fact, typically, many companies have 5 to 15 fare classes.
Fare classes have nothing to do with seating arrangement within the air-
craft. It makes business sense to reserve some seats for higher fare classes

5

Table 1: The booking horizon is 100 days long with three equal periods
in which the Poisson rates of arrival are 0.5, 1, and 2 per day. Flight
capacity = 100. A = Fare Class, B = Arrival Prob., C = No-Show
Prob., D = Cancel Prob., and E = Cancel Penalty.
A 1 2 3 4 5 6 7 8 9 10
B .19 .17 .15 .13 .11 .09 .07 .05 .03 .01
C .001 .001 .001 .001 .001 .002 .009 .015 .08 .1
D .025 .025 .025 .05 .05 .075 .125 .2 .2 .225
E 95 90 85 80 75 70 65 60 55 50

because they yield higher revenues. At the same time, one also has to
address the question of overbooking. If flights are not overbooked, one
runs the risk of flying with empty seats, which is expensive, and on the
other hand excessive overbooking, which can lead to bumping a large
number of passengers, can also be very expensive. This is a well-studied
problem in the academic and industrial literature (see McGill and van
Ryzin, 1999). The problem is stochastic because the arrival rates of
passengers are random variables and so are the cancellations. In formal
terms, the problem can be described as: Maximize f(x1, x2, x3, . . . , xk)
where f(.) is the expected revenue per flight on which xi was used as
the booking limit for the ith fare class. Here if r > l, then fare of class
r is higher than fare of class l. The booking limits are implemented
in the following manner. Let yi denote the seats sold in the ith class.
Then accept an incoming customer in class i, if

∑i
j=1 yj <

∑i
j=1 xj , and

reject the customer otherwise.

We next present the problem details of a numerical on which we im-
plemented simultaneous perturbation. Its performance was compared
to that of a widely used heuristic called EMSR-b. Simultaneous per-
turbation, which took about 15 minutes on a Pentium PC, was able
to outperform EMSR-b. The usefulness of simultaneous perturbation
can be gauged from the fact that one is able to solve a 10-parameter
problem in a reasonable amount of computer time. Using traditional
finite difference approaches for calculating the gradient, this would take
about ten times as much time. Table 1 provides the data related to the
numerical. The EMSR-b policy returns an expected revenue of 37263.20
dollars per flight, while simultaneous perturbation returns an expected
revenue of 38158.39 dollars per flight, which is an improvement of 2.4
percent over EMSR-b. The simulations were run for 10 replications with

6

a 1000 flights in each replication.

CONCLUSIONS
We showed that in the presence of simulation-induced noise simulated
annealing can mimic its noise-free counterpart. We also established
convergence of simultaneous perturbation under some conditions. Fi-
nally, we presented some empirical results obtained from the use of
simultaneous perturbation on an important problem in airline revenue
management.

ACKNOWLEDGEMENTS
The author would like to acknowledge support from NSF grant ITR/AP
0114007 and from Emrah Ozkaya for some computer programs.

REFERENCES
Bertsekas, D.P. and Tsitsiklis, J.N., 1996, Neuro-Dynamic Programming, Athena
Scientific, Belmont, MA, pp. 141-142.

McGill, J.I., and G.J. van Ryzin, 1999, “Research overview and prospects,”
Transportation Science, Vol 33 (2), pp. 233-256.

Pham, D.T. and K. Karaboga, 1998, Intelligent Optimisation Techniques: Ge-
netic Algorithms, Tabu Search, Simulated Annealing, and Neural Networks,
Springer-Verlag, New York, pp. 187-218.

Spall, J.C., 1992, “Multivariate Stochastic Approximation using a simultane-
ous perturbation stochastic approximation,” IEEE Transactions on Automatic
Control, Vol 37, pp. 332-341.

7

