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Extensive numerical experiments on a network of M/G/1 queues with feedback indicate that
the deterministic sequence SPSA algorithms perform significantly better than the corresponding
randomized algorithms.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Probabilistic Algorithms
(including Monte Carlo); I.6.0 [Simulation and Modeling]: General; I.6.1 [Simulation and
Modeling]: Simulation Theory

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Simulation optimization, stochastic approximation, SPSA,
two-timescale algorithms, deterministic perturbations, Hadamard matrices

1. INTRODUCTION

Simultaneous perturbation stochastic approximation (SPSA), introduced in
Spall [1992], has attracted considerable attention in recent years because of
its generality and efficiency in addressing high-dimensional stochastic opti-
mization problems (see, e.g., Bhatnagar et al. [2001a], Chen et al. [1999],
Fu and Hill [1997], Gerencsér [1999], and Kleinman et al. [1999]). Like
algorithms based on finite differences Kiefer–Wolfowitz stochastic approxima-
tion, SPSA requires only estimates of the objective function itself. On the other
hand, algorithms based on Robbins-Monro stochastic approximation, which em-
ploy direct gradient estimators using for example perturbation analysis gen-
erally require additional knowledge on the underlying structure of the sys-
tem being optimized. However, the one-sided and two-sided finite difference
Kiefer–Wolfowitz algorithms (Kushner and Clark [1978]) require N + 1 and
2N samples of the objective function, respectively, whereas SPSA typically
uses only two samples for (any) N -dimensional parameter, updating the en-
tire parameter vector at each update epoch along an estimated gradient di-
rection obtained by simultaneously perturbing all parameter components in
random directions. SPSA, like traditional stochastic approximation, was origi-
nally designed for continuous-parameter optimization problems, although mod-
ifications for discrete optimization have been proposed recently by Gerencsér
et al. [1999]. In this article, we address only the continuous parameter
setting.

Using SPSA, one obtains in effect the correct (steepest descent) direction be-
cause of the form of the gradient estimate, where the random perturbations are
chosen to be mean-zero and mutually independent (most commonly generated
by using independent, symmetric, Bernoulli distributed random variables). As
a result of this choice, the estimate along ‘undesirable gradient directions’ av-
erages to zero. The main driving force behind the work reported here is that
this averaging can also be achieved in a less “noisy” fashion using determin-
istic perturbation sequences, similar in spirit to the use of quasi-Monte Carlo
sequences as in Niederreiter [1992, 1995], in place of pseudorandom numbers
for numerical integration. We have found that in certain scenarios, determin-
istic perturbations are theoretically sound and lead to faster convergence in
our numerical experiments. Deterministic perturbations in random direction
Kiefer-Wolfowitz (RDKW) algorithms have also been studied in Sandilya and
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Kulkarni [1997]. In Wang and Chong [1998], it is shown that RDKW and SPSA
algorithms have similar asymptotic performance.

We propose two different constructions of deterministic perturbation se-
quences. The first sequence follows a lexicographic ordering to cyclically visit
exactly half (2N−1) of all the 2N points in the space of perturbations (note that
the other half are automatically visited by being the mirror image). The second
sequence is constructed based on normalized Hadamard matrices [Hadamard
1893; Seberry and Yamada 1992], which drastically reduces the required num-
ber of points to be visited cyclically in the perturbation space to 2dlog2 Ne points.
The idea behind the Hadamard matrix construction is to reduce the contribution
of aggregate bias over iterations. We prove convergence for both constructions
by directly imposing the desired properties on the structure of the sequence of
perturbations.

In the following, we introduce two-timescale SPSA algorithms and exam-
ine several forms of these in a simulation setting, by varying the number of
simulations, the nature of perturbations, and the algorithm type depending on
the nature of update epochs of the algorithm. The rest of the article is orga-
nized as follows. In the next section, we formulate the problem, describe the
various algorithms, present the first (lexicographic) construction for determin-
istic perturbations and present the convergence analysis of these algorithms.
In Section 3, we present the algorithms with deterministic perturbations using
normalized Hadamard matrices, present the relevant results and show that
the convergence analysis of the previous algorithms carries over for these algo-
rithms. We present the results of numerical experiments in Section 4. Finally,
Section 5 provides concluding remarks and some avenues for further research.

2. ALGORITHMS WITH LEXICOGRAPHICALLY ORDERED
DETERMINISTIC PERTURBATIONS

The standard stochastic approximation algorithm is of the following type:

θ̂k+1 = θ̂k + akYk , (1)

where θ̂k ≡ (θ̂k,1, . . . , θ̂k,N )T are tunable parameter vectors, ak correspond to
step-sizes and Yk ≡ (Yk,1, . . . , Yk,N )T are certain ‘criterion functions’. The
Robbins–Monro algorithm, for instance, finds zeroes of a function F (θ ), given
sample observations f (θ , ξ ) with random noise ξ such that F (θ ) = E[ f (θ , ξ )].
The Robbins–Monro algorithm therefore corresponds to Yk,i = f (θ̂k,i, ξk,i) in
(1), where ξk,i, i = 1, . . . , N , k ≥ 0, are independent and identically distributed
(i.i.d.) random vectors. On the other hand, the Kiefer–Wolfowitz algorithm tries
to minimize the objective function F (θ ) by finding zeroes of ∇F (θ ) using a gra-
dient descent algorithm, that is, in (1)

Yk,i = −
(

f (θ̂k + δkei, ξ+k,i)− f (θ̂k − δkei, ξ−k,i)
2δk

)
, (2)

where δk → 0 as k→∞ ‘slowly enough’, ξ+k,i, ξ
−
k,i are independent and identically

distributed, and ei is the unit vector with 1 in the ith place and 0’s elsewhere.
From (1), it is easy to see that for getting the full estimate Yk ≡ (Yk,1, . . . , Yk,N )T

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 2, April 2003.



Two-Timescale SPSA Using Deterministic Perturbations • 183

at any update epoch k, one needs 2N samples of the objective function f (·, ·).
This can be reduced to (N + 1) samples if a one-sided estimate is used instead.
In contrast, SPSA requires only two samples of the objective function at each
update epoch, as follows:

Yk,i = −
(

f (θ̂k + δk4(k), ξ+k )− f (θ̂k − δk4(k), ξ−k )
2δk4i(k)

)
, (3)

where ξ+k , ξ−k are independent and identically distributed random vectors in
an appropriate Euclidean space, 4(k) ≡ (41(k), . . . ,4N (k))T , where 4i(k), i =
1, . . . , N , k ≥ 0, are independent and identically distributed, zero-mean ran-
dom variables with P (4i(k) = 0) = 0. In many applications, these are chosen to
be independent and identically distributed Bernoulli distributed random vari-
ables with P (4i(k) = +1) = P (4i(k) = −1) = 1/2. SPSA has been a very
popular algorithm for function minimization mainly since it requires only two
estimates of the objective function at each step of the iteration.

More recently, another form of SPSA that requires only one sample of the
objective function has also been studied in Spall [1997] and Spall and Cristion
[1998]. In this,

Yk,i = −
(

f (θ̂k + δk4(k))
δk4i(k)

)
, (4)

or alternatively,

Yk,i =
(

f (θ̂k − δk4(k))
δk4i(k)

)
. (5)

However, it was observed that the one-sample form has significant ‘extra bias’ in
comparison to the two-sample form (3), so that in general the latter is preferable.
SPSA is supported by considerable theory on its convergence properties, and
this theory is based (in part) on using random perturbations to compute the
gradient approximation. In a large class of important applications, the objective
function is estimated by running a simulation, so that the two-sample SPSA
algorithm, for instance, would require two parallel simulations.

We now introduce our framework. Let {X n, n ≥ 1} be anRd -valued (for some
given d ≥ 1) parameterized Markov process with a tunable N -dimensional pa-
rameter θ that takes values in a compact set C ⊂ RN . We assume in particular
C to be of the form C

4=
∏N

i=1
[θi,min, θi,max]. Note that we constrain our algo-

rithms to evolve within the set C by using projection operators. In general, the
set C could have other forms as well, for example, a disjoint union of compact
intervals. The projection operator could then be chosen such that it projects the
iterates onto the set from which it is the closest, so as to ignore (say) undesir-
able points that may lie in between these subsets. Let h : Rd → R+ be a given
bounded and continuous cost function. Our aim is to find a θ that minimizes
the long-run average cost

J (θ ) = lim
l→∞

1
l

l−1∑
j=0

h(X j ). (6)
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Thus, one needs to evaluate ∇J (θ ) ≡ (∇1 J (θ ), . . . , ∇N J (θ ))T . Consider {X j }
governed by parameter θ , and N other sequences {X i

j }, i = 1, . . . , N , each
governed by θ + δei, i = 1, . . . , N , respectively. Then

∇i J (θ ) = lim
δ→0

1
δ

lim
l→∞

1
l

l−1∑
j=0

(h(X i
j )− h(X j ))

 . (7)

