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Random-Direction Optimization Algorithms
with Applications to Threshold Controls1
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Abstract. This work develops a class of stochastic optimization algo-
rithms. It aims to provide numerical procedures for solving threshold-
type optimal control problems. The main motivation stems from appli-
cations involving optimal or suboptimal hedging policies, for example,
production planning of manufacturing systems including random
demand and stochastic machine capacity. The proposed algorithm is
a constrained stochastic approximation procedure that uses random-
direction finite-difference gradient estimates. Under fairly general con-
ditions, the convergence of the algorithm is established and the rate of
convergence is also derived. A numerical example is reported to demon-
strate the performance of the algorithm.
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1. Introduction

This work develops a class of stochastic optimization algorithms. Our
primary motivation stems from systems involving optimal or suboptimal
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hedging policies such as marketing-production manufacturing systems in
which a firm aims to maximize its overall profit or to minimize its overall
cost through adequate choice of the production rates. The underlying prob-
lem is to find optimal controls of models involving Markovian jump pro-
cesses. By focusing on threshold-type controls, the optimal control problem
is converted to an optimization problem that requires finding the optimal
threshold values. To solve such problems and other problems that can be
characterized by threshold-type controls, we develop in this paper feasible
and easily implementable numerical algorithms. Based on recent progress
in stochastic approximation, we suggest a class of algorithms using random-
direction finite-difference gradient estimates, investigate the convergence,
derive estimation error bounds, and obtain rates of convergence.

Before proceeding further, first we review some of the recent develop-
ments in production planning of manufacturing. Owing to the rapid pro-
gress in management science and computing technology, the research in
production planning has received much needed attention; see Ref. 1 and the
references therein. In Ref. 2, Akella and Kumar formulated a one-machine,
one-part production system as a stochastic optimal control problem, in
which the part demand is assumed to be a constant, the state of the machine
is a two-state continuous-time Markov chain, and the objective function is
a discounted inventory�shortage cost over an infinite-time horizon. It was
shown that the optimal control is given by a single threshold inventory level.
Bielecki and Kumar treated the long-run average-cost counterpart in Ref.
3; an optimal hedging policy was obtained. In these papers, the objective is
to minimize an expected cost over a class of production control variables.
For a discussion of the hedging policies or threshold-type controls, see
Gershwin (Ref. 4) among others. In Ref. 5, a minimax production planning
model with Markov capacity process and deterministic but unknown
demand rate was considered by Boukas, Yang, and Zhang; an optimal con-
trol under discounted cost criterion was obtained. In lieu of concentrating
on infinite-horizon problems with discounted cost function, optimal policies
for finite-horizon problems were obtained in the paper of Zhang and Yin
(Ref. 6); here, the corresponding optimal controls were obtained in terms
of the time-dependent turnpike sets under traceability conditions. To be
able to treat large-dimensional manufacturing systems, the framework of
hierarchical decomposition and appropriate aggregation was dealt with in
Sethi and Zhang (Ref. 7). The related singularly perturbed Markovian sys-
tems were studied in depth in the papers of Yin and Zhang (Ref. 8) and
references therein. In a recent paper (Ref. 9), Zhang, Yin, and Boukas pro-
posed a class of marketing-production models. The underlying problem is
a stochastic control problem with the demand being a Poisson process.
Assuming that the system consists of a single machine and that the machine
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is reliable, analytic solutions were provided together with illuminating
descriptions on various control regions. These results yield managerial
insight for many applications. Certainly, it is helpful to model the machine
capacity also by a continuous-time Markov chain. Unfortunately, under
such a setup, the problem becomes extremely difficult; one cannot expect
any closed-form solutions. In addition, for many systems in applications, it
is important to treat a many-machine system in lieu of a single-machine
system. To resolve the problem, we seek numerical solutions and efficient
algorithms. One of the possibilities is to solve the optimal control problems
numerically. Nevertheless, it is well known that such an approach may suf-
fer from the curse of dimensionality for a large-scale system. This leads us
to seek alternative approaches via stochastic optimization.

In Yan, Yin, and Lou (Ref. 10), we proposed a combined approach of
stochastic approximation with gradient estimation techniques. In that
paper, we concentrated on threshold-type controls, and converted the opti-
mal control problem to an optimization problem, in which the gradient
estimator was constructed with the help of infinitesimal perturbation analy-
sis [IPA, see Ho and Cao (Ref. 11) and references therein]; promising results
were obtained. For related work, see also Liberopoulos and Caramanis
(Ref. 12) and Yan, Zhou, and Yin (Ref. 13).

In view of these developments, by focusing on threshold-type controls,
we are concerned with alternative procedures in this paper. We use also
a combined approach of stochastic approximation and gradient estimates.
Nevertheless, in lieu of the IPA approach, we use random-direction finite-
difference methods; see Refs. 14–16. Such an idea is quite efficient and is
convenient especially for large-dimensional problems. Using such an
approach, the computation is rather systematic, and one need not figure out
the form of the gradient estimates as in the IPA approach.

One of the features of this paper is that we do not even require the
capacity and demand to be Markovian, since we are not using a dynamic
programming approach. We assume only that the processes are stationary
satisfying appropriate moment conditions. From an application point of
view, it is appealing particularly without the Markovian assumption. Not
only the algorithm suggested is applicable to the manufacturing systems,
but is useful also for many other optimal control problems requiring finding
the optimal threshold values.

