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Abstract

An increase in the performance of deteriorating systems can be achieved through the adoption of suitable maintenance
policies. One of the most popular maintenance policies is the age-dependent replacement policy. In this paper, a fuzzy age-
dependent replacement policy is considered in which the lifetimes of components are treated as fuzzy variables. To min-
imize the long-term expected cost per unit time, a programming model is formulated. Also, a theorem for optimal solution
existence is proposed. In order to solve the proposed model, a fuzzy simulation technique is designed which estimates the
expected value of the objective function. The simultaneous perturbation stochastic approximation (SPSA) algorithm is
then used to determine a solution. Finally, a numerical example is presented to illustrate the effectiveness of this technique.
© 2007 Published by Elsevier Inc.
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1. Introduction

Failure of a system during operation may have costly or safety-related consequences. However, if a suitable
maintenance policy were to be adopted, the lifetime of the system could be extended considerably. Since the
1960s, there has been much focus on reliability theory in an attempt to reduce failures and extend system life-
times. Central to this theory is the uncertainty of randomness, however, the environment in which real main-
tenance problems occur is often imprecise and the parameters which influence the decisions in the maintenance
schedule cannot be assessed exactly. In addition, when the data is sparse, the use of statistical estimation to
model a system may lead to inefficiency. As a result of this, fuzzy variables are more suitable for the charac-
terization of system lifetimes.

Considerable work in the area of maintenance policies has been carried out. Zadeh [15-17] introduced the
concepts of fuzzy sets and possibility measures and outlined the generalized theory of uncertainty in a much
broader perspective. Bag and Samanta [2] defined strongly fuzzy convergent sequences, and provided fixed
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point theorems for fuzzy non-expansive mappings. Al-Najjar and Alsyouf [1] assessed the most popular main-
tenance approaches using a methodology based on fuzzy multiple-criteria decision-making evaluation. Chang
[3] presented a fuzzy methodology for the replacement of equipment and discussed a fuzzy model with deg-
radation parameters for determining fuzzy strategic replacement, and economic lives. Suresh [14] presented
a fuzzy set model for maintenance policies of multistate equipment. Huang et al. [4] proposed a new approach
using fuzzy dynamic programming for generator maintenance scheduling using multiple objectives and soft
constraints expressed by fuzzy sets. Huang [5] also presented a genetically-evolved fuzzy system for mainte-
nance scheduling of generators. The fuzzy system is formulated with respect to multiple objectives and soft
constraints. Genetic algorithms are then applied to tune membership functions in the solution process. Huang
et al. [6] discussed the problem of capital budgeting in a fuzzy environment and proposed two types of model
using credibility to measure confidence level.

In this paper, we develop a novel method for the investigation of age-dependent replacement policies with
fuzzy lifetimes. Section 2 reviews some of the properties of fuzzy variables and in Section 3, the age-dependent
replacement policy is considered, and a model that uses fuzzy lifetimes is proposed. A fuzzy simulation
technique is explored in Section 4, as it is almost impossible to define an analytical method which can compute
the expected values of fuzzy variables. The SPSA algorithm based on fuzzy simulation is also proposed
in order to discover an optimal solution. Finally, a numerical example is given to illustrate the proposed
method.

2. Fuzzy variables

Let ® be a nonempty set, and P(©) the power set of ©. In order to present the axiomatic definition of pos-
sibility, Nahmias [10] and Liu [7] gave the following four axioms.

Axiom 1 Pos{®} = 1.

Axiom 2 Pos{¢} =0.

Axiom 3 Pos{|J,«/;} = sup,Pos{.eZ;} for any collection .«/; in P(O).

Axiom 4 Let @, be nonempty sets on which Pos,{-} satisfies the first three axioms, i = 1,2,. . .,n, respectively,
and @:@1X92X'--X@n. Then

Pos{</} = sup  Pos;{0;} APosy{0h} A--- APos,{0,}, (1)
(01,02 00) e

for each <7 € P(O).