The sequences {X j }, {X i
j }, i = 1, . . . , N , correspond to (N + 1) parallel simu-

lations. One can also consider the gradient (7) in a form (similar to (2)) with
2N parallel simulations. However, in any of these forms, it is clear (cf. (7))
that the outer limit is taken only after the inner limit. For classes of systems
for which the two limits in (7) can be interchanged, gradient estimates from
a single sample path can be obtained using infinitesimal perturbation analy-
sis (IPA) [Chong and Ramadge 1993, 1994; Fu 1990; Ho and Cao 1991], which
when applicable is usually more efficient than finite differences. Since SPSA
does not require the interchange, it is more widely applicable. Broadly, any re-
cursive algorithm that computes optimum θ based on (7) should have two loops,
the outer loop (corresponding to parameter updates) being updated once after
the inner loop (corresponding to data averages) has converged. Thus, one can
physically identify separate timescales, the faster one on which data based on a
fixed parameter value is aggregated and averaged, and the slower one on which
parameter is updated once the averaging is complete for one latter iteration.
The same effect as from different physical timescales can also be achieved by
using different step-size schedules (also called timescales) in the stochastic ap-
proximation algorithm. Based on this, algorithms were proposed in Bhatnagar
and Borkar [1997, 1998] that require (N+1) parallel simulations. In Bhatnagar
et al. [2001a], the SPSA versions of these algorithms SPSA1-2R and SPSA2-2R,
respectively, were presented in the setting of hidden Markov models. Both the
SPSA versions require only two parallel simulations, leading to significant per-
formance improvements over the corresponding algorithms of Bhatnagar and
Borkar [1997, 1998]. In Bhatnagar et al. [2001b], algorithm SPSA1-2R was ap-
plied to a problem of closed loop feedback control in available bit rate (ABR)
service in asynchronous transfer mode (ATM) networks.

In this article, we investigate the use of deterministic perturbation se-
quences, that is, those sequences {4(n)} of perturbations that cyclically pass
through a set of points in the perturbation space in a deterministic fashion. We
present two constructions based on deterministic perturbations—lexicographic
and normalized Hadamard matrix based. In what follows, we shall develop ten
SPSA algorithms, all using two timescales based on two step-size sequences
{a(n)} and {b(n)} (as opposed to the one timescale version implied by the tradi-
tional form of SA given by (1)). We use the following general notation for these
algorithms. SPSAi- j K is the two-timescale SPSA algorithm of type i (i = 1, 2),
that uses j simulations ( j = 1, 2). Also, K=R signifies that the particular algo-
rithm uses randomized difference perturbations as in regular SPSA, whereas
K=L (respectively, H) signifies that the particular algorithm uses determinis-
tic perturbations based on lexicographical (respectively normalized Hadamard
matrix based) ordering of points in the perturbation space. Algorithms of type
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1 correspond to those having similar structure as SPSA1 of Bhatnagar et al.
[2001a] (SPSA1-2R here), whereas those of type 2 correspond to SPSA2 of Bhat-
nagar et al. [2001a] (SPSA2-2R here). Algorithms of type 1 (SPSA1-2R, SPSA1-
2L, SPSA1-2H, SPSA1-1R, SPSA1-1L and SPSA1-1H) update the parameter
at instants nm defined by n0 = 1 and

nm = min{ j > nm−1 |
j∑

i=nm−1+1

a(i) ≥ b(m)}, m ≥ 1.

It was shown in Bhatnagar and Borkar [1997] that this sequence {nm} increases
exponentially. On the other hand, algorithms of type 2 (SPSA2-2R, SPSA2-2L,
SPSA2-2H, SPSA2-1R, SPSA2-1L and SPSA2-1H) update the parameter once
every fixed L instants. In the corresponding algorithm of Bhatnagar and Borkar
[1998] that requires (N + 1) parallel simulations, L = 1, that is, the updates
are performed at each instant. However in the SPSA version of the same in
Bhatnagar et al. [2001a], it was observed that an extra averaging in addition
to the two timescale averaging is required to ensure good algorithmic behavior
when the parameter dimension is high. Thus, algorithms of type 1 tend to be
more in the spirit of physical timescale separation wherein parameter updates
(after a while) are performed after data gets averaged over long (and increasing)
periods of time, whereas those of type 2 update the parameter once every fixed
number of time instants by explicitly using different timescales of the stochastic
approximation algorithm through coupled recursions that proceed at “different
speeds.” In systems that have a significantly high computational requirement,
algorithms of type 2 may be computationally superior because of faster update
epochs. Computational comparisons of the randomized algorithms SPSA1-2R
and SPSA2-2R have been provided in Bhatnagar et al. [2001a].

We make the following assumptions:

(A1) The basic underlying process {X n, n ≥ 1} is ergodic Markov for each
fixed θ .

(A2) The long run average cost J (θ ) is continuously differentiable with
bounded second derivative.

(A3) The step-size sequences {a(n)} and {b(n)} are defined by

a(0) = â, b(0) = b̂, a(n) = â/n, b(n) = b̂/nα,

n ≥ 1,
1
2
< α < 1, 0 < â, b̂ <∞. (8)

We now provide the motivation behind these assumptions. First, (A1) ensures
that the limit in the expression for J (θ ) given by (6) is well defined. Also, {X n}
governed by a time varying parameter sequence {θn} that is updated according
to any of the algorithms that we present in this paper, would continue to be
Markov. Further, (A1) implies that for any fixed θ , starting from any initial dis-
tribution, the distribution of the process {X n} shall converge to the stationary
distribution under θ . One can also argue that the overall process {X n} gov-
erned by {θn} with θn updated according to any of our algorithms, continues to
be stable. (A1) is thus also used in deriving the asymptotic equivalence of the

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 2, April 2003.



186 • S. Bhatnagar et al.

two-simulation (respectively, one-simulation) algorithms with Eq. (12) (respec-
tively, Eq. (27)) (cf. Bhatnagar et al. [2001a]).

Assumption (A2) is a technical requirement that is needed to push through a
Taylor series argument to essentially show that SPSA gives the correct gradient
descent directions on the average. Moreover, J (θ ) also serves as an associated
Liapunov function for the ODE (18) and is therefore required to be continuously
differentiable.

The step-size sequences in (A3) are of the standard type in stochastic ap-
proximation algorithms, satisfying the essential properties

∞∑
n=1

a(n) =
∞∑

n=1

b(n) = ∞,
∞∑

n=1

a(n)2,
∞∑

n=1

b(n)2 <∞, (9)

a(n) = o(b(n)). (10)

Intuitively, (10) means that {b(n)} corresponds to the faster timescale and {a(n)}
to the slower one, since {a(n)} goes to zero faster than {b(n)} does.

Let δ > 0 be a fixed small constant, let πi(x) 4= min(max(θi,min, x), θi,max),
i = 1, . . . , N , denote the point closest to x ∈ R in the interval [θi,min, θi,max] ⊂
R, i = 1, . . . , N , and let π (θ ) denote π (θ ) 4= (π1(θ1), . . . , πN (θN ))T for θ =
(θ1, . . . , θN )T ∈ RN . Then π (θ ) is a projection of θ on to the set C. We now
recall the algorithm SPSA1-2R of Bhatnagar et al. [2001a].

2.1 Algorithm SPSA1-2R

We assume for simplicity that 4k(m), for all k = 1, . . . , N , and integers
m ≥ 0, are mutually independent, Bernoulli distributed random variables
taking values ±1, with P (4k(m) = +1) = P (4k(m) = −1) = 1/2. Let
4(m) 4= (41(m), . . . ,4N (m))T represent the vector of the random variables
41(m), . . . ,4N (m). The perturbation sequences can also have more general dis-
tributions that satisfy Condition (B) (see Bhatnagar et al. [2001a]) below.

Condition (B). There exists a constant K̄ < ∞, such that for any l ≥ 0,
and i ∈ {1, . . . , N }, E[(4i(l ))−2] ≤ K̄ .

Minor variants of this condition are for instance available in Spall [1992]. In
this article, however, we consider only perturbation sequences formed from in-
dependent and identically distributed, Bernoulli distributed random variables
for the sake of simplicity.

SPSA1-2R
Consider two parallel simulations {X k

j }, k = 1, 2, respectively, governed by
{θ̃k

j }, k = 1, 2, as follows: For the process {X 1
j }, we define θ̃1

j = θ (m) − δ4(m),
for nm < j ≤ nm+1, m ≥ 0. The parameter sequence {θ̃2

j } for {X 2
j } is sim-

ilarly defined by θ̃2
j = θ (m) + δ4(m), for nm < j ≤ nm+1, m ≥ 0. Here,
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θ (m) 4= (θ1(m), . . . , θN (m))T is the value of the parameter update that is
governed by the following recursion equations. For i = 1, . . . , N ,

θi(m+ 1) = πi

θi(m)+
nm+1∑

j=nm+1

a( j )

(
h(X 1

j )− h(X 2
j )

2δ4i(m)

) , (11)

m ≥ 0. Thus, we hold θ (m) and4(m) fixed over intervals nm < j ≤ nm+1, m ≥ 0,
for the two simulations and at the end of these intervals, update θ (m) according
to (11), and generate new samples for each of the 4i(m).

Next, we consider perturbation sequences {4(m)} that are generated deter-
ministically for the algorithm SPSA1-2L. We consider first a lexicographic con-
struction for generating these sequences.