To proceed, the rest of the paper is arranged as follows. Section 2 gives
the setup of the problem together with the proposed algorithm. Section 3
begins with a modified algorithm using projection, states the conditions
needed, establishes the convergence of the recursive algorithm, and ascer-
tains the convergence rate via a local analysis. Section 4 presents an example



JOTA: VOL. 110, NO. 1, JULY 2001214

to illustrate the performance of the algorithm. Finally, Section 5 concludes
the paper with additional remarks.

2. Formulation

We formulate the problem in a general setting. The main idea is to
convert an optimal control problem to an optimization problem by focusing
our attention to a particular class of controls, namely, controls of the
threshold type. Then, the underlying problem becomes to find the optimal
threshold values.

By a threshold-type control in the control space Γ, we mean a policy
u(t) ∈Γ ⊂ � l with constant threshold levels such that, for Ai ⊂ � l and con-
stants ci ∈Γ ⊂ � l, iG1, . . . , l1, such that, for some integer j,

u(t)G ∑
j

iG1

ciI{x(t) ∈ Ai},

where x(t) represents the state.
To begin, let x(t) ∈ �r be the state variable, let u(t) ∈Γ u ⊂ �r1 be the con-

trol, where Γu is a compact set. Suppose that α ( · ) and β( · ) are stationary
random processes taking values in compact sets Mα and Mβ . For example,
α ( · ) and β( · ) may be finite-state Markov chains with stationary transition
probabilities, generators Qα and Qβ , and state spaces Mα and Mβ . Never-
theless, since we do not use the HJB (Hamilton–Jacobi–Bellman) equations,
the explicit Markovian assumption is not needed. For appropriate functions
f ( · ) and G( · ) with

f: �rBΓuBMαBMβ > �r,

G: �rBΓuBMαBMβ > �,

the general problem setup is as follows: Choose u so as to maximize

J (u)G lim
T̂→S

(1�T̂ )E �
T̂

0

G(x(t), u(t), α (t), β(t)) dt, (1a)

s.t. ẋ(t)Gf (x(t), u(t), α (t), β(t)), x(0)Gx. (1b)

An interpretation of the above general setup in the manufacturing set-
ting is now given: x(t) is the inventory level of the manufacturing system,
u(t) represents the rate of production, α ( · ) and β( · ) model the machine
capacity and the demand process, respectively. Our objective is to maximize
the overall expected profit, or equivalently to minimize the overall expected
cost.
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In lieu of solving the optimal control problem directly, we formulate
the problem as an optimization problem with the use of threshold-type con-
trols so that the profit J ( · ) becomes a function of the threshold levels, i.e.,
JGJ (θ). Threshold-type control policies have drawn renewed attention
lately, since the idea is appealing and the principle is easy to implement. It
is well known that such a control may lead only to suboptimality. Neverthe-
less, in applications, one is often content with suboptimality or near opti-
mality, owing to the inherent uncertainty and other unknown disturbances.
As was shown in Ref. 9, even for a seemingly not so complex problem, the
solution can be rather involved. Frequently, a suboptimal or nearly-optimal
control is as valuable as an optimal control, since within a vicinity of the
optimal solution, any approximation is as good as the optimal one from a
practical point of view.

Example 2.1. Let us consider a manufacturing firm facing a stochastic
demand for its product over time. For t¤0, let x(t), u(t), d (t) denote the
inventory level, the production rate, and the demand rate. They evolve in
accordance with the following dynamic system:

ẋ(t)Gu(t)Ad(t), x(0)Gx. (2)

Let

h(x)Gc+x+Cc−x− (3)

be the inventory cost function, where c+ and c− are positive constants, and
where

x+Gmax{0, x}, x−Gmax{0,Ax}.

Let π(t) ∈ {π1,π2} denote the price for a unit product. In addition to the
production rate u(t), the price π(t) is also a control variable, which in turn,
depends on the state—the inventory level x(t) and demand. Note that the
demand depends typically on the price π(t), since the higher the price, the
lower the demand. Suppose that the demand rate is a two-state Markov
chain with state space {d1, d2} and generator

Q(π)G�−λ (π) λ (π)

µ(π) −µ(π)� ,

where π∈ {π1,π2} is the price rate. Consider the cost function

J (x, d, u( · ),π( · ))G lim
T→S

(1�T )E �
T

0

[h(x(t))Aπ(t)d(t)] dt. (4)
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The problem is to choose (u,π) so as to minimize J. Focusing on threshold-
type controls, we convert this problem into an optimization problem. The
threshold value θG(θ1, θ2) is a 2-dimensional vector such that θ1⁄θ2. The
first component θ1 represents the lower limit of the inventory level that
triggers a promotion action. The second component θ2 controls the maxi-
mum inventory level, which is the same as the threshold control level con-
sidered in Ref. 3. In a production system controlled by a threshold control
policy, the production discipline is regulated as follows:

if x(t) is below θ2, produce as much as one can;
if x(t) is above θ2, produce nothing;
if x(t)Gθ2, produce exactly the same as the demand.

When the problem is converted to an optimization problem, the
important task becomes to locate the optimal threshold levels. To proceed,
we denote the threshold parameter by θ with θ∈ �r. Similar to Ref. 10, we
consider a combined process

ξ (t)G(x(t), α (t), β(t)).

