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ABSTRACT

Often it is necessary to estimate the parameters of a model or unknown
system. Various techniques exist to accomplish this task, including Kalman
and Wiener filtering, least-mean-square (LMS) algorithms, and the
Levenberg-Marquardi(L-M) algorithin. These techniques require an analytic
form of the gradient of the function of the parameters to be estimated. A key
feature of the simultaneous perturbation stochastic approximation (SPSA)
method is that it is a gradient-free optimization technique (Spall;
1992,1998a,b, 1999). In the current problem, the function of parameters to be
identified is highly non-linear and of sufficient difficulty that obtaining an

1247

Copyright @ 2000 by Marcel Dekker, inc. www.dekker.com



1248 WHITNEY ET AL.

analytic form of the gradiénl is impractical. Therefore, in this paper the
performance of the SPSA algorithm will be examined in terms of parameter
selection, data requirements, and convergence performance on this non-linear
problem. Results will be reported on both a first-order “standard”
implementation of SPSA and on a second-order version of SPSA that tends to
enhance convergence.

1. INTRODUCTION

In estimating optimum parameters of & model or time series, there are
several factors which must be considered when deciding on the appropriate
optimization technique. Among these factors are convergence speed,
accuracy, algorithm suitability, complexity, and computational costs in terms
of time (coding, run-time, output) and power. In the current problem it is
necessary to estimate the parameters of a geometrical object in real time, The
model describing these parameter relationships is highly non-linear thus
requiring the use of an iterative numerical technique. In addition, the
complekity of the resulting loss*function sugﬁests the use of a gradient-free
technique. Initially, a batch L-M algorithm was tried using an algorithm which
approximated the gradient from the input data. For the current model, the L-M
had problems with convergence to local minima. Next, a simultaneous

perturbation stochastic approximation (SPSA) algorithm was programmed and
evaluated,

2. SPSA ALGORITHM

For the general optimization problem, the optimum set of parameters is
obtained when '
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where £{6) is the function to be optimized, and &is the vector of parameters to
be optimized. In this work L(#8) is a loss function describing the current best fit
between physical measurement data and the model output. Thus, the SPSA
algorithm is used to recursiv::ly optimize the parameter vector, 6. Unlike the
Keifer-Wolfowitz stochastic approximation (SA) algorithm (Keifer, J. and
Wolfowitz, J., 1952; Blum, J., 1954), which perturbs and optimizes over each
parameter in turn, the SPSA algorithm simultaneously perturbs and optimizes
over the entire parameter space. This increases algorithm efficiency and
decreases the number of iterations necessary for a given problem.

The general steps in implementing the SPSA algorithm are: 1) initialization
and coefficient selection, 2) generation of the simultaneous perturbation, 3)
loss function evalhation. 4) gradient approxiﬁation, 5) updating of parameter
vector &, and 6).ilcration (or, termination).

The recursive update form for the parameter vector is given by

i1 =0, ~2,8,(6,) 4))]
where,
ay — weight, or gain constant for the current iteration
£, — gradient estimate for the current iteration

“The i* element of the gradient estimate, £, (é) is given by
éw(én_) Y6 +ab) - y@, -6 A) 2

2¢, A,
The term é, 1 ¢y represents a perturbation to the optimization parameters

about the current estimate, Similar to a standard SA form, ¢; is a small,
positive weighting value. The vector Ay is a vector of zero-mean random
variables which must have bounded inverse moments. One valid choice for Ay
is a vector of Bernoulli-distiibuted, i.e., £ 1, random perturbation terms.

The second-order SPSA algorithm (Spall, 1999) incotporates the first-order
algorithm, usually at a reduced number of iterations, to do an initial estimate
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of the optimum values for the pmmetex;s, d. These values are then used as
the starting point for the second-order algorithm. The second-order algorithm
makes use of the Hessian matrix to increase the rate-of-convergence.
Although the second-order algorithm is more costly in terms of computer
resources, the decrease in the number of iterations needed to reach
convergence should offset this higher computational cost.

3, APPLICATION

Next, first- and second-order SPSA algorithms were implemented to
estimate the unknown parameters of the highly non-linear physical model.
The model was generated to represent the complexity of the data expected
from lidar returns and is given by

P(ﬂ#;x’z)=(cosm(cot’ﬂ)(zsinﬁ)tan"(f) @)
where, A

B, ¢ - shape parameters to be estimated
z - height along shape
x - width along shape

The independent variables x and z are known. z is the vertical distance up the
geometrical body through which a horizontal plane is extended, and js a
constant for any particular data set. The returns, p(8 ¢:x,z), are calculated at
cqual x intervals ncross this plane. The parameters 8 and ¢ are unknown and
are initialized based on knowledge of their expected ranges. Under different
scenarios it may be required to estimate one, or more, of the mode! parameters
in various combinations. '

The lg'ss function, L(#), describing the current best fit between the
- measurement data and the model output is given by

L6 =1p(B,8:x.2)~ p(B,8;x,2)] “
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TABLEI
B, actual value B, estimated value

100 9.998

15.0 15.000
20.0 20.002
25.0 24998
30.0 30.000
33.0 33.002
38.0 37.999

4, RESULTS

Several s'cena:io;.s were investigated, including; first-order algorithm, one-
parameter; first-order algorithm, two-parameter; and second-order algorithm,
two-parameter. -

The results obtained from the first-order, one-parameter algorithm are
illustrated in Table 1. In this scenario, § was the parameter to be estimated.
The parameter ¢ was k‘m:vw;1l and had a value of 40.0. The measurement data
density is 4000 samples-per-unit-length, with algorithm convergence
parameters & = 0.702, and y= 0.101. The initial value of 6, was 20.0.