Definition 1 (Liu and Liu [9]). Let @ be a nonempty set, and P(@) the power set of @. Then the set function
Pos is called a possibility measure, if it satisfies the first three axioms, and (O, P(©),Pos) is called a possibility
space.

Definition 2. Let (@, P(0),Pos) be a possibility space, and .« a set in P(®). Then the necessity measure of .o is
defined by:

Nec{.«/} = 1 — Pos{.&/“}. (2)

Definition 3 (Liu and Liu [9]). Let (0, P(0),Pos) be a possibility space, and .«7 a set in P(@). Then the cred-
ibility measure of .o/ is defined by:

Cr{«} = % (Pos{./} + Nec{.«/}). (3)

Definition 4. A fuzzy variable ¢ is defined as a function from the possibility space (O, P(®),Pos) to the set of
real numbers, and its membership function is derived by:

1:(r) = Pos{0 € @|£(0) = r}.
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Definition 5 (Liu and Liu [9]). Let ¢ be a fuzzy variable on the possibility space (©, P(©), Pos). The expected
value E[£]is defined by:

E[f] = /OOO Cr{¢ = r}dr —/_ Cr{¢ < r}dr, (4)

provided that at least one of the two integrals is finite. In particular, if the fuzzy variable ¢ is positive (i.e.,
Pos{¢& < 0} =0), then

E[¢] = /OOO Cr{¢ = r}dr.

Remark 1 (Liu and Liu [9]). Let & be a discrete fuzzy variable with membership function u(a;) = u; for
i=1,2,...,n, we assume that a; < a, <---<a,. Definition 5 implies that:

E[l] = iwian (5)

where the weights w;, i =1,2,...,n are given by:

1
w) == (,ul + max u; — max,uj>,

2 1<j<n 1<j<n

1
w; == | max u, — max u, + max u, — max u, 2<i<n—1
o2 gk K 1</<i K i<j<n K i<j<n K ) SO ’

1
Wy =3 (p%aéuj —maxu; + u,,).

Definition 6 (Liu and Liu [7]). The fuzzy variables &;,&,,. .., &, defined on the possibility space (@, P(®), Pos)
are said to be independent if and only if

Pos{¢ € o/; i=1,2,...,n} = 1r£11<n Pos{¢ € «7;}
for any sets o7y, .%/5,...,./, in 6.
Proposition 1 (Liu and Liu [8]). Let & and &, be two independent fuzzy variables with finite expected values.
Then for any real numbers a and b, we have E[ al, + b&,] = aE[ ] + bE[ &,].
3. Fuzzy age-dependent replacement policy

One of the most popular maintenance policies is the age-dependent replacement policy. Using this policy, a
unit is always replaced either at age T (where T is a constant) or following failure, whichever occurs first.

Let the positive fuzzy variable &, be the lifetime of the kth renewed component, k = 1,2,.. ., respectively.
Further, we assume that the system is as new following a replacement such that the fuzzy variables &, have an
identical membership function for k= 1,2,... Thus, the length of the kth cycle is:

Lk(T) = ékl(ggT) + T, >1), (6)
where I is the characteristic function of the event (-), and defined as:
1, if event (-) has occurred,
Iy = ) (7)
0, otherwise.

Moreover, the cost of the kth cycle is:
Cu(T) = el g<n) + Sl o), (8)
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where ¢, and ¢, are the respective costs of replacement upon failure and age 7. Usually, we assume that
¢r> ¢, If ¢y < ¢, it is clear that we do not need to carry out any maintenance, rather another replacement
when the system fails.