2.2 Lexicographical Deterministic Perturbations and Algorithm SPSA1-2L

When the perturbations are randomly generated, unbiasedness is achieved by
way of expectation and mutual independence. The use of deterministic pertur-
bation sequences allows a construction that can guarantee the desirable aver-
aging properties over a cycle of the sequence. In this and other constructions,
we will assume that as in the random perturbation case, where a symmetric
Bernoulli distribution was used, each component of the N -dimensional pertur-
bation vector takes on a value ±1; thus, the resulting discrete set E = {±1}N
on which the vector takes values has cardinality 2N . In this section, we will
consider a complete cyclical sequence on the set of possible perturbations using
the natural lexicographical ordering. In Section 3, we consider a much more
compact sequence using normalized Hadamard matrices.

Fix 41(m) = −1 ∀m ≥ 0, and lexicographically order all points in the dis-
crete set F ⊂ E with F = {e0, . . . , e2N−1−1}. Thus, F corresponds to the re-
sulting set in which 4(m) takes values. Next, we set 4(0) = e0 and move the
sequence {4(m)} cyclically through the set F by setting 4(m) = esm , where

sm
4= (m− [m/2N−1]2N−1) is the remainder from the division m/2N−1. Thus,

for θ = (θ1, θ2, θ3)T , the elements of the set F are ordered as follows: f0 =
(−1,−1,−1)T , f1 = (−1,−1,+1)T , f2 = (−1,+1,−1)T and f3 = (−1,+1,+1)T .
We now set 4(0) = f0 and move the sequence cyclically through all points
f0, . . . , f3. Note that in this manner, for two-simulation algorithms, we only
require exactly half the number of points in the space of perturbations. It
will be shown later that the bias in two-simulation deterministic perturba-
tion algorithms contains perturbation ratios of the type 4 j (m)/4i(m), j 6= i,
i, j ∈ {1, . . . , N } as components. The corresponding one-simulation algorithms
contains both terms of the type 4 j (m)/4i(m), j 6= i, i, j ∈ {1, . . . , N }, as well as
those of type 1/4i(m), i ∈ {1, . . . , N }. A similar construction for perturbation
sequences in one-simulation algorithms therefore requires that the perturba-
tion sequence pass through the full set of points E and not just the half obtained
by holding 41(m) to a fixed value as above.
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Table I. Perturbation Ratios and Inverses for N = 3 using Lexicographic Construction

j = 8m+ l ,
m ≥ 0

Point
(4( j ) = el )

41( j )
42( j )

41( j )
43( j )

42( j )
43( j )

1
41( j )

1
42( j )

1
43( j )

8m (−1,−1,−1)T +1 +1 +1 −1 −1 −1
8m+ 1 (−1,−1,+1)T +1 −1 −1 −1 −1 +1
8m+ 2 (−1,+1,−1)T −1 +1 −1 −1 +1 −1
8m+ 3 (−1,+1,+1)T −1 −1 +1 −1 +1 +1
8m+ 4 (+1,−1,−1)T −1 −1 +1 +1 −1 −1
8m+ 5 (+1,−1,+1)T −1 +1 −1 +1 −1 +1
8m+ 6 (+1,+1,−1)T +1 −1 −1 +1 +1 −1
8m+ 7 (+1,+1,+1)T +1 +1 +1 +1 +1 +1

For N = 3, we describe in Table I the ratios of quantities of the type
1/4i( j ), i = 1, 2, 3, and 4k( j )/4i( j ), k 6= i, respectively. From Table I, it
is easy to see that

∑n

j=0
41( j )/42( j ) equals zero for any n = 4m−1, m ≥ 1. Also∑n

j=0
41( j )/43( j ) and

∑n

j=0
42( j )/43( j ) equal zero for any n = 2m−1, m ≥ 1.

Thus (for N = 3), all quantities of the type
∑n

j=0
4k( j )/4i( j ), i 6= k, become

zero at least once in every four iterations. Also note in this example that by
forming vectors R( j ) 4= (41( j )/42( j ),41( j )/43( j ),42( j )/43( j ))T , one finds for
any m ≥ 0, j ∈ {0, 1, . . . , 7}, R(8m + j ) = R(8m + 7 − j ). We point out that
the analysis for two-simulation algorithms would work equally well with de-
terministic perturbation sequences that are similarly defined on the set E\F
(i.e., the set obtained by holding 41(m) = +1 for all m, instead of −1).

SPSA1-2L
The algorithm SPSA1-2L is exactly the same as algorithm SPSA1-2R but

with lexicographical deterministic perturbation sequences {4(m)} generated
according to the procedure just described.

Next, we provide the convergence analysis for SPSA1-2L.

2.3 Convergence Analysis of SPSA1-2L

It was shown using ordinary differential equation (ODE) analysis in Bhatnagar
et al. [2001a], that the randomized difference algorithm SPSA1-2R asymptoti-
cally tracks the stable points of the ODE (18). As an initial step, it was shown
that under (A1) SPSA1-2R is asymptotically equivalent to the following algo-
rithm, in the sense that the differences between the gradient estimates in these
algorithms is o(1):

θi(m+ 1) = πi

(
θi(m)+ b(m)

(
J (θ (m)− δ4(m))− J (θ (m)+ δ4(m))

2δ4i(m)

))
, (12)

for i = 1, . . . , N , m ≥ 0. SPSA1-2R can therefore be treated as being the same as
(12), except for additional asymptotically diminishing error terms on the RHS of
(12), which can again be taken care of in a routine manner (see Borkar [1997]).
One can similarly show as in Bhatnagar et al. [2001a] that SPSA1-2L with
deterministic perturbations {4(m)} is also asymptotically equivalent under (A1)
to (12). We have the following basic result.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 2, April 2003.



Two-Timescale SPSA Using Deterministic Perturbations • 189

THEOREM 2.1. The deterministic perturbations 4(n) 4= (41(n), . . . ,4N (n))T

satisfy:
s+2N−1−1∑

n=s

4i(n)
4 j (n)

= 0 for any s ≥ 0, i 6= j , i, j ∈ {1, . . . , N }.

PROOF. We first show that

2N−1m+2N−1−1∑
n=2N−1m

4i(n)
4 j (n)

= 0

for any m ≥ 0, i 6= j , i, j , k ∈ {1, . . . , N }. Note that 41(n) = −1 ∀n. For k ∈
{2, . . . , N }, one can write

4k(n) = I{n = 2N−kmk + lk , mk ≥ 0, lk ∈ {2N−k−1, . . . , 2N−k − 1}}
− I{n = 2N−kmk + lk , mk ≥ 0, lk ∈ {0, 1, . . . , 2N−k−1 − 1}}, (13)

where I{·} represents the characteristic or indicator function. Here, we use
the fact that given n and k, there exist unique integers mk ≥ 0 and lk ∈
{0, . . . , 2N−k − 1} such that n = 2N−kmk + lk . Thus, in (13), we merely split
the full set in which lk takes values into two disjoint subsets, one on which
4k(n) = −1 and the other on which 4k(n) = +1. In other words, we have de-
scribed 4k(n) solely on the basis of ‘cycles’ after which these change sign. The
largest cycle amongst components k = 2, . . . , N , corresponds to42(n) for which
n is represented as n = 2N−1m2 + l2. In what follows, we will first uniformly
write all components in terms of the largest cycle.

Note that because of the lexicographical ordering, the range of each 4k(n),
k = 2, . . . , N , can be split into blocks of 2N−k of−1 and+1 elements over which
these sum to zero, that is,

2N−k (m+1)−1∑
n=2N−km

4k(n) = 0.

The total number of such blocks given N (the dimension of the vector) and k is
2N−1/2N−k = 2k−1. Thus, for any k = 2, . . . , N , 4k(n) can be written as

4k(n) = I{n = 2N−1m+ l , m ≥ 0, l ∈ {2N−k , . . . , 2× 2N−k − 1}
∪ {3× 2N−k , . . . , 4× 2N−k − 1}
∪ . . . ∪ {(2k−1 − 1)2N−k , . . . , 2k−12N−k − 1}}
−I{n = 2N m+ l , m ≥ 0, l ∈ {0, . . . , 2N−k − 1}

∪ {2× 2N−k , . . . , 3× 2N−k − 1}
∪ . . . ∪ {(2k−1 − 2)2N−k , . . . , (2k−1 − 1)2N−k − 1}}, (14)

where we have

4k(n)
4l (n)

= 4l (n)
4k(n)

, k 6= l .

Thus, without loss of generality assume k < l .
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For 4k(n), the space {0, . . . , 2N−1−1} is partitioned into 2k−1 subsets of type

Ar,k
4= {r × 2N−k , . . . , (r + 1)2N−k − 1}, r ∈ {0, 1, . . . , 2k−1 − 1},

with each subset containing 2N−k elements. For 4l (n), the space {0, . . . , 2N−1−
1} is similarly partitioned (as above) into 2l−1 subsets of the type

Ar̄,l
4= {r̄ × 2N−l , . . . , (r̄ + 1)2N−l − 1}, r̄ ∈ {0, 1, . . . , 2l−1 − 1}.

Thus, since k < l , 2k < 2l and so 2N−k > 2N−l . Also the number of elements in
the partition Ak

4= {Ar,k} equals 2k , while those in partition Al
4= {Ar̄,l } equal

2l . From the construction, it is clear that the partition sets Ar,k can be derived
from those of Ar̄,l by taking union over 2l−k successive sets in Ar̄,l . Thus,

Ar,k = {r × 2N−k , . . . , (r + 1)2N−k − 1}
= {r × 2N−k , . . . , r × 2N−k + 2N−l − 1}
∪ {r × 2N−k + 2N−l , . . . , r × 2N−k + 2N−l+1 − 1}
∪ . . . ∪ {(r + 1)2N−k − 2N−l , . . . , (r + 1)2N−k − 1}.