In a second trial, the SPSA algorithm was programmed to estimate the
parameter ¢. The parameter § was known and had a value of 10.0. Table 11
illustrates the results.

"Figures 1 and 2 illustrate convergence curves for estimation of the model
parameter ¢. In these figures, the value of 8 was 10.0, and the actual values of
¢ are 10 and 45, respectively. In both cases the initial value of ¢ was 20.

In the first-order two-parameter example, the parameter vector has been
modified so that both parameters 7 and ¢ are estimated by the first-order
SPSA algorithm. The algorithm was run for various combinations of 8 and ¢.
These results are shown in Table IIL. '
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TABLE 11
¢, actual value ¢, estimated value

10.0 . 9.998

15.0 15.000
18.0 18.002
23.0 22599
30.0 10.000
370 37.002
45.0- 45.000
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FIG. 1 Convergence Curve, phi = 10

The convergence characteristics for this scenario are illustrated in Figure 3,
where the true parameter values are §= 12,0, and ¢ = 25.0

The results of the second-order two-parameter simulation were similar to
those of the ﬁmtﬂ:Qer, two-parameter example and are illustrated in Table [V,
In this case, the number of iterations performed in the first-order section of the
algorithm was restricted to 50. The remaining iterations were then performed
in the second-order section of the algorithm,
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FIG. 2 Convergence Curve, phi = 45
TABLE {1
B, actual value | ¢, actual value | f, estimated value | @, estimated value
12,0 250 11.8 26.50
15.0 _ 15.0 16.50 12,00
15.0 45,0 18.87 39.89
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FIG. 3 Convergence Curves; beta = 12, phi =25
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TABLEIV
B, actual value | ¢ actual value | 3, es'@t_gd value | ¢, estimated value
12.0 25.0 9.02 24.84
150 15.0 14.98 15.39
15.0 45.0 14.40 47.40
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FIG. 4 Convergence Curves; beta = 15, phi = 15

Fig. 4 illustrates the convergence characteristics of the second-order SPSA
algorithm for the parameter set =15, ¢=15.

It should be noted that the values listed in the tables as ‘actual value’ were the
values used to generate the data. However, the estimated optimum parameter
values, &, may not necessarily equal the actual values due to being estimated
from the generated finite length data set.

5. DISCUSSION

It can be seen from Figures 1 and 2 that the first-order algorithm provided
outstanding estimation performance on the one-parameter problem. Although
estimation performance for the first-order one-parameter algorithm is not
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shown for the parameter f, it was found that in general J was the easier of the
two parameters to estimate — both in terms of accuracy, and rate of
convergence. This fact can also be observed in Figure 4, which illustrates the
convergence behavior for the second-order two-parameter algorithm. In this
case, the true values are #=15, and ¢ =15. It can be seen that the curve for #is
relatively smooth, while the curve for ¢ is more discontinuous, Part of this
effect is due to the number of iterations run in the first-order parameter
estimation section of the algorithm; i.c., the estimated value, f, upon entry to

the second-order sectioﬁ of the program is closer to the true value of £, than é
is to the true value of ¢ This disparity in convergence rates might be
overcome with more experimentation with the user-adjustable *blocking
factor’ which constrains the range of parameter perturbation at each iteration.
One technicality which had to be accounted for in these simulations was
that Eq. 3 contained several niinima; i.e., over the span of viable parameter

combinations of § and ¢, .there were several combinations where the loss

function, L(#), went to zero. The res}ulting optimum values, 4, were thus a

function of the initial starting parameters, &, .
In conclusion, it was found that both the first-order and second-order SPSA
algorithms performed well in the prescribed application. The performance of
both algorithms was highly dependent on the shape of the loss function -
surface. Consequently, this places a higher burden on the selection of initial
parameter values and user-selectable algorithm tuning variables, such as the

two convergence gain parameters, a; and ¢

N ACKNOWLEDGMENTS

This work was performed under a contract with the Johns Hopkins Applied
Physics Laboratory. The authors would like to thank Dr. James Spali and Dr.
John Maryak for their comments and support.



1256 WHITNEY ET AL.

BIBLIOGRAPHY

Blum, J. R. (1954) “Multidimensional Stochastic Approximation Methods™,
Ann. Math. Stat., 28, 737-744.

Kiefer, J. and Wolfowitz, I. (1952) “Stochastic Estimation of the Maximum of
& Regression Function”, Ann. Math, Stat., 23, 462-466,

Spall, J.C. (1992) “Multivariate Stochastic Approximation Using a
Simultaneous Perturbation Gradient Approximation”, IEEE Transactions
on Automatic Control, 37(3), 332-341.

Spall, J.C. (1998a) “Implementation of the Simultaneous Perturbation
Algorithm for Stochastic Optimization”, IEEE Transactions on Acrospace
and Electronic Systems, 34(3), 817-823.

Spall, J.C. (1998b)“An Overview of the Simultaneous Perturbation Method
for Efficient Optimization”, John Hopkins APL Technical Digest,
19(4), 482-492, -

Spall, J. C. (1999) “Adaptive Stochastic Approximation by the Simultaneous
Perturbation Method”, IEEE Transactions on Automatic Control, to
appear (in condensed form in Proceedings of the IEEE Conference on
Decision and Control, 1998, 3872-3879).

Received June, 1999; Revised January, 2000,