Define Sy =0 and

Sg = Li(T) + Lo(T) + - - + L(T), Yk = 1. 9)

It follows that Sy is the time of the kth replacement. Since {&;,k = 1} is a sequence of independent fuzzy
variables with the same membership function, then, for any 7> 0, it follows from Zhao and Liu [18] that

Pos{S; <t} = Pos{fl < é} (10)

Eq. (10) still holds if “<” is replaced with “>=", “<” or “>",
Let N(¢) be the number of replacements in time interval (0, ¢]. Then

N(Z)anlfgi{k\0<5k<l‘}- (11)
It is clear that N(7) is a fuzzy variable, and its membership function is characterized by:

My s) (k) = POS{Sk << Sk+1}.
Further, it also follows from (10) that:

g (K) :Pos{kj_l < L/(T) <£} (12)

We call N(t) the fuzzy renewal variable.
Let C(¢) denote the total cost in (0,7], i.e.,

N()
C(t) =Y Cu(T). (13)
=1
Definition 7. The long-term expected cost per unit time under the age-dependent replacement policy is defined
as:
C.(T) = lim the expectedtcost in (O,Z]. (14)
—00

Remark 2. It is easy to see that

C,(T) = lim M

t—00 t

(15)

Also, in [18], if {L(T), k = 1} is a sequence of positive fuzzy interarrival times with the same membership
function, Cy(T) is the positive fuzzy reward with the same membership function associated with the kth inter-
arrival time Ly(T), then

Cl(T) Cr C
Ca(T) E|:L1(T) =E i[(51<7)+?p1(51>” ) (16)
provided that £ [Z‘T(TT))} is finite.

The aim is to find an optimal value T such that C,(7) is minimized, and also one which can be described by
the following model:

: cu(n)
{mln E[Lllm}, (17)

st. T>0,
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where Li(T) = &/ (¢,<r) + Tl(¢,>7) is the length of the first cycle, C\(T) = ¢/l (¢, <) + ¢yl (¢, >1) the cost of the first
cycle, and ¢&; the lifetime of the first renewed component.

Theorem 1. Let C,(T) be the long-term expected cost _per unit time defined by Definition 7. C,(T) is a convex

2
unction with respect to T, i dc" (1) &°Cu(T) exist, andM > 0.
P

»dT? dr?

Proof 1. It follows from (16) that
Cr C
Cu(T) = E[é—jlf(élgn + 7p1<51>T>]
C C
é'%a) +7p'1<¢l>r) > V}dV

+o00o
.](51<7) > I"}dl"—|—/ CI'{ c1>T) > I"}dl”
0

¢
i
r {Z > r}ﬂ{él < T}}dr—chp-Cr{él > T}

/O::DCCr{
[
e

A
crler < Zars [Tera < nyara gocrie > 1)
0

T
:cf/ Mdt+%Cr{fl < T}+%P~Cr{§l > T}
0

t2
N Cr{él < t} Cr{él < T} Cp
_c,/o LSS drt (o — o) S 4 2 (18)
Following (18), we can obtain the first derivative of C,(T) with respect to T
dC,(1) _  Cr{& <7} e )%T—Cr{gl <T} ¢
ar 7 T T’ T?
Cr{fl <T} dCr{él ST} c
:CPT"‘ (cr —CP)T—T—FQ
1 dCr{¢, T
:Fli(Cf—Cp)T%—Cpcr{él >T} (19)
and the second derivative of C,(T) with respect to T
Co, () s _oce(e < TYT EClbsny 3 _pdGlasll Lo Cofe, < TIT o,
472 =¢Cr T + (Cf - cp) T 2F
1 d’Cr{¢, < T dCr{¢ < T
= [(c, ~c )% T? + (¢; — 2¢,) % T+ 2¢,(1 - Cr{¢ < T}) (20)

Note that dcr{g‘g} > 0, and (¢s— 2¢,) > 0. Thus, we can obtain =%~ & C“ L > 0, which implies that C,(T) is a con-
vex function. Thus the proof is complete. [

Corollary 1. Let C(T) be the long-term expected cost per unit time defined by Definition 7. There is one optimal
solution T* which minimizes CT), if &, is an L-R fuzzy variable.