By construction now,4l (n) = −1 on exactly half (that is, 2l−k−1) of these subsets
(in the second equality above) and equals +1 on the other half. Thus, on each
subset Ar,k in the partition for 4k(n), 4l (n) takes value +1 on exactly half of
the subset and −1 on the other half. Further, 4k(n) has a fixed value on whole
of Ar,k . Thus,

2N−1m+2N−1−1∑
n=2N−1m

4k(n)
4l (n)

= 0, k 6= l .

Now any integer s ≥ 0 can be written as s = 2N−1m + p, m ≥ 0, p ∈
{0, . . . , 2N−1−1}. Also for n = 2N−1m+r with r ∈ {0, . . . , 2N−1−1},4k(n) = 4k(r)
and 4l (n) = 4l (r). Thus,

s+2N−1−1∑
n=s

4k(n)
4l (n)

=
2N−1m+2N−1+p−1∑

n=2N−1m+p

4k(n)
4l (n)

=
2N−1m+2N−1−1∑

n=2N−1m+p

4k(n)
4l (n)

+
2N−1m+2N−1+p−1∑

n=2N−1m+2N−1

4k(n)
4l (n)

.

Now, 4k(2N−1m+ 2N−1 + r) = 4k(2N−1m+ r) = 4k(r), ∀m ≥ 0. Thus,

s+2N−1−1∑
n=s

4k(n)
4l (n)

=
2N−1m+2N−1−1∑

n=2N−1m+p

4k(n)
4l (n)

+
2N−1m+p−1∑

n=2N−1m

4k(n)
4l (n)

=
2N−1m+2N−1−1∑

n=2N−1m

4k(n)
4l (n)

= 0.

This completes the proof.
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Consider now the algorithm:

θ (m+ 1) = π (θ (m)+ b(m)H(θ (m), ξ (m))), (15)

where θ (·) ∈ RN , π (·) as earlier and such that ‖ H(·, ·) ‖≤ K̄ < ∞. The norm
‖ · ‖ here and in the rest of this section corresponds to the sup norm. Here, ξ (m)
corresponds to noise which could be randomized, deterministic or some combi-
nation of both. The following results will be used in the proof of Theorem 2.4.

LEMMA 2.2. Under (A3), for any stochastic approximation algorithm of the
form (15), given any fixed integer P > 0, ‖ θ (m+ k)− θ (m) ‖→ 0 as m→∞, for
all k ∈ {1, . . . , P}.

PROOF. Note that (15) can be written as

θ (m+ 1) = θ (m)+ b(m)H(θ (m), ξ (m))+ b(m)Z (m), (16)

where Z (m) corresponds to the error term because of the projection (see
Kushner and Clark [1978]). Thus, for k ∈ {1, . . . , P}, (16) recursively gives

θ (m+ k) = θ (m)+
m+k−1∑

j=m

b( j )H(θ ( j ), ξ ( j ))+
m+k−1∑

j=m

b( j )Z ( j ).

Thus,

‖ θ (m+ k)− θ (m) ‖≤
m+k−1∑

j=m

b( j )(‖ H(θ ( j ), ξ ( j )) ‖ + ‖ Z ( j ) ‖) ≤ 2K̄
m+k−1∑

j=m

b( j ),

(17)

since ‖ Z ( j ) ‖≤ K̄ as well. Note from definition of {b( j )} that b( j ) ≥ b( j + 1)
∀ j . Thus,

m+k−1∑
j=m

b( j ) ≤ kb(m).

Hence, from (17), we have

‖ θ (m+ k)− θ (m) ‖≤ 2K̄ kb(m).

The claim now follows from the fact that b(m)→ 0 as m→∞ and ‖ θ (m+ k)−
θ (m) ‖≥ 0 ∀m.

Consider now algorithm (12), however, with deterministic perturbation se-
quences {4(n)} as described in Section 2.2. Note that (12) satisfies the conclu-
sions of Lemma 2.2, since terms corresponding to H(θ (m), ξ (m)) in these are uni-
formly bounded because of (A2) and the fact that C is a compact set. We now have

COROLLARY 2.3. For {θ (n)} defined by (12) but with {4(n)} a deterministic
lexicographically ordered sequence, the following holds under (A2)-(A3) for any
m ≥ 0, k, l ∈ {1, . . . , N }, k 6= l :∥∥∥∥∥∥

m+2N−1−1∑
n=m

b(n)
b(m)

4k(n)
4l (n)

∇k J (θ (n))

∥∥∥∥∥∥→ 0 as m→∞.
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PROOF. By choosing P = 2N−1 in Lemma 2.2, we have ‖θ (m+s)−θ (m)‖ → 0
as m → ∞, for all s = 1, . . . , 2N−1. By (A2), we have ‖∇k J (θ (m + s)) − ∇k J
(θ (m))‖ → 0 as m→ ∞, for all s = 1, . . . , 2N−1. Note that by (A3), for j ∈ {m,
m+ 1, . . . , m+ 2N−1 − 1}, b( j )/b(m)→ 1 as m→∞. From Theorem 2.1,

m+2N−1−1∑
n=m

4k(n)
4l (n)

= 0∀m ≥ 0.

Thus, one can split any set of type Am
4= {m, m+ 1, . . . , m+ 2N−1 − 1} into two

disjoint subsets A+m,k,l and A−m,k,l each having the same number of elements,
with A+m,k,l ∪ A−m,k,l = Am and such that 4k(n)/4l (n) takes value +1 on A+m,k,l
and −1 on A−m,k,l , respectively. Thus,∥∥∥∥∥∥

m+2N−1−1∑
n=m

b(n)
b(m)

4k(n)
4l (n)

∇k J (θ (n))

∥∥∥∥∥∥
=
∥∥∥∥∥∥
∑

n∈A+m,k,l

b(n)
b(m)
∇k J (θ (n))−

∑
n∈A−m,k,l

b(n)
b(m)
∇k J (θ (n))

∥∥∥∥∥∥ .
From these results, we have∥∥∥∥∥∥

m+2N−1−1∑
n=m

b(n)
b(m)

4k(n)
4l (n)

∇k J (θ (n))

∥∥∥∥∥∥→ 0

as m→∞.
Consider now the ODE:

.

θ (t) = π̃ (−∇J (θ (t))), (18)

where for any bounded continuous function v(·),

π̃ (v(θ (t))) = lim
η↓0

(
π (θ (t)+ ηv(θ (t)))− θ (t)

η

)
.

The operator π̃ (·) forces the ODE (18) to evolve within the constraint set C.
The fixed points of the ODE lie within the set K = {θ ∈ C | π̃ (∇J (θ )) = 0}. For
the ODE (18), the function J (θ ) itself serves as a Liapunov function since J (θ )
is continuously differentiable by (A2) and

dJ(θ )
dt
= ∇J (θ ) · .θ = ∇J (θ ) · π̃ (−∇J (θ )) < 0 on {θ ∈ C | π̃ (∇J (θ )) 6= 0},

that is, the trajectories of J (θ ) decrease strictly outside the set K . Thus, by the
Liapunov theorem, K contains all asymptotically stable equilibrium points of
the ODE (18). In other words, starting from any initial condition, the trajectories
of the ODE (18) would converge to a point that lies within the set K . The
rest of the analysis works towards approximating the limiting behavior of the
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algorithm with that of the corresponding limiting behavior of the trajectories
of the ODE (18), that is, shows that the algorithm itself converges to a point
within the set K . However, since the algorithm has fixed δ, we show that it
converges to a set K ′ that contains K and such that the ‘remainder set’ K ′\K
is “small”. In fact, Theorem 2.4 tells us that given that the user decides the
amount of the ‘remainder set’, one can find a δ0 > 0, such that if one were to
use any δ ≤ δ0, one would be guaranteed convergence to K ′. Again, this does
not preclude convergence to a fixed point; it only gives a worst-case scenario,
that is, in the worst case, the algorithm can converge to a point that lies on the
boundary of K ′. Since Theorem 2.4 does not specify how to choose the value of δ,
the user must select a small enough value of δ for the particular application. In
all of our experiments, δ = 0.1 seemed to work well, as similar results were also
obtained for δ = 0.01 and δ = 0.05. In the case of algorithms that do not project
back iterates on to fixed sets, δ must not be chosen to be too small initially since
it could considerably increase the variance of estimates at the start of iterations,
which is however not the case with our algorithms. A slowly decreasing δ-
sequence (instead of a fixed δ) can also be incorporated in our algorithms.

For a given η > 0, let K η 4= {θ ∈ C | ‖ θ − θ0 ‖< η, θ0 ∈ K } be the set of points
that are within a distance η from the set K . We then have

THEOREM 2.4. Under (A1)–(A3), given η > 0, there exists δ0 > 0 such that for
all δ ∈ (0, δ0], {θ (n)} defined by SPSA1-2L converges to K η almost surely.

PROOF (SKETCH). Recall from a previous discussion that SPSA1-2L is asym-
ptotically equivalent to (12) under (A1). For notational simplicity, let Ĥi(m)
represent

Ĥi(m) 4= J (θ (m)− δ4(m))− J (θ (m)+ δ4(m))
2δ4i(m)

.