In what follows, we refer to ξ (t) as a noisy process, since it collects various
random effects. It follows that G( · ) can be written as a function of θ and
the noise effect ξ . For each n, choose a random direction vector ∆nG

(∆n,1 , . . . , ∆n,r)′, with independent components such that each component
∆n,i is a Bernoulli random variable taking values J1, each with probability
1�2. The stochastic optimization algorithm is of the form

θnC1GθnC(∆nDJ̃n (θn ), (5)

where

DJ̃ (θn )G(1�2δT ) �
(nC1)T

nT

[G(θnCδ∆n , ξ +(t))AG(θnAδ∆n , ξ −(t))] dt, (6)

where δ is the finite-difference stepsize and {ξ +(t)}, [ξ −(t)} are observation
noises. Note that the random-direction vectors are chosen as Bernoulli
sequences following the suggestion of Ref. 15; see also Refs. 14, 16. The
choice of the random-direction vector implies that

�∆n,i �2G1 and �∆n �2Gr.
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We use the random-direction finite-difference estimates (with the random
directions vector ∆n )

(1�2δT )� �
(nC1)T

nT

[G(θnCδ∆n , ξ +(t))AG(θnAδ∆n , ξ −(t))] dt�∆n,1

···

�
(nC1)T

nT

[G(θnCδ∆n , ξ +(t))AG(θnAδ∆n , ξ −(t))] dt�∆n,rC1
� .

Then, multiplying the component i by ∆n,i�∆n,i yields the increments
∆nDJ̃n (θn ) in (3).

By virtue of the idea of using common random numbers, which is well
known in the simulation culture, we use henceforth ξ +(t)Gξ −(t). The advan-
tages of this are explained for example in Ref. 16, p. 14. For all the compo-
nents of the gradient estimate, the same observations are used. Only the
components of the random-direction vector differ. Throughout the paper,
we assume that δGδ( , such that (�δ(→0 as (→0. That is, ([δ( or δ( goes
to zero much slower than the stepsize (. Different from Ref. 10, we will not
assume TGT( such that T(→S as (→0. This will be helpful in the actual
computation.

The stochastic approximation algorithm given above can be thought of
as a mixed-mode scheme. It uses information from continuous dynamic
systems [the inclusion of ξ (t)], but the recursion is done at discrete instance.
Thus, to some extent, we may call it a hybrid procedure.

3. Asymptotic Properties of the Algorithm

This section is devoted to the asymptotic properties of the stochastic
approximation algorithm. The main technique is the method of weak con-
vergence. We work with a modified version of the algorithm: Select θ0 to
be an arbitrary nonrandom initial approximation and generate

θnC1GΠH (θnC(∆nDJ̃n (θn )), (7)

where ΠH is the projection onto the constrained set H. That is, ΠH (θ) is the
closest point in H to θ; in particular, if θ∈ H, ΠH (θ)Gθ.

As illustrated in Ref. 16, for the recursive approximation, ‘‘allowing
unboundedness can lead to needless mathematical complication because
some sort of stability must be shown or otherwise assumed, . . . , and it
generally adds little to the understanding of practical algorithms.’’ Note
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that we could have chosen the initial vector to be an (-dependent random
variable θ(

0 and assume that θ(
0 converges weakly to θ0. However, for the

applications we are dealing with, the nonrandom initial condition appears
to be sufficient.

Following the development of Ref. 16 and the references therein, intro-
duce a correction or reflection term zn by writing (5) as

θnC1GθnC(∆nDJ̃n (θn)C(zn , (8)

where zn is the vector having the shortest Euclidean length required to bring
θnC(DJ̃n (θn) back to the constraint set H.

3.1. Convergence of the Recursive Algorithm. To obtain the conver-
gence of the algorithm, we make the following assumptions:

(A1) {∆n} is a sequence of i.i.d. Bernoulli random variables on the
unit cube in �r; i.e., each component ∆n,i takes the values J1
with probability 1�2. H is a compact set, and satisfies any one
of the three conditions below:

(i) H is a hyperrectangle; i.e., there are real numbers aiFbi ,
iG1, . . . , r, such that HG{x: ai⁄xi⁄bi}.

(ii) Let qi ( · ), iG1, . . . , p, be continuously differentiable real-
valued functions on �r, with gradients qi,x( · ). Without loss
of generality, let qi,x(x)≠0, if qi (x)G0. HG{x: qi (x)⁄0,
iG1, . . . , p}≠∅ is connected and compact.

(iii) H is an �r-dimensional connected compact surface with a
continuously differentiable outer normal.

(A2) The functions G( · ) and J ( · ) satisfy the following three
conditions:
(i) J ( · ) and ∇ J ( · ) are continuous.
(ii) For each ξ , G( · , ξ ) and Gθ( · , ξ ) are continuous and

bounded on bounded θ sets, where Gθ( · , ξ ) denotes the
partial derivative of G( · ) with respect to θ.

(iii) For each bounded θ, {G(θ, ξ (t)} and {Gθ(θ, ξ (t)} are uni-
formly integrable.

(A3) (H0, δGδ( such that (�δ2
(→0 as (→0.

(A4) The process {ξ ( · )} is stationary. For each θ,
E �G(θ, ξ (t)) �2FS, EG(θ, ξ (t))AJ (θ)G0,

for each n, EGθ(θ, ξ (t))A∇ J (θ)G0,
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and as n→S,

(1�n) ∑
nCmA1

jGm

Em (1�T )

B�
jTCT

jT

[Gθ(θ, ξ (t)) dtA∇ J (θ)] dt→0, in probability,

where Em denotes the conditional expectation with respect to
F m , the σ-algebra generated by {θ0,ψ j , ∆j , bj: jFm}.