Proof 2. Let £; be an L—R fuzzy variable, usually written as:
Li(m—x)/a] x<mya>0

we(x) = { Rl —m)/B] x> m,p>0 (21)

0 otherwise,
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where L and R are decreasing and continuous functions from [0,1] to [0, 1] satisfying L(0) = R(0) =1 and
L(1)=R(1)=0. O

There are two cases:
Case 1. T> m. It follows (19) that:

dc,. (T 1 dCr{¢, < T .
dZ(" ) :F (cf—cp)T%—cpCr{gl > T}
1 1
> e [(cr —cp)m Cr{& =T} — ¢mCr{&, =T}] = F(C‘f —2¢,)m Cr{é, =T} > 0. (22)
It can now be seen that Ca(T) is a monotonic increasing function, and C,(m) < C,(T) for all T> m.

Case 2. T < m. It is clear that de ) > 0 holds, and it follows from Theorem 1 that C,(T) is a convex func-
tion and has one optimal solution 7" which minimizes C,(T).

Minimizing C,(T) with respect to the above cases, there is one optimal solution 7* which minimizes C,(T),
if ¢, is an L—R fuzzy variable. Thus, the proof is complete.

Remark 3. Theorem 1 and Corollary 1 give two sufficient conditions for the existence of solutions of Model
(17). However, this theorem can not provide a method of finding such a solution. In the following section, a
method will be proposed to solve this.

4. SPSA algorithm based on fuzzy simulation and numerical experiment

It is difficult to compute the membership function of ( ) usmg an analytical method due to its complexity.
This is because it is practically impossible to design an analytlcal method to compute £ [ L0 ] Liu and Liu [9]
proposed a method to estimate the expected value of a fuzzy variable, and we also employ this method to esti-
mate that value.

For any given time 7, the fuzzy simulation for estimating E [ ] is given as follows:

1. Calculate p;, = pic,in (%) for k =1,2,...,n. It is difficult to compute p directly, and the following method is

proposed to sol%nthis problem. Firstly, generate a sequence of {6;} from @ such that Pos{0;} >0,
k=1,2,...,n, respectively. Thus, n real numbers &;(0;) can be obtained with the membership degree

M = He, (&(0x)). Let
CP[(CI(Hk <+ C/I (&1(00)>T)
&1 (00 & 00<r) + T 00>1)
If x; and x; have the same values, remove x; from the result sequence and set u; = max(u; u;).
2. Employ Y_;_,x;w to estimate E [ ] where

X —

1
=g (s s~ ”)

1
wy = 3 ({E,%#f Pgixu +max,uj Ialgjxuj), 2<k<n.
In this step, x; < x, <---<x, is needed, sorted in ascending order, and the sequence of y; should be modified
respectively.

Theorem 1 and Corollary 1 give two sufficient conditions for the existence of solutions to Model (17). This
type of problem can be resolved through the use of gradient-based algorithms. However, the relationship
between the objective function and the decision variables is not often detailed enough to ensure that the gra-
dient of C,(T) with respect to T always exists. Here, a kind of recursive optimization algorithm based on an
approximation to the gradient is used to solve this.

The SPSA algorithm ([11,12]) is based on an easily implemented and highly efficient gradient approxima-
tion that relies on measurements of the objective function. However, it does not rely on measurements of the
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gradient of the objective function [13]. It can therefore be used to solve optimization problems where it is dif-
ficult or impossible to obtain the gradient of the objective function with respect to the parameters being
optimized.

SPSA algorithm based on fuzzy simulation

Step 1. Initiation and parameter selection Set the counter index k£ = 0, and randomly choose an initial value To
of T (where T is the decision variable). Then, select nonnegative parameters a, ¢, 4, «, and y in
the SPSA gain sequence a; = af(A+ k+1)* and ¢, = ¢/(k + 1)’. Usually « and y are taken to be
0.602 and 0.101, respectively. The parameters a, A and ¢ can be determined by specific situations
([11,12]).