First, write (12) as
θi(m+ 1) = θi(m)+ b(m)Ĥi(m)+ b(m)Zi(m), i = 1, . . . , N . (19)

Here, Zi(m), i = 1, . . . , N , correspond to the error terms because of the projec-
tion operator. Now (19) can be iteratively written as

θi(m+ 2N−1) = θi(m)+
m+2N−1−1∑

j=m

b( j )Ĥi( j )+
m+2N−1−1∑

j=m

b( j )Zi( j ).

Using a Taylor series expansions of J (θ (m) − δ4(m)) and J (θ (m) + δ4(m)) in
Ĥi(m) around the point θ (m), one obtains by (A2)

θi(m+ 2N−1) = θi(m)−
m+2N−1−1∑

l=m

b(l )∇i J (θ (l ))

− b(m)
m+2N−1−1∑

l=m

N∑
j=1, j 6=i

b(l )
b(m)

4 j (l )
4i(l )

∇ j J (θ (l ))

+ b(m)O(δ)+
m+2N−1−1∑

j=m

b( j )Zi( j ), (20)
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where the O(δ) corresponds to higher-order terms. Now by Lemma 2.2–
Corollary 2.3, under (A2)–(A3) and a repeated application of the triangle
inequality ∥∥∥∥∥∥

m+2N−1−1∑
l=m

N∑
j=1, j 6=i

b(l )
b(m)

4 j (l )
4i(l )

∇ j J (θ (l ))

∥∥∥∥∥∥→ 0 as m→∞.

The algorithm (12) can therefore be seen to be asymptotically equivalent
(cf. Kushner and Clark [1978]) to

θi(m+ 1) = πi(θi(m)− b(m)∇i J (θ (m))),

in the limit as δ → 0, which in turn can be viewed as the discretization of the
ODE (18). The rest can be shown in a similar manner as in Bhatnagar et al.
[2001a].

Finally, Theorem 2.4 is valid for all algorithms presented in this article and
not just SPSA1-2L. For the other algorithms, we mention where needed the
required modifications in the proof.

2.4 Algorithms SPSA2-2R and SPSA2-2L

We present first the randomized algorithm SPSA2-2R of Bhatnagar et al.
[2001a]. We assume the perturbation sequence {4(m)} here to be exactly as
in SPSA1-2R.

SPSA2-2R

Let {X −l } and {X +l } be the two parallel simulations. These depend on param-
eter sequences {θ (n) − δ4(n)} and {θ (n) + δ4(n)}, respectively, as follows: Let
L ≥ 1 be the (integer) observation length over which θ (n) and 4(n) are held
fixed between updates of θ (n) according to the recursive update below. In other
words, for n ≥ 0 and m ∈ {0, . . . , L − 1}, X −nL+m and X +nL+m are governed by
θ (n)−δ4(n) and θ (n)+δ4(n), respectively. We also define sequences {Z−(l )} and
{Z+(l )} for averaging the cost function as follows: Z−(0) = Z+(0) = 0 and for
n ≥ 0, m ∈ {0, . . . , L − 1},

Z−(nL +m+ 1) = Z−(nL +m)+ b(n)(h(X −nL+m)− Z−(nL +m)), (21)

Z+(nL +m+ 1) = Z+(nL +m)+ b(n)(h(X +nL+m)− Z+(nL +m)). (22)

The parameter update recursion is then given by

θi(n+ 1) = πi

(
θi(n)+ a(n)

[
Z−(nL)− Z+(nL)

2δ4i(n)

])
. (23)

This algorithm uses coupled stochastic recursions that are individually
driven by different timescales. Thus, when viewed from the faster timescale
(i.e., recursions (21)–(22)), the slower recursion (23) appears to be quasi-static,
while from the slower timescale, the faster recursions appear to be essentially
equilibrated.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 2, April 2003.



Two-Timescale SPSA Using Deterministic Perturbations • 195

The analysis for convergence proceeds as for SPSA1-2R, with the slower
timescale recursion (23) being asymptotically equivalent under (A1) to (12)
but with step-size schedules a(m) in place of b(m). Using analogous Taylor
series arguments and approximation analysis, the algorithm can be seen to
asymptotically track the stable points of the ODE (18).

SPSA2-2L

This algorithm is exactly the same as SPSA2-2R but with a deterministic
perturbation sequence {4(m)} obtained using the lexicographical ordering de-
scribed in Section 2.2. The convergence analysis for this algorithm works in
exactly the same manner as for SPSA1-2L, but with step-size schedules a(m)
in place of b(m) and which also satisfy the desired properties.

Next we present the one-simulation randomized difference versions of types
1 and 2 algorithms.

2.5 One-Simulation Algorithms SPSA1-1R and SPSA2-1R

Let {4(m)} be a randomized difference vector sequence as in SPSA1-2R and
SPSA2-2R, respectively. We have the following algorithms.

SPSA1-1R

Consider the process {X̂ j } governed by {θ̂ j } with θ̂ j = θ (m)+ δ4(m) for nm <

j ≤ nm+1, m ≥ 0. Then, for i = 1, . . . , N ,

θi(m+ 1) = πi

θi(m)−
nm+1∑

j=nm+1

a( j )

(
h(X̂ j )
δ4i(m)

) . (24)

SPSA2-1R

Consider the process {X̃ l } governed by {θ̃l } defined by θ̃l = θ (n) + δ4(n) for
n = [l/L], where L ≥ 1 is a given fixed integer as in SPSA2-2R and [l/L]
represents the integer part of l/L. Defining sequence {Z̃ (l )} in the same manner
as {Z+(l )} in SPSA2-2R with Z̃ (0) = 0, we have

θi(n+ 1) = πi

(
θi(n)− a(n)

(
Z̃ (nL)
δ4i(n)

))
, (25)

where for m = 0, 1, . . . , L − 1,

Z̃ (nL +m+ 1) = Z̃ (nL +m)+ b(n)(h(X̃ nL+m)− Z̃ (nL +m)). (26)

Both algorithms SPSA1-1R and SPSA2-1R use only one simulation as opposed
to two required in SPSA1-2R and SPSA2-2R. As in the case of SPSA1-2R and
SPSA2-2R, one can show as in Bhatnagar et al. [2001a] that SPSA1-1R and
iteration (25) of SPSA2-1R are asymptotically equivalent under (A1) to the
following algorithm:

θi(m+ 1) = πi

(
θi(m)− c(m)

(
J (θ (m)+ δ4(m))

δ4i(m)

))
, (27)
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where c(m) = b(m) in SPSA1-1R (a(m) in SPSA2-1R). By a Taylor series expan-
sion around the point θ (m), one obtains under (A2)

J (θ (m)+ δ4(m)) = J (θ (m))+ δ
N∑

j=1

4 j (m)∇ j J (θ (m))+ O(δ2).

Thus,

J (θ (m)+ δ4(m))
δ4i(m)

= J (θ (m))
δ4i(m)

+∇i J (θ (m))+
N∑

j=1, j 6=i

4 j (m)
4i(m)

∇ j J (θ (m))+ O(δ).

(28)

The bias b̂δm(θ (m),4(m)) in the gradient estimate in (27) is

b̂δm(θ (m),4(m)) = E
[(

J (θ (m)+ δ4(m))
δ4i(m)

−∇i J (θ (m))
) ∣∣∣∣ θ (m)

]
.

From (28) and from the definition of {4(m)},

b̂δm(θ (m),4(m)) = J (θ (m))
δ

E
[

1
4i(m)

]
+

N∑
j=1, j 6=i

E
[4 j (m)
4i(m)

]
∇ j J (θ (m))+ O(δ).

(29)

From the definition of {4(m)}, it is easy to see that E[1/4i(m)] = 0 and
E[4 j (m)/4i(m)] = 0, for j 6= i. These quantities also equal zero in the case
of perturbations with distributions that satisfy (the more general) Condition
(B). Thus, b̂δm(θ (m),4(m)) = O(δ). The gradient estimate in the two-simulation
randomized difference form (12) also gives an O(δ) bias. However, an analogous
Taylor series expansion of the estimate in (12) results in a direct cancellation
of the terms containing J (θ (m)), instead of the same being mean-zero in (29).
Next we describe the deterministic versions of the one-simulation algorithms
with lexicographical ordering.

2.6 Algorithms SPSA1-1L and SPSA2-1L

There is a small change in the lexicographic construction for algorithms
SPSA1-1L and SPSA2-1L, respectively, which we first describe. The bias in the
gradient estimate in (27) under a deterministic {4(m)} sequence is given by(

J (θ (m)+ δ4(m))
δ4i(m)

−∇i J (θ (m))
)
= J (θ (m))

δ4i(m)

+
N∑

j=1, j 6=i

4 j (m)
4i(m)

∇ j J (θ (m))+ O(δ).

(30)

Thus, for the one-simulation algorithms, the terms contributing to the bias
are both the perturbation ratios (4 j (m)/4i(m)) and inverses (1/4i(m)), as
opposed to just perturbation ratios in the two-simulation algorithms. Thus,
the lexicographic construction needs to be altered, as we can no longer hold
41(m) = −1 ∀m, since that would contribute to the bias. We therefore need
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a construction for which both perturbation ratios and inverses become zero
over cycles. This is trivially achieved by moving the perturbation sequence
cyclically over the full space E of perturbations. We again assume E is ordered
lexicographically.