Remark 3.1. More general random directions can be used; see the
setup in Ref. 16. However, the random directions on the unit cube seem to
be more easily implementable.

The constrained set in (i) is a hypercube, and the sets in (ii) and (iii)
are used often in nonlinear programming and optimization. The possibilities
of the constrained sets in (A1) above cover a wide variety of pervasive prac-
tical cases. The conditions are just those of (A3.1), or (A3.2), or (A3.3) in
Ref. 16, p. 77.

Regarding the second moment condition in (A4), consider for instance
Example 2.1. Solving the equation leads to

�x(t) �⁄ �x�CK �
t

0

(�x(s) �C1) ds.

Under Markovian capacity and demand,

E �x(t) �2⁄K.

Normally, the capacity is modeled by a finite-state Markov chain. If the
demand rate is changed to a periodic diffusion (a diffusion defined on a
compact manifold), the boundedness mentioned above still hold.

In a more general setting, consider the dynamic system given by (1).
From a practical point of view, the inventory level must be bounded, so are
the machine capacity and the demand. Suppose that, for each (α , β), the
function f ( · , · , α , β) is smooth enough. Then, the moment bound also
holds. This demonstrates that such a condition is not a strong restriction.

Assumption (A4) is an averaging condition. It is satisfied if ξ (t) is a
stationary φ-mixing process. An alternative condition is as in Ref. 3, where
it is assumed that the underlying process is ergodic. However, the condition
used here appears to be slightly weaker.
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Note that

∆nDJ̃n (θn )G(∆n�2δT ) �
(nC1)T

nT

[G(θnCδ∆n , ξ (t))AG(θnAδ∆n , ξ (t))] dt. (9)

Define

Ĝ+(θnCδ∆n )G(1�T ) �
(nC1)T

nT

[G(θnCδ∆n , ξ (t)) dt,

Ĝ−(θnAδ∆n )G(1�T ) �
(nC1)T

nT

[G(θnAδ∆n , ξ (t)) dt.

Then,

∆nDJ̃n (θn )G(∆n�2δ)[Ĝ+(θnCδ∆n )AĜ−(θnAδ∆n )].

Define a piecewise constant interpolation of θn as follows:

θ( (t)G�θ0, for tF0,

θn , for 0⁄ t ∈ [n(, n(C().

Define the interpolation for the reflection term as

z( (t)G�0, for tF0,

(∑t�(A1

jG0 zj , for t¤0.

Then, for any t, sH0,

θ((tCs)Aθ((t)Gθ(tCs)�(Aθt�(

G( ∑
(tCs)�(

jGt�(
∆jDJ̃j (θ j )C[z((tCs)Az((t)].

In the above, t�( and (tCs)�( are taken to be integers without loss of gener-
ality (we can always take the integral parts of the above quantities in any
case). We could use the notation  t�(∫, i.e., the integer part of t�(. But, for
saving notation, we simply use t�( throughout.

Theorem 3.1. Under Assumptions (A1)–(A4), {(θ( ( · ), z( ( · ))} is tight
in D2r (−S,S ).

Proof. First, the projection implies that {θn} is bounded, so are
{θnCδ∆n} and {θnAδ∆n}. By virtue of a truncated Taylor expansion, we
have

G(θnCδ∆n , ξ (t))GG(θn , ξ (t))Cδ∆′nGθ(θnCs̃δ∆n , ξ (t)), (10)
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for some 0⁄ s̃⁄1. Similarly, we have

G(θnAδ∆n , ξ (t))GG(θn , ξ (t))Aδ∆′nGθ(θnAŝδ∆n , ξ (t)), (11)

for some 0⁄ ŝ⁄1. As a result,

∆nDJ̃n (θn )

G(∆n∆′n�2T ) �
nTCT

nT

[Gθ(θnCs̃δ∆n , ξ (t))CGθ(θnAŝδ∆n , ξ (t))] dt, (12)

and the recursion takes the form

θnC1GθnC((∆n∆′n�2T )

B�
nTCT

nT

[Gθ(θnCs̃δ∆n , ξ (t))CGθ(θnAŝδ∆n , ξ (t))] dtC(zn .

Since zn is the minimum force needed to keep θn in the constraint set H, it
is readily seen that

�z( (tCs)Az( (t) �⁄ ∑
(tCs)�(

jGt�(
( �DJ̃j (θ j ) �. (13)

The uniform integrability in (A2) and Ref. 17, Lemma 3.7, p. 51 (see also
Theorem 8.2 of Ref. 18) imply the tightness of {(θ( ( · ), z( ( · ))}. Moreover,
similar to Part 2 of the proof of Theorem 8.2.1 in Ref. 16, any limit of
the underlying process has Lipschitz continuous sample paths w.p.1. This
concludes the proof. �

To proceed, define

ψnG[Ĝ+(θnCδ∆n )AJ (θnCδ∆n )]A[Ĝ−(θnAδ∆n )AJ (θnAδ∆n )].