Step 2. Generation of simultaneous perturbation variables Generate a sequence of random perturbation vari-
ables {Ay}, which are independently generated from a zero-mean probability distribution satisfying
the conditions in [11]. Here, we randomly generate A, in [—1,1], and the distribution function of
Ay 1s defined as follows:

0, Ay < —1
F(A) =4 %L, —1<A <1
1, Ay > 1.

Step 3. Loss function evaluation Calculate the two measurements of objective functions Ca(?k + ciAy) and
C.(Ty — ;) by fuzzy simulation as shown above.
Step 4. Gradient approximation Calculate the simultaneous perturbation approximation to the unknown
gradient:
Ca(/fk -+ CkAk) — Ca<?k — CkAk)
ZCkAk '
Step 5. Update estimate Set /fk+] = ?k — a8y (/fk>

&(Ty) =

Step 6. lteration or termination Return to Step 2 with k + 1 replacing k. Terminate the algorithm and return
Ty, if there is little change in several successive iterations, or the maximum allowable number of iter-
ations has been reached. Thus, T is reported as the optimal value of 7.

Example 1. Let &, = (0,4,7,15) be the lifetime of the first component, ¢,= 1000 and ¢, = 300. Then the long-
term expected cost per unit time is:

con-+fi3]

where, Ll(T) = 511(51§T) + H(51>T) and CI(T) = 1000[(51<T) + 3001<5|>T)'
The purpose is to find an optimal 7 such that C,(7) is minimized, as defined by the following mathematical
model:

min E[IOOOI(élsr) + 300[(59”}
Edey<ry + T g5

s.t. T >0.

(23)

In this example, it is clear that &; is an LR fuzzy variable and the objective function in Model (23) is a convex
function with respect to the decision variable 7" and has only one optimal solution.

According to [11,12], the coefficients are set such that: 4 =100, ¢ = 0.2, o = 0.602, y = 0.101, and 20 initial
values of T are randomly generated from each of the four parts. The SPSA based on fuzzy simulation is run
for 1000 cycle iterations with the generated initial values, for the results shown in Table 1. Compared with the
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Table 1

Results for SPSA based on fuzzy simulation

Ty T C. (T Ty T C (T
0.1286 6.5011 79.2698 0.3001 6.7355 76.8245
0.5228 7.1481 78.2685 1.1156 6.5743 76.2603
1.3720 6.7702 76.9458 2.6794 6.8600 77.2601
3.5336 76.8935 78.5687 3.8293 7.4852 79.4485
4.0536 6.8189 77.1162 4.1000 6.9265 76.0041
4.7838 6.6786 76.6252 5.4002 7.3575 79.0015
6.7202 6.5348 76.1220 7.2883 6.5085 76.0300
9.4014 7.1267 78.1937 9.7223 6.9858 77.7006

12.0327 6.7729 76.9555 12.8636 7.3021 78.8076

14.0135 6.5914 76.3201 14.7794 6.9480 77.5680

solutions obtained, T = 6.9265, C,(T") = 76.0041 with the initial value of T, = 4.1000 is reported as the opti-
mal solution. Following Table 1, we can compute the mean value 7* = 6.8945, C,(T*) = 77.3808, and the var-
iance Var(T") = 0.096, Var(C,(T")) = 1.1675. The results imply that SPSA based on fuzzy simulation is a
suitable method for solving such problems.

The convergence procedure with an initial value of Ty = 4.1000 is presented in Fig. 1. Fig. 2 shows the con-
vergence process of the solutions for various iteration times N with the initial value of Ty = 4.1000. From this
figure, it can be seen that the curve tends to plateau after 70 cycles using SPSA based on fuzzy simulation.
Fig. 3 shows the graph of optimal solutions 7" for different initial values.