SPSA1-1L

This algorithm is exactly the same as SPSA1-1R but with a deterministic
lexicographically ordered perturbation sequence as described above.

SPSA2-1L

This algorithm is exactly the same as SPSA2-1R but with a deterministic
lexicographic perturbation sequence as described above.

For the lexicographic construction described above (for the one-simulation
algorithms), we have the following basic result:

THEOREM 2.5. The lexicographic perturbations 4(n) 4= (41(n), . . . ,4N (n))T

for one-simulation algorithms satisfy:

s+2N−1∑
n=s

1
4k(n)

= 0 and
s+2N−1∑

n=s

4i(n)
4 j (n)

= 0

for any s ≥ 0, i 6= j , i, j , k ∈ {1, . . . , N }.
PROOF. Follows in a similar manner as the proof of Theorem 2.1.

Consider now the algorithm (15) with step-size b(m) (respectively, a(m)) for
SPSA1-1L (respectively, SPSA2-1L). The conclusions of Lemma 2.2 continue to
hold under (A3) even with step-size a(m). We also have:

COROLLARY 2.6. For {θ (n)} defined by (27) but with {4(n)} a deterministic
lexicographic sequence for algorithms SPSA1-1L and SPSA2-1L, respectively,
the following holds under (A2)–(A3) for any m ≥ 0, i, k, l ∈ {1, . . . , N }, k 6= l :∥∥∥∥∥∥

m+2N−1∑
j=m

c( j )
c(m)

1
4i( j )

J (θ ( j ))

∥∥∥∥∥∥,

∥∥∥∥∥∥
m+2N−1∑

j=m

c( j )
c(m)

4k( j )
4l ( j )

∇k J (θ ( j ))

∥∥∥∥∥∥→ 0 as m→∞,

where c(l ) = b(l ) (respectively, a(l )) ∀l for SPSA1-1L (respectively, SPSA2-1L).

PROOF. Follows in a similar manner as that of Corollary 2.3, using conclu-
sions of Theorem 2.5 and choosing P = 2N in the conclusions of Lemma 2.2.

Finally, the conclusions of Theorem 2.4 can similarly be shown to hold under
(A1)–(A3) for algorithms SPSA1-1L and SPSA2-1L as well. In the next section,
we give a second construction of deterministic perturbation sequences based on
Hadamard matrices.

3. A CONSTRUCTION OF DETERMINISTIC PERTURBATIONS
BASED ON HADAMARD MATRICES

As illustrated in the previous section (particularly Theorem 2.1 and
Corollary 2.3), the essential properties of the deterministic perturbation
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sequence {1(n)} for convergence of SPSA algorithms are the following:

(P.1) There exists a P ∈ N such that for every i, j ∈ {1, . . . , N }, i 6= j and for
any s ∈ N ,

s+P∑
n=s

1i(n)
1 j (n)

= 0. (31)

(P.2) There exists a P ∈ N such that for every k ∈ {1, . . . , N } and any s ∈ N ,
s+P∑
n=s

1
1k(n)

= 0. (32)

Property (P.1) is required for convergence of the two-simulation SPSA algo-
rithms, while both properties (P.1–2) are required for convergence of the one-
simulation version of these algorithms. In this section, we present an alterna-
tive way of constructing deterministic periodic perturbations satisfying (P.1–2)
that can lead to significantly smaller period P than the lexicographic construc-
tion introduced in the previous sections. It suffices to construct a set of P distinct
vectors, {1(1), . . . ,1(P )}, in {±1}N that satisfy properties (P.1–2) with the sum-
mations taken over the entire set of vectors. The desired perturbation sequence
can then be obtained by repeating the set of constructed perturbations in the
same arbitrary order.

We first show that construction of P vectors in {±1}N satisfying (P.1–2) is
equivalent to construction of N mutually orthogonal vectors in {±1}P . The first
part of the following lemma is based on the result presented in Sandilya and
Kulkarni [1997].

LEMMA 3.1. Let 1(1), . . . ,1(P ) be P distinct vectors in {±1}N . Define N
vectors in {±1}P , h(1), . . . , h(N ) by

h(n) = [1n(1),1n(2), . . . ,1n(P )]T ,

for n = 1, . . . , N. Then the following hold:

—{1(1), . . . ,1(P )} satisfy property (P.1) if and only if h(1), . . . , h(N ) are mutu-
ally orthogonal.

—{1(1), . . . ,1(P )} satisfy property (P.2) if and only if
∑P

n=1 hn(k) = 0 for all
k = 1, . . . , N. That is, each vector h(k) has exactly half (P/2) of its elements
being 1’s.

PROOF. The proof is straightforward.

From Lemma 3.1, the following lower bound on P can be established:

COROLLARY 3.2. For any {1(1), . . . ,1(P )} satisfying (P.1), we have P ≥ 2dN
2 e.

PROOF. Note that P is always even, since otherwise the inner product of any
two vectors (with elements in {1,−1}) in {±1}P cannot be zero. Hence, it suffices
to show that P ≥ N . We prove by contradiction.

Assume that there exists a set of P ′ distinct vectors {1(1), . . . ,1(P ′)} satis-
fying (P.1) with P ′ < N . Then, by Lemma 3.1, we have N orthogonal vectors
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h(1), . . . , h(N ) (as defined in Lemma 3.1) in {±1}P ′ . This is certainly not possible
with P ′ < N . Therefore, we have P ≥ N .

Remark. Even though we consider perturbation vectors in spaces {±1}N
and {±1}P , some of our results (for instance Lemma 3.1) are more general and
can be applied to RN and RP , respectively.

Based on Lemma 3.1, we propose a class of deterministic perturbations con-
structed from Hadamard [Hadamard 1893; Seberry and Yamada 1992] ma-
trices with appropriate dimensions. An m × m (m ≥ 2) matrix H is called a
Hadamard matrix of order m if its entries belong to {1,−1} and HT H = mIm,
where Im denotes the m×m identity matrix. It can be easily seen that all the
columns (rows) of a Hadamard matrix are orthogonal. We first show that a set
of vectors in {±1}N satisfying (P.1) can be constructed from a Hadamard matrix
of order P ≥ N . The following lemma presents such a construction.

LEMMA 3.3 (CONSTRUCTION FOR TWO-SIMULATION ALGORITHMS). Let HP be a
Hadamard matrix of order P with P ≥ N. Let h(1), . . . , h(N ) be any N columns
from HP . Define P distinct vectors 1(1), . . . ,1(P ) in {±1}N by

1(k) = [hk(1), . . . , hk(N )]T ,

for k = 1, . . . , P. Then {1(1), . . . ,1(P )} satisfies property (P.1).

PROOF. Follows directly from Lemma 3.1 and the definition of Hadamard
matrices.

Lemma 3.3 basically says the following: To construct the desired deter-
ministic perturbation {1(1), . . . ,1(P )}, we first select any N columns from a
Hadamard matrix of order P ≥ N (they are mutually orthogonal), then take
the kth element of these vectors (ordered) to form 1(k).

We next propose a construction of perturbations that satisfies both properties
(P.1–2) for one-simulation algorithms from Hadamard matrices. We first give a
simple result for normalized Hadamard matrices. A Hadamard matrix is said
to be normalized if all the elements of its first column and row are 1’s. The
following simple lemma enables us to construct perturbations that satisfy both
properties (P.1–2) from Hadamard matrices.

LEMMA 3.4. If Hm is a normalized Hadamard matrix of order m, then every
column other than the first column of Hm has exactly m/2 1’s, that is, the sum of
all the entries in any column other than the first one is zero.

Based on Lemma 3.4, the next lemma gives a construction of perturbations
from a normalized Hadamard matrix.

LEMMA 3.5 (CONSTRUCTION FOR ONE-SIMULATION ALGORITHMS). Let HP be a
normalized Hadamard matrix of order P with P ≥ N +1. Let h(1), . . . , h(N ) be
any N columns other than the first column from HP . Define P distinct vectors
1(1), . . . ,1(P ) in {±1}N by

1(k) = [hk(1), . . . , hk(N )]T ,

for k = 1, . . . , P. Then, {1(1), . . . ,1(P )} satisfies properties (P.1–2).
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Table II. Perturbation Ratios for N = 4 for Two-Simulation Algorithms with
Hadamard Construction

1(n)
11(n)
12(n)

11(n)
13(n)

11(n)
14(n)

12(n)
13(n)

12(n)
14(n)

13(n)
14(n)

1(1) = [+1,+1,+1,+1]T +1 +1 +1 +1 +1 +1
1(2) = [+1,−1,+1,−1]T −1 +1 −1 −1 +1 −1
1(3) = [+1,+1,−1,−1]T +1 −1 −1 −1 −1 +1
1(4) = [+1,−1,−1,+1]T −1 −1 +1 +1 −1 −1

PROOF. Follows directly from Lemma 3.3 and Lemma 3.4.