Furthermore, note that

[J (θnCδ∆n )AJ (θnAδ∆n )]�2δG∆′n∇ J (θn )Cbn , (14)

where bn denotes the bias of the finite-difference approximation of ∇ J (θn ).
Thus, (6) can be rewritten as

θnC1GθnC(∇ J (θn )C(∆nbnC((∆n∆′nAI )∇ J (θn )C((∆n�2δ)ψnC(zn . (15)

The recursive form above indicates that the algorithm can be decomposed
into the gradient of the objective function, the finite-difference bias, the
observation noise, the random-direction noise, and the reflection term. In
what follows, we show that, through averaging, this algorithm has a close
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connection to a continuous-time projected ordinary differential equation
(see Ref. 16, p. 77),

θ̇G∇ J (θ)Cz̃, z̃(t) ∈− C (θ(t)), θ(0)Gθ0. (16)

The form of C (θ(t)) depends on which one of the conditions in (A1) is
satisfied. Under (i) in (A1), the set C (θ) is as follows:

If θ∈ H0, the interior of H, C (θ)G{0}.
If θ∈∂ H, the boundary of H, C (θ) is the infinite convex cone generated

by the outer normals at θ of the faces on which θ lies. Under (ii) of (A1),
C (θ) is the convex cone generated by the set of outward normal
{y: yGqi,θ (θ), i ∈ A(x)}. If there is no active constraints at θ, C (θ)G{0}.
Under (iii), C (θ) is the linear span of the outer normal at θ.

Next, we characterize the limit process. The result is stated below.

Theorem 3.2. Under the conditions of Theorem 3.1, extract a weakly
convergent subsequence of (θ( ( · ), z( ( · )) with limit (θ( · ), z( · )). Then, the
limit satisfies (14).

Proof. First, in view of (12), bnGO(δ2). Thus, the boundedness of
∆j , δGδ(→0 as (→0, and the bounded convergence theorem imply that

E(� ∑
(tCs)�(

jGt�(
∆jbj�⁄( ∑

(tCs)�(

jGt�(
E �∆j � �bj �

G1r( ∑
(tCs)�(

jGt�(
O(δ2)→0, as (→0.

Furthermore, the limit is uniform in t. Thus, it suffices to consider

θ((tCs)Aθ((t)G( ∑
(tCs)�(

jGt�(
∇ J (θ j )C( ∑

(tCs)�(

jGt�(
(∆j∆′jAI )∇ J (θ j )

C( ∑
(tCs)�(

jGt�(
∆jψ j�2δC[z((tCs)Az( (t)]Co(1),

where o(1)→0 in probability uniformly in t.
To prove the desired result, define

M(t)Gθ(t)Aθ0A�
t

0

∇ J (θ(τ )) dτAz(t).

All that is needed is to show that M(t) is a continuous martingale. Once the
martingale properties are verified, by virtue of Theorem 4.1.1 of Ref. 16,
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M(t) ≡ const, since M( · ) is locally Lipschitz. To verify the martingale prop-
erty, it is equivalent to show that, for any bounded and continuous function
h( · ), any integer κH0, and any 0FtiFt, and sH0,

Eh(θ(ti ); i⁄κ )�θ(tCs)Aθ(t)A�
tCs

t

∇ J (θ(τ )) dτA(z(tCs)Az(t))�G0. (17)

To this end, let us begin with the process indexed by the small parameter
(H0. In fact, by the weak convergence and the Skorohod representation,

lim
(→0

Eh(θ((ti ); i⁄κ )[θ((tCs)Aθ((t)]

GEh(θ(ti ); i⁄κ )[θ(tCs)Aθ(t)].

On the other hand, in view of the equation for θ((tCs)Aθ((t), choosing a
sequence {k(} such that k(→S as (→0 and γ (G(k(→0, we have

lim
(→0

Eh(θ((ti ); i⁄κ )[θ((tCs)Aθ((t)]

Glim
(→0

Eh(θ((ti ); i⁄κ )

B� ∑
(tCs)�(

lk(Gt�(
γ ( (1�k( ) ∑

lk(Ck(A1

jGlk(

∇ J (θ j )

C ∑
(tCs)�(

lk(Gt�(
γ ( (1�k() ∑

lk(Ck(A1

jGlk(

(∆j∆′jAI )∇ J (θ j )

C ∑
(tCs)�(

lk(Gt�(
γ ( (1�k() ∑

lk(Ck(A1

jGlk(

∆jψ j�2δCz( (tCs)Az( (t)� .

Letting (lk(→τ , by the continuity of ∇ J ( · ), the weak convergence of θ( ( · ),
and the Skorohod representation, we have

lim
(→0

Eh(θ((ti ); i⁄κ )� ∑
(tCs)�(

lk(Gt�(
γ ( (1�k( ) ∑

lk(Ck(A1

jGlk(

∇ J (θ j )�
Glim

(→0
Eh(θ((ti ); i⁄κ )� ∑

(tCs)�(

lk(Gt�(
γ (∇ J (θ lk()�

GEh (θ(ti ); i⁄κ )��
tCs

t

∇ J (θ(τ )) dτ � .