Example 2. Let £ be the lifetime of the first component defined as &; = 112 + 9 with n = (0, 3,6), and ¢, = 200,

¢, = 30. Then the long-term expected cost per unit time is C,(T) = E[f]'g))], where Li(T) = &l <r) + Tl (g >1)

and Cl(T> = 200](51<T) + 301(§1>T)-

Ca(T)

115.0 |,
To =4.1000
105.0 |

95.0 |

85.0 T*=6.9265

75.0 | | | | | | T
45 5.0 55 6.0 6.5 7.0

Fig. 1. The convergence procedure with the initial value Ty = 4.1000.

T*
70

60
50

40

30 | | | | | | N
25 50 75 100 125 150

Fig. 2. The solutions of different iterations with the initial value T = 4.1000.
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80T

7.0 S AA AL Sy

6.0 -

50

4.0 I I I I I To
3 6 9 12 15

Fig. 3. The solutions with different initial values.

In order to find the optimal value 7, the following mathematical model is established:

min E 200, 1) +300 ;1)
g <t >
s.t. T >0.

Then, it can be obtained that:

0, 0<T<09
Cr{¢, <Ty={ I3 9<T <45 (24)
1, 45<T.

Following (24), it is clear that £; is also a L—R fuzzy variable and that C,(T) is a convex function (Corollary 1),
thus, there is at least one optimal solution. The parameters are set such that: 4 =100, ¢ =0.2, o = 0.602,
y =0.101 and the proposed algorithm is run with stochastic samples for 20 iterations. The results obtained

Table 2
Results obtained using SPSA based on fuzzy simulation
To T C, (T To T C, (T
9.0417 17.0023 6.0034 9.3087 17.4711 6.7067
10.2547 18.2963 7.9444 11.6774 17.1487 6.2231
12.2927 17.5405 6.8107 15.4305 17.7201 7.0800
17.4806 17.5106 6.7658 18.1903 18.9706 8.9558
18.7287 18.8685 6.9567 18.8276 18.1662 8.8027
20.4811 17.3572 6.5358 21.9610 18.7151 8.5727
25.1284 17.0697 6.1045 26.4919 17.0172 6.0257
31.5633 18.2535 7.8802 32.3335 17.9718 7.4576
37.8784 17.5460 6.8189 39.8725 18.6044 8.4065
42.6324 17.1829 6.2743 44.4704 17.8960 7.3440

Ca(T)

10.0} 7o =9.0417
9.0}

8.0

7.0F T%=17.0023

6.0 | | | | | | T

Fig. 4. The convergence procedure with the initial value To=15.
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T*

19.0

16.5 |-

14.0 |

115 F

9.0 ! ! ! ! !
35 70 105 140 175 210

Fig. 5. The solutions with different iterations.

19.0
18.0
17.0

16.0

I I I I I I To
Fig. 6. The solutions with different initial values.

are shown in Table 2. And, it can be seen that the mean value 7° = 17.789, C,(T*) = 7.18352, the variance
Var(T") = 0.381228, Var(C,(T")) = 0.857762, and C,(T") = 6.0034 are reported as the optimal solution with
7" =17.0023.

Fig. 4 shows the convergence procedure with the initial value To = 9.0417. The convergence procedure for
different iterations when the initial value 7o = 9.0417 can be seen in Fig. 5. From this figure it can also be seen
that the curve tends to plateau after 200 cycle iterations of the SPSA based on fuzzy simulation. Fig. 6 graphs
the optimal solutions 7™ for different initial values.

5. Conclusions

In this paper, the age-dependent replacement policy with fuzzy lifetimes was discussed. The systems in
which components’ lifetimes are characterized by independent nonnegative fuzzy variables with identical
membership functions and a model to describe this maintenance policy were presented. Numerical results
demonstrate that the expected cost of renewal per unit time is equal to the expected value of cost in the first
maintenance cycle (per unit time). In order to obtain the expected cost of maintenance and find the optimal
solution of the maintenance cycle to minimize the long-term expected cost per unit time, the SPSA algorithm
based on fuzzy simulation was presented to solve the proposed model.
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