Existence of Hadamard matrices of general order has been extensively stud-
ied in the area of combinatorial design (Hadamard’s original conjecture in
Hadamard [1893] that a Hadamard matrix of order m exists for any m = 4q, q ∈
N , is still an open problem); see, for example, Seberry and Yamada [1992]. It
has been shown that a Hadamard matrix of order m exists for m = 4q for most
q < 300 [Seberry and Yamada 1992]. Clearly, based on the proposed construc-
tions, such a matrix of smaller order can lead to periodic perturbations with
smaller period. Here, we present a simple and systematic way of constructing
normalized Hadamard matrices of order m = 2k , k ∈ N . Our construction is
sequential in k:

—For k = 1, let

H2 =
[

1 1
1 −1

]
.

—For general k > 1,

H2k =
[

H2k−1 H2k−1

H2k−1 −H2k−1

]
.

It can be easily checked that this sequence of matrices generates normalized
Hadamard matrices. Following the constructions presented in Lemma 3.3 and
Lemma 3.5, we can construct periodic perturbations with period P = 2dlog2 Ne

for two-simulation algorithms, and perturbations with period P = 2dlog2(N+1)e

for one-simulation algorithms.
Here, we give examples for N = 4. Following Lemma 3.3, we construct

1(1), . . . ,1(4) for two-simulation algorithms from H4: (we basically take the
row vectors as the perturbations)

1(1) = [1, 1, 1, 1]T ,
1(2) = [1,−1, 1,−1]T ,
1(3) = [1, 1,−1,−1]T ,
1(4) = [1,−1,−1, 1]T .

It can be easily check that these perturbations have the desired property (P.1)
(cf. Table II). To construct perturbations for one-simulation algorithms, we start
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Table III. Perturbation Ratios and Inverses for N = 4 for One-Simulation Algorithms using
Hadamard Construction

11(n)
12(n)

11(n)
13(n)

11(n)
14(n)

12(n)
13(n)

12(n)
14(n)

13(n)
14(n)

1
11(n)

1
12(n)

1
13(n)

1
14(n)

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1
−1 +1 −1 −1 +1 −1 −1 +1 −1 +1
−1 −1 +1 +1 −1 −1 +1 −1 −1 +1
+1 −1 −1 −1 −1 +1 −1 −1 +1 +1
+1 +1 −1 +1 −1 −1 +1 +1 +1 −1
−1 +1 +1 −1 −1 +1 −1 +1 −1 −1
−1 −1 −1 +1 +1 +1 +1 −1 −1 −1
+1 −1 +1 −1 +1 −1 −1 −1 +1 −1

from a normalized Hadamard matrix H8.

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.

We then take columns 2–5 (or any four columns except the first one) of H8 to
construct the desired perturbations. So we have (by taking the rows of columns
2–5 from H8)

1(1) = [1, 1, 1, 1]T ,
1(2) = [−1, 1,−1, 1]T ,
1(3) = [1,−1,−1, 1]T ,
1(4) = [−1,−1, 1, 1]T ,
1(5) = [1, 1, 1,−1]T ,
1(6) = [−1, 1,−1,−1]T ,
1(7) = [1,−1,−1,−1]T ,
1(8) = [−1,−1, 1,−1]T .

Note that the same matrix (H8) would also work for N = 5, 6 and 7 as well.
It can be checked that the constructed perturbations satisfy properties (P.1–2)
(cf. Table III).

3.1 Algorithms SPSA1-2H, SPSA2-2H, SPSA1-1H and SPSA2-1H

The two-simulation algorithms SPSA1-2H and SPSA2-2H are similar to
SPSA1-2R and SPSA2-2R, respectively, but with deterministic perturbation
sequences {4(m)} constructed using normalized Hadamard matrices as in
Lemma 3.3. The one-simulation algorithms SPSA1-1H and SPSA2-1H, on
the other hand, are analogous to their one-simulation randomized difference
counterparts SPSA1-1R and SPSA2-1R, respectively, but with deterministic
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Fig. 1. Queueing network.

perturbation sequences {4(m)} obtained using the normalized Hadamard ma-
trices as explained in Lemma 3.5.

4. NUMERICAL RESULTS

We show numerical experiments on a two-node network of M/G/1 queues
(shown in Figure 1), with all algorithms SPSA1-2L, SPSA1-2H, SPSA2-2L,
SPSA2-2H, SPSA1-1R, SPSA2-1R, SPSA1-1L, SPSA1-1H, SPSA2-1L and
SPSA2-1H proposed in this article and provide comparisons with algorithms
SPSA1-2R and SPSA2-2R of Bhatnagar et al. [2001a].

Nodes 1 and 2 in the network are fed with independent external arrival
streams with respective rates λ1 = 0.2 and λ2 = 0.1. The departures from
Node 1 enter Node 2. Further, departures from Node 2 are fed back with prob-
ability q = 0.6 to the first node. The service time processes {Si

n(θ i)} at the two

nodes i = 1, 2, are defined by Si
n(θ i) = Ui

n(1+
∏M

j=1
|θ i

j (n)− θ̄ i
j |)/Ri, i = 1, 2,

n ≥ 1, where Ui
n ∼ U (0, 1) and R1 = 10 and R2 = 20. Also θ i

1(n), . . . , θ i
M (n)

represent the nth update of the parameter components of service time at Node
i, and θ̄ i

1, . . . , θ̄ i
M represent the target parameter components. Note that if Ui

n
is replaced by − log(Ui

n), Si
n(θ i) would be exponentially distributed (by the in-

verse transform technique for random variate generation, see Law and Kelton
[2000]) with rate Ri/(1+

∏M

j=1
|θ i

j (n)− θ̄ i
j |), which is the setting considered

in Bhatnagar et al. [2001a]. We assume each θ i
j (n) is constrained according

to 0.1 ≤ θ i
j (n) ≤ 0.6, j = 1, . . . , M , i = 1, 2, ∀n. We set θ̄ i

j = 0.3 for all
i = 1, 2, j = 1, . . . , M . The initial θ1

j (0) = 0.4, j = 1, . . . , M , and θ2
j (0) = 0.2,

j = 1, . . . , M . As in Bhatnagar et al. [2001a, 2001b], the step-size sequences
{a(n)} and {b(n)} are defined according to (8), with â = b̂ = 1, α = 2/3. More-
over, we choose L = 100 in all algorithms of type 2. We used δ = 0.1 for all
algorithms.

The cost function is chosen to be the sum of waiting times of individual
customers at the two nodes. Suppose W i

n is the waiting time of the nth arriving
customer at ith node and ri

n is the residual service time of the customer in service
at the instant of nth arrival at ith node. Then {(W 1

n , r1
n , W 2

n , r2
n)} is Markov.

Thus, for our experiments, we assume cost function h(W 1
n , r1

n , W 2
n , r2

n) = W 1
n +

W 2
n . Note that here the portions r1

n , r2
n of the state are not observed or stay

hidden. It is quite often the case with many practical applications that certain
portions of the state are not observed. Our algorithms work in the case of such
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applications as well even though we do not try to estimate in any manner
the unobserved portions of the state. Both (A1) and (A2) are satisfied by our
example in this section. Observe that service times Si

n(θ i) at node i, are bounded
from above by the quantity (1+ 2M

∏M

j=1
θ i

j ,max)/Ri, i = 1, 2. In fact, for the
chosen values of the various parameters, the service times are bounded from
above by

(
1+ (0.3)M ) /Ri at nodes i = 1, 2. It is easy to see that the average

overall interarrival time at either node is greater than the corresponding mean
service time at that node (in fact it is greater than even the largest possible
service time at either node). Hence, the system remains stable for any given
θ , thus satisfying (A1). For (A2) to hold, one needs to show that derivatives of
steady state mean waiting time for any fixed θ exist and are continuous, and
that their second derivatives also exist. One can show this using sample path
arguments and an application of the dominated convergence theorem using
similar techniques as in Chapter 4 of Bhatnagar [1997].

We consider the cases M = 2, 6 and 15. Thus, the parameter θ corresponds
to 4, 12 and 30 dimensional vectors. We define “Distance from Optimum” as the
performance measure

d (θ (n), θ̄ ) 4=
 2∑

i=1

M∑
j=1

(
θ i

j (n)− θ̄ i
j

)2

1/2

.

For the cost to be minimized, one expects θ i
j (n) to converge to θ̄ i

j , j = 1, . . . , M ,
i = 1, 2, as n→∞. In other words, the total average delay of a customer is min-
imized at the target parameter value θ̄ . One expects the algorithms to converge
to either θ̄ or a point close to it (since δ is a fixed nonzero quantity), see the discus-
sion before Theorem 2.4. Thus, algorithms that have a lower limn→∞ d (θ (n), θ̄ )
value, or which converge faster, would show better performance. In actual sim-
ulations though, one needs to terminate the simulation after a certain fixed
number of instants. We terminate all simulation runs (for all algorithms) after
6 × 105 estimates of the cost function. In Figures 2 to 5, we illustrate a few
sample performance plots for the various algorithms. In Figures 2 and 3, we
plot the trajectories of d (θ (n), θ̄ ) for one and two simulation, type 1 algorithms
for N = 4, while in Figures 4 and 5, we plot the same for one and two simulation
type 2 algorithms corresponding to N = 30. We plot these trajectories for all
algorithms by averaging over five independent simulation runs with different
initial seeds. In these figures, the trajectory i − j K (i = 1, 2, K = R, H) denotes
the trajectory for the algorithm SPSAi− j K. The mean and standard error from
all simulations that we performed for all algorithms, for the three cases viz.,
N = 4, 12 and 30, at the termination of the simulations are given in Table IV.