Recall that F n denotes the σ-algebra generated by {θ0,ψ j , ∆j , bj : jFn}
and that En denotes the corresponding conditional expectation. Then, θn is



JOTA: VOL. 110, NO. 1, JULY 2001224

F n-measurable, so is ∇ J (θn ). Consequently, for the term involving random
direction noise, we have

lim
(→0

Eh(θ((ti ); i⁄κ )�(1�k( ) ∑
lk(Ck(A1

jGlk(

(∆j∆′jAI )∇ J (θ j )�
Glim

(→0
Eh(θ((ti ); i⁄κ )�(1�k() ∑

lk(Ck(A1

jGlk(

Elke (∆j∆′jAI )∇ J (θ j )�
Glim

(→0
Eh(θ((ti ); i⁄κ )�(1�k( ) ∑

lk(Ck(A1

jGlk(

Elk( [Ej (∆j∆′jAI )]∇ J (θ j )� ,

G0,

since θ j is F j measurable and

Ej∆j∆′jGI,

by the independence and the Bernoulli assumption on the random noise.
Subtracting J (θnCδ∆n ) from (8) and J (θnAδ∆n ) from (9), we obtain

ψnG(δ∆′n�T ) �
nTCT

nT

[G̃θ(θnCs̃δ∆n , ξ (t))CG̃θ(θnAŝδ∆n , ξ (t))] dt, (18)

where

G̃θ(θnCs̃δ∆n , ξ (t))GGθ(θnCs̃δ∆n , ξ (t))A∇ J (θnCs̃δ∆n ),

G̃θ(θnAŝδ∆n , ξ (t))GGθ(θnAŝδ∆n , ξ (t))A∇ J (θnAŝδ∆n ).

Again, using (lk(→τ , by the continuity of the functions gθ( · ) and ∇ J ( · ),
the weak convergence of θ( ( · ), and the Skorohod representation, we have

lim
(→0

Eh(θ((ti ); i⁄κ )�(1�k( ) ∑
lk(Ck(A1

jGlk(

(∆j∆′j�2T ) �
jTCT

jT

G̃θ(θ jCs̃δ∆j , ξ (t)) dt�
Glim

(→0
Eh(θ( (ti ); i⁄κ )�(1�k() ∑

lk(Ck(A1

jGlk(

(∆j∆′j�2T ) �
jTCT

jT

G̃θ (θ lk( , ξ (t)) dt�Co(1)

Glim
(→0

Eh(θ((ti ); i⁄κ )�(1�k() ∑
lk(Ck(A1

jGlk(

(∆j∆′j�2T ) �
jTCT

jT

G̃θ(θ(τ ), ξ (t)) dt�Co(1),

where o(1)→0 in probability uniformly in t.
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Suppose that θ(τ ) takes finitely many values, say x1, . . . , xı for some
positive integer ı. Then, using nested expectation and (A4), we have

lim
(→0

Eh(θ( (ti ); i⁄κ )�(1�k() ∑
lk(Ck(A1

jGlk(

(∆j∆′j�2T ) �
jTCT

jT

Ej G̃θ(θ(τ), ξ(t)) dt�
Glim

(→0
Eh(θ((ti ); i⁄κ)�(1�k( ) ∑

lk(Ck(A1

jGlk(

(∆j∆′j �2T)

B ∑
ı

k1G1
�

jTCT

jT

EjG̃θ(xk1 , ξ (t))I{θ(τ )Gxk1} dt�
G0.

For more general θ(τ ), for each ηH0, choose a finite number of disjoint
sets Bη

i , k1G1, . . . , ı, which cover the range of {θn} such that

P(θ(τ ) ∈∂ Bη
k1)G0, diam(Bη

k1)⁄η ,

where ∂Bη
k1 denotes the boundary of Bη

k1 and diam(B ) denotes the diameter
of the set B. Choose θηk1 ∈ Bη

k1 . Then, proceeding with the above argument,
we obtain also that

lim
(→0

Eh(θ((ti ); i⁄κ )�(1�k() ∑
lk(Ck(A1

jGlk(

(∆j∆′j�2T ) �
jTCT

jT

G̃θ(θ(τ ), ξ (t)) dt�G0.

A few details are omitted. Similarly, we also have

lim
(→0

Eh(θ((ti ); iFκ )�(1�k() ∑
lk(Ck(A1

jGlk(

(∆j∆′j�2T ) �
jTCT

jT

G̃θ(θ jAŝδ∆j , ξ (t)) dt�
G0.

Finally, note that the Lipschitz continuity of z( · ) implies that it is absol-
utely continuous, and hence there is a z̃( · ) such that

z(tCs)Az(t)G�
tCs

t

z̃(τ ) dτ .

Piecing together the estimates obtained thus far, the desired theorem fol-
lows. �

Corollary 3.1. Let {t(} be a sequence such that t(→S and (t(→S as
(→0. Then, any weakly convergent subsequence of (θ(((t(C· ), z( ((t(C· ))
has a limit (θ( · ), z( · )) such that θ( · ) lies in an invariant set Â of (14). Use
LH to denote the set of limit points of (14) over all initial conditions in H.
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If LH is asymptotically stable in the sense of Lyapounov, then the invariant
set Â is in LH .

The proof of this corollary is similar to the previous theorem. Theorem
3.2 deals with large but still bounded t, whereas in Corollary 3.1 we let both
(→0 and n→S. Note that, if there is a unique stationary point θ*, then
θ( · ) is concentrated at θ*.

3.2. Rate of Convergence. This section deals with the rate of conver-
gence issues. Since our main concern here is the convergence rate of θn to
θ*, we assume that θ* ∈ H0 (the interior of H ) and the convergence of θn

to θ*. To study the convergence rate, using a local analysis, we bring the
asymptotic features of θnAδ* to the foreground.