Note that in the case of algorithms that use normalized Hadamard matrix
based perturbations, the Hadamard matrices HP for the parameter dimen-
sions N = 4, 12 and 30 are of orders P = 4, 16 and 32 for the two-simulation
algorithms, while these are of orders P = 8, 16 and 32, respectively, for the
one-simulation case. For N = 12 and 30, we use columns 2–13 and 2–31, re-
spectively, in the corresponding Hadamard matrices, for both one and two-
simulation algorithms. For N = 4, for the one-simulation case, we use columns
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Fig. 2. Convergence of “Distance from Optimum” for one-simulation Type 1 algorithms for N = 4.

Fig. 3. Convergence of “Distance from Optimum” for two-simulation Type 1 algorithms for N = 4.
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Fig. 4. Convergence of “Distance from Optimum” for one-simulation Type 2 algorithms for N = 30.

Fig. 5. Convergence of “Distance from Optimum” for two-simulation Type 2 algorithms for N = 30.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 2, April 2003.



206 • S. Bhatnagar et al.

Table IV. Performance after 6× 105 Function Evaluations

d (θ (n), θ̄ ) d (θ (n), θ̄ ) d (θ (n), θ̄ )
Algorithm N = 4 N = 12 N = 30
SPSA1-1R 0.230± 0.032 0.404± 0.019 0.774± 0.017
SPSA1-1L 0.052± 0.002 0.568± 3.4× 10−4 1.013± 3× 10−4

SPSA1-1H 0.014± 0.008 0.192± 5.8× 10−4 0.292± 0.004
SPSA2-1R 0.131± 0.030 0.197± 0.038 0.366± 0.019
SPSA2-1L 0.053± 0.024 0.137± 8.2× 10−4 0.855± 0.001
SPSA2-1H 0.033± 0.010 0.032± 0.011 0.120± 0.037
SPSA1-2R 0.139± 0.040 0.019± 0.003 0.267± 0.033
SPSA1-2L 0.037± 0.010 0.012± 0.003 0.085± 0.086
SPSA1-2H 0.025± 0.018 0.019± 0.004 0.150± 0.033
SPSA2-2R 0.022± 0.003 0.035± 0.009 0.200± 0.032
SPSA2-2L 0.013± 0.002 0.018± 0.027 0.054± 0.038
SPSA2-2H 0.011± 0.004 0.040± 0.028 0.120± 0.052

2–5 of the corresponding Hadamard matrix, while for the two-simulation case,
all columns of the 4-dimensional matrix are used.

4.1 Discussion on the Performance of Algorithms

Our experiments indicate that deterministic perturbation algorithms perform
significantly better than their randomized difference counterparts in most
cases. We conjecture that one of the reasons is that a properly chosen deter-
ministic sequence of perturbations will retain the requisite averaging property
that leads to the convergence of SPSA, but with lower variance than randomly
generated perturbation sequences. However, deterministic sequences introduce
additional bias, since the averaging property only holds when the sequence com-
pletes a full cycle (as opposed to in expectation for the random sequences), but
this bias vanishes asymptotically. Moreover, it is not clear if the quality of the
random number generator also plays a role in the case of random perturbation
sequences. For our experiments, we used the well-known prime modulus mul-
tiplicative linear congruential generator X k+1 = aX k mod m with multiplier
a = 75 = 16805 and modulus m = 231 − 1 = 2147483647 (cf. Park and Miller
[1988] and Law and Kelton [2000]).

Worth noting are the impressive (more than an order of magnitude) per-
formance improvements using the one-simulation deterministic perturbation
algorithms SPSA1-1H and SPSA2-1H that use normalized Hadamard construc-
tion. Recall from the analysis in Section 3 that one-simulation algorithms have
“additional” terms of the type J (θ ( j ))/δ4i( j ) that are likely to contribute heav-
ily towards the bias mainly through the “small” δ term in the denominator. Thus,
if 4i( j ) does not change sign often enough, the performance of the algorithm is
expected to deteriorate. This is indeed observed to be the case with determin-
istic lexicographic sequences (first construction). Thus, even though SPSA1-1L
and SPSA2-1L show better performance than their randomized counterparts
when N = 4, their performance deteriorates for N = 30. On the other hand,
the construction based on normalized Hadamard matrices requires far fewer
points, with all component 4i( j )’s, i = 1, . . . , N , changing sign much more
frequently.
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In the case of two-simulation algorithms, both the lexicographic and
Hadamard constructions show significantly better performance than random-
ized difference algorithms. SPSA1-2H and SPSA2-2H show the best perfor-
mance when N = 4. However, surprisingly, for both N = 12 and N = 30,
SPSA1-2L and SPSA2-2L show the best performance (which is slightly better
than SPSA1-2H and SPSA2-2H as well). Note that for N = 30 in our exper-
iments, the perturbation sequence in the lexicographic construction needs to
visit 229 ≈ 1 billion points (which is significantly larger than even the total
perturbations generated during the full course of the simulation), in order to
complete a cycle once, whereas in the Hadamard construction, this number is
just 32. Our guess is that while the lexicographic construction converges slower
in comparison to the perfect gradient descent (with the actual gradient), it leads
to a search pattern that has lower dispersion and hence could explore the space
better when the algorithm is away from the optimum.

In general, the performance of the two-simulation SPSA algorithms is bet-
ter than the corresponding one-simulation algorithms. A similar observation
has been made in the case of one-simulation, one-timescale algorithms in
Spall [1997] and Spall and Cristion [1998]. However, in our experiments, in
most cases, the one-simulation algorithms with SPSA1-1H and SPSA2-1H
are better than their respective two-simulation randomized difference coun-
terparts SPSA1-2R and SPSA2-2R, respectively. Therefore, our experiments
suggest that for one-simulation algorithms, it is preferable to use the normal-
ized Hadamard matrix-based deterministic perturbation construction. Also,
for two-simulation algorithms, for high dimensional parameters, determinis-
tic perturbation sequences with the lexicographic (first) construction seem to
be preferable. We do not as yet have a thorough explanation for the improve-
ment in performance in the case of lexicographic sequences, with the discussion
above offering a possible reason. Moreover, other constructions with possibly
more vectors than the Hadamard matrix-based construction should be tried
before conclusive inferences can be drawn. Finally, as noted in Spall [1997] and
Spall and Cristion [1998], the one-simulation form has potential advantages in
nonstationary systems wherein the underlying process dynamics change sig-
nificantly during the course of a simulation. Our one-simulation algorithms
also need to be tried in those type of settings. The deterministic perturbations
that we proposed can also be applied to the one-timescale algorithms. Some
experiments with certain test functions in one-timescale algorithms showed
performance improvements over randomized perturbations.

5. CONCLUSIONS

Our goal was to investigate the use of deterministic perturbation sequences
in order to enhance the convergence properties of SPSA algorithms, which
have been found to be effective for attacking high-dimensional simulation op-
timization problems. Using two alternative constructions—lexicographic and
Hadamard matrix-based—we developed many new variants of two-timescale
SPSA algorithms, including one-simulation versions. For an N -dimensional pa-
rameter, the lexicographic construction requires a cycle of 2N−1 and 2N points
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for two- and one-simulation algorithms, respectively, whereas the Hadamard
matrix-based construction requires only 2dlog2 Ne and 2dlog2(N+1)e points, respec-
tively. Along with rigorous convergence proofs for all algorithms, numerical
experiments on queueing networks with parameters of varying dimension in-
dicate that the deterministic perturbation sequences do indeed show promise
for significantly faster convergence.

Although we considered the setting of long-run average cost, the algorithms
can easily be applied to the case of terminating (finite horizon, as opposed to
steady-state) simulations where {X j }would be independent sequences (instead
of a Markov process), each element representing the output of one independent
replication, see Law and Kelton [2000]. Also, in our numerical experiments,
we terminated all simulations after a fixed number of function evaluations,
whereas in practical implementation, a stopping rule based on the sample data
(e.g., estimated gradients) would be desirable. However, this problem is common
to the application of all stochastic approximation algorithms, and was not a
focus of our work.

There is obviously room for further exploration of the ideas presented here.
Although the SPSA algorithms based on deterministic perturbation sequences
appear to dominate their randomized difference counterparts empirically, there
is no clear dominance between the two deterministic constructions. The impetus
for the Hadamard matrix construction was to shorten the cycle length in order
to reduce the aggregate bias, which we conjectured would lead to faster con-
vergence properties. In the case of one-simulation algorithms, the Hadamard
matrix construction did indeed show the best performance. However, in the case
of two-simulation algorithms, this was not the case, as the Hadamard matrix-
based algorithms showed a slight advantage in low-dimensional problems. In
high-dimensional examples, the lexicographic-based algorithms performed bet-
ter. Although we attempted to provide some plausible explanations for these
outcomes, a more in-depth analysis would be useful. Also, in the implementa-
tion of all of the proposed algorithms, the same order within a cycle was used
throughout the SA iterations, so randomizing the order of the points visited in
a cycle might be worth investigating. Approaches from design of experiments
methodology might provide ideas for implementations that are a hybrid of ran-
dom and deterministic perturbation sequences. Finally, the connection with
concepts and results from quasi-Monte Carlo warrants a deeper investigation.
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