Since θ* ∈ H0, θn ∈ H0 for sufficiently large n. Thus, without loss of gen-
erality, we assume that θn ∈ H0 for all n and henceforth drop the reflection
term zn from the recursion. Consider

θnC1GθnC(∇ J (θn )C(∆nbnC((∆n∆′nAI )∇ J (θn ) (19)

C((∆n�2δ)ψn .

In what follows, assume that δG(1�6. This choice stems from the
decreasing stepsize KW (Kiefer–Wolfowitz) algorithm; see Chapter 10 of
Ref. 16. We will exploit the dependence of the estimation error θnAθ* on
(. Define a rescaled sequence

UnG(θnAθ*)�( 1�3.

Let the following conditions hold:

(B1) As (→0, θ((t(C· ) converges weakly to θ* ∈ H0.
(B2) For some N(→S as (→0, {Un : n¤N(} is tight.
(B3) J ( · ) is three times continuously differentiable. There is an

asymptotically stable matrix (i.e., all of its eigenvalues have
negative real parts) A ∈ �rBr such that

∇ J (θ)GA(θAθ*)CO( �θAθ* �2).

(B4) As (→0, 1(∑t�(
jG0 (1�T ) �jTCT

jT Gθ(θ*, ξ (t)) dt converges weakly
to Brownian motion w( · ) with covariance Σ t.

Remark 3.2. A few words and comments of the assumptions are in
order. Since our main objective is to obtain the convergence rate, the con-
vergence is assumed. The tightness in (B2) can be obtained by means of a
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perturbed Lyapounov function approach (Chapter 10 of Ref. 16) and suf-
ficient conditions can be provided. We choose to assume this tightness con-
dition for simplicity. Condition (B3) indicates that J ( · ) is locally (near θ*)
linear. This allows a localization leading to the desired asymptotic nor-
mality. Finally, (B4) assumes the weak convergence to a Brownian motion.
Conditions guaranteeing this can be found in the literature; see for example
Ref. 16, Chapter 7, and Ref. 18 among others.

For n¤N( , it follows from (17) that

UnC1GUnC(AUnC( (∆nbn�(1�3)C((∆n∆′nAI )AUn

C(1(∆n�2)ψnC(o(�Un �). (20)

Next, define the piecewise constant interpolation

u( (0)GUN(
,

u( (t)GUn , for t ∈ [((nAN( ), ((nAN( )C().

In view of the definition of the interpolation, the space we are working with
is Dr [0,S ). Alternatively, one could work on Dr(−S,S ). An interested
reader is referred to Chapter 10 of Ref. 16 for this aspect.

Since it is not known a priori that Un is bounded, a pertinent analysis
requires using a truncation device; see Ref. 16. The idea is as follows: For
each NH0, work on a truncated process U (,N

n taking values inside and on
the sphere with radius N centered at the origin. Denote the corresponding
interpolated process by {u(,N ( · )}. Then, we show that it is tight and charac-
terize its limit uN ( · ). Finally, let the radius of the sphere grow to S to
complete the proof. However, for notational simplicity, we assume hence-
forth the boundedness of Un .

Note that

u((tCs)Au( (t)G( ∑
(tCs)�(

jGt�(
AUj

C( ∑
(tCs)�(

jGt�(
(∆jbj�(1�3)C( ∑

(tCs)�(

jGt�(
(∆j∆′jAI )AUj

C( ∑
(tCs)�(

jGt�(
(∆j�2)ψ jC( ∑

(tCs)�(

jGt�(
o(�Uj �)

and that

1( ∑
(tCs)�(

jGt�(
(∆j�2)ψ jG1( ∑

(tCs)�(

jGt�(
∆j∆′j ĜjCo(1), (21)
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where

ĜjG(1�(2T ))�
jTCT

jT

Gθ(θ*, ξ (t)) dt

and o(1)→0 in probability uniformly in t. In addition,

E�1( ∑
(tCs)�(

jGt�(
(∆j∆′jAI )Ĝj�

2

G2( ∑
(tCs)�(

jGt�(
∑

(tCs)�(

kHj

EĜ ′j (∆j∆′jAI )(∆k∆′kAI )Ĝk

C( ∑
(tCs)�(

jGt�(
EĜ ′j (∆j∆′jAI )(∆j∆′jAI )Ĝj .

In view of the independence of {∆j}, for kHj, we have

EĜ ′j (∆j∆′jAI )(∆k∆′kAI )Ĝk

GEĜ ′j [Ej (∆j∆′jAI )(∆k∆′kAI )]Ĝk

GEĜ ′j [Ej (∆j∆′jAI )Ek (∆k∆′kAI )]ĜkG0.

Similarly, since

∆′k∆kG1 and E∆k∆kGEk∆k∆′kGI,

we have

EĜ ′k (∆k∆′kAI )(∆k∆′kAI )Ĝk

GEĜ ′k [Ek (∆k∆′k∆k∆′kA2∆k∆′kCI )]Ĝk

GEĜ ′k [Ek (−∆k∆′kCI )]Ĝk

G0.

Therefore, the above arguments and (19) imply that

1( ∑
(tCs)�(

jGt�(
(∆j�2)ψ jG1( ∑

(tCs)�(

jGt�(
ĜjCo(1),

where o(1)→0 in probability. As a result, Condition B4 yields that
1(∑(tCs)�(

jGt�( (∆j�2)ψ j converges weakly to �tCs

t dw(τ ), where w( · ) is the
Brownian motion with covariance Σ t.
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Next, in view of the formula for u((tCs)Au((t) above, similar to the
last section, it can be shown that

( ∑
(tCs)�(

jGt�(
(∆j∆′jAI )AUj converges weakly to 0,

( ∑
(tCs)�(

jGt�(
AU converges to �

tCs

t

Au(τ) dτ .

As for the bias term, recall that δG(1�6 and note that

bn�(1�3G(1�3!(1�3)� ∑
i, j,k

[∂3J (θn )�∂θ i∂θ j∂θk ]∆n,i∆n, j∆n,kδ2Co(δ2)�
G(1�3!) ∑

i, j,k

[∂3J (θn )�∂θ i∂θ j∂θk ]∆n,i∆n, j∆n,kCo(1),

where o(1)→0 as (→0. The weak convergence of θ((t(C· ) to θ* together
with the Skorohod representation leads to

( ∑
(tCs)�(

jGt�(
(∆jbj�(1�3) converges weakly to br(θ*)s,

where

br(θ*)G(1�3!)E∆n ∑
i, j,k

[∂3J (θ*)�∂θ i∂θ j∂θk ]∆n,i∆n, j∆n,k . (22)

We summarize the discussion above in the following theorem.

Theorem 3.3. Assume Conditions (B1)–(B4). Suppose that UN(
con-

verges weakly to u0. Then, {u( ( · )} is tight in Dr [0,S ). Any weakly conver-
gent subsequence of u( ( · ) has a limit u( · ) such that u( · ) satisfies the
stochastic differential equation

duG[AuCbr(θ*)] dtCdw, u(0)Gu0, (23)

with br(θ*) given by (20) and w( · ) being the Brownian motion given in (B4).

The stationary covariance of the limit diffusion is

Σ̂G�
S

0

exp(At)Σ exp(A′t) dt. (24)

A consequence of Theorem 3.3 is that (θnAθ*)�(1�3 converges in distri-
bution to a normal random variable with mean br(θ*) and covariance Σ̂
given by (22).
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If starting from the constant-step algorithm, we use a decreasing step-
size algorithm by replacing ( by (nGO(1�n) and δ by δnGO(1�n1�6), then
the convergence rate result will be that n1�3(θnAθ*) converges in distri-
bution to a normal random variable with mean br(θ*) and covariance Σ̂
given by (22).

4. Numerical Example

A numerical study is carried out to demonstrate the performance of
our algorithm. We use Example 2.1. Various quantities and variables are as
defined there, and the system parameters are shown in Table 1. In the
asymptotic analysis, it is necessary that the stepsizes be small. In the actual
computation, we chose them large enough to speedup the computation (we
used a stepsize (G10 and a finite-difference stepsize δG1000, respectively).

We consider the random processes to be Markov chains. More general
random processes can be handled in essentially the same way as far as the
simulation is concerned. This example illustrates that, when one uses the
proposed algorithm, one may need to modify the algorithm as needed.

Since no analytical result is available for the optimal threshold values,
to show the convergence of the algorithm for different initial data, we plot
the learning curves that are the contour curves generated by the simulations
for different sets of control parameters (threshold values) and the corre-
sponding costs. In the numerical experiments, different initial data are
chosen; we have used θ0G(900, 100)′ and θ0G(3500, 6000)′. The learning
curves are shown in Fig. 1. The iterates appear to be converging quickly.
After a few iterations, the average costs are already close to their optimal
values.

The example treated concerns mainly the production planning taking
the market action (setting up the price of the product) into consideration.
In Ref. 9, a somewhat different model is considered, in which in addition
to planning the production rate, a firm makes a decision on the amount of

Table 1. Parameters of the numerical experiment.

Demand rates (d1, d2) (150, 250)

Price rate π1 10
Promotion price rate π2 8
Maximum capacity u 900
Inventory holding cost rate c+ 0.1
Penalty cost rate c− 0.7
Mean machine up time 1�λ 20
Mean machine down time 1�µ 8
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Fig. 1. Learning curves.

effort needed in the promotion activities; to obtain analytic solutions in that
paper, it is necessary that one uses the conditions that the demand is a
Poisson process and that the machine is reliable. The algorithm developed
here can be used also to solve the problem as studied in Ref. 9, but allows
for unreliable machines, non-Markovian processes, and multiple machine
shops.

5. Concluding Remarks

In this paper, we have developed a class of stochastic approximation
algorithms with applications to threshold-control problems. An example of
a production planning in manufacturing has been examined. The algorithm
developed has mixed modes, is recursive in form, and is easy to implement.
It uses random-direction methods for the gradient estimates. One of the
advantages of the algorithm is that, unlike the usual numerical schemes
for solving optimal control problems that depend on the solutions of the
corresponding HJB equations, it can deal with large-scale problems.

For the class of algorithms developed, normally the convergence is to
the target of a local maximum. Algorithms for convergence to a global
maximum can be designed. However, it is known (Ref. 19) that such algo-
rithms have a very slow convergence rate. Since we are concentrating on
threshold-type controls, the approximation that we get is in the sense of
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a suboptimal solution. Thus, the local maximum is good enough for an
approximation purpose.

In evaluating the convergence rates, the computational budget can be
taken into consideration (Ref. 20). The basic idea is to treat both bias and
noise as functions of the budget devoted to the computation, and then
obtain the convergence rates accordingly.